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Abstract: Coherent imaging systems, such as synthetic aperture radar (SAR), often suffer from
granular speckle noise due to inherent defects, which can make interpretation challenging. Al-
though numerous despeckling methods have been proposed in the past three decades, SAR image
despeckling remains a challenging task. With the extensive use of non-local self-similarity, de-
speckling methods under the non-local framework have become increasingly mature. However,
effectively utilizing patch similarities remains a key problem in SAR image despeckling. This paper
proposes a three-dimensional (3D) SAR image despeckling method based on searching for similar
patches and applying the high-order singular value decomposition (HOSVD) theory to better utilize
the high-dimensional information of similar patches. Specifically, the proposed method extends
two-dimensional (2D) to 3D for SAR image despeckling using tensor patches. A new, non-local
similar patch-searching measure criterion is used to classify the patches, and similar patches are
stacked into 3D tensors. Lastly, the iterative adaptive weighted tensor cyclic approximation is used
for SAR image despeckling based on the HOSVD method. Experimental results demonstrate that the
proposed method not only effectively reduces speckle noise but also preserves fine details.

Keywords: synthetic aperture radar (SAR); despeckling; tensor patches; higher-order singular value
decomposition (HOSVD)

1. Introduction

Synthetic aperture radar (SAR) is an earth observation system that can generate high-
resolution remote sensing images, allowing for daylong and all-weather observations.
Hence, the SAR system offers unique benefits in various fields, including disaster mon-
itoring, resource exploration, and military applications [1]. However, SAR images are
often degraded by speckle noise, which is a natural consequence of coherent scattering
phenomena. Unfortunately, speckle noise cannot be eliminated from SAR images and can
significantly hinder interpretation, such as target recognition and image segmentation [2].
In contrast to additive white Gaussian noise (AWGN) typically found in optical images,
the speckle noise in SAR images is usually multiplicative.

Speckle noise significantly impacts the understanding and interpretation of SAR
images. Therefore, despeckling SAR images can considerably improve the subsequent
application performance [3–6]. Owing to the limitations of early SAR image technology,
traditional spatial domain despeckling approaches primarily relied on spatial filtering
algorithms, such as the Lee filter [7], the Frost filter [8], and the Kuan filter [9], to remove
the speckles. These methods tend to over-smooth the image while removing speckle noise,
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resulting in the loss of textural details. Subsequently, transform domain methods have
been proposed for despeckling SAR images. Currently, the most commonly used transform
domain despeckling methods include wavelet transform [10,11], contourlet transform [12],
and shearlet transform [13]. Despite being more effective than spatial domain despeck-
ling methods, transform domain filtering demands substantial computational resources,
can cause image blurring, and introduce artifacts, which adversely affect subsequent im-
age processing. Regularization-based despeckling is another popular approach to SAR
images [14,15], which transforms the despeckling problem into a minimization energy
function. Regularization models based on the total variance model can effectively suppress
speckle noise and maintain texture. In fact, they may create an unpleasant staircase effect.
In recent years, sparse representation has emerged as a captivating field of research [16].
Sparse representation aims to represent the original image with as few atoms as possible in
an overcomplete dictionary, leveraging natural prior knowledge as a clean image can be
represented sparsely while noise cannot. Furthermore, some methods increase adaptability
by iteratively and alternately updating the atoms and sparse solutions in the dictionary
using a learning strategy [17]. Unfortunately, these methods have limitations in terms
of noise separation and computational efficiency. Deep learning has shown significant
potential in various research areas and has also made outstanding achievements in the
despeckling of SAR images. For instance, the SAR-convolution neural network (CNN)
combines homomorphic transformation SAR images with deep CNN [18–20]. The devel-
opment of deep learning has significantly improved the performance and speed of SAR
image despeckling by leveraging the powerful feature extraction and adaptive parameter
adjustment capabilities of deep learning [21,22]. To achieve optimal despeckling perfor-
mance, deep learning models heavily rely on training with a large volume of clean real
SAR images. Nevertheless, acquiring such datasets can be challenging. As a result, models
trained solely on simulated SAR images are often limited to specific scenes or scenarios.

The non-local means (NLM) denoising algorithm uses similar features, including
non-adjacent pixels [23]. The fundamental concept is the self-similarity of natural images,
which involves estimating clean pixels by searching for similar patches in the entire image
or a large window. Therefore, the NLM has achieved promising denoising results and has
been widely used in the field of SAR image despeckling. The probabilistic patch-based
(PPB) filter [24] replaces the Euclidean distance with a statistical similarity criterion and
utilizes an iterative method to update weights. Several algorithms have combined NLM
with multiscale geometric transformations and achieved good despeckling results. For
instance, SAR-block-matching 3D (SAR-BM3D) filter [25] combined 3D block matching and
collaborative filtering. Subsequently, Cozzolino et al. proposed a fast adaptive nonlocal
SAR (FANS) filter [26] and enhanced the despeckling efficiency of SAR-BM3D. NLM has
also been employed in total variation regularization [27], low-rank approximation [28], and
sparse representation [29].

The NLM algorithm is effective in suppressing speckle noise. However, it can also
generate artificial texture due to the influence of the blocking criterion and patch-matching
accuracy, which can impede image interpretation. Various strategies, such as multiscale [30]
and the gray theory [31], have been employed to improve the selection of patches with
similar properties. Liang et al. [32] introduced gradient information into the similarity
measure by constructing the gradient orientation map and accelerated despeckling using
the fast Fourier transform algorithm. Giampaolo et al. [33] proposed an independent
model-free NLM despeckling framework that provided a generic solution for despeckling
a variety of SAR products. However, most of the above-mentioned despeckling methods
rearrange SAR images into vectors or matrices and rely on vector or matrix calculation
methods for despeckling. Unfortunately, the vectorization operation destroys the topology
between similar patches, resulting in suboptimal despeckling performance. Tensors [34]
offer a natural representation for multilinear data, serving as a high-order generalization
of vectors and matrices. Liu et al. [35] proposed a method for estimating missing values
in tensor visual data by generalizing low-rank matrices to low-rank tensors. Tensor com-
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pletion techniques have demonstrated significant potential for applications such as image
inpainting, video compression, and bidirectional reflectance distribution function (BRDF)
data estimation. Zhang et al. [36] introduced the tensor singular value decomposition
(t-SVD) for denoising and completion of multilinear data, which can handle a broader
range of multilinear data as long as they are compressible in the t-SVD-based represen-
tation. Xue et al. [37] developed a method for reducing noise in hyperspectral images
(HSI) using CANDECOMP/PARAFAC (CP) decomposition modeling with tensor and rank
automatic determination. This algorithm significantly improves the denoising performance
of HSI in various quality assessments. This paper proposes a three-dimensional (3D) SAR
image-despeckling method based on patch matching and the tensor patch higher-order sin-
gular value decomposition (HOSVD) theory to effectively capture the potential information
shared among similar patches and better exploit the correlation between different dimen-
sions of SAR images. By using the non-local framework, the classified two-dimensional
(2D) similar patches are stacked to construct third-order non-local tensor patches, which
can better utilize the similarity of patches. It should be noted that this is the first time
higher-order tensor decomposition has been applied to the field of SAR image despeckling.
The proposed method effectively achieves high-dimensional SAR image despeckling by
utilizing the low-rank tensor approximation technique to exploit the potential correlation
and low-rank structure of SAR image data. The effectiveness of the proposed method is
evaluated and compared with the existing advanced despeckling algorithms.

The remainder of this paper is structured as follows. Section 2 presents a detailed
description of the material and methodology used for despeckling. Section 3 provides an
analysis of the experimental results. In Section 4, a comprehensive discussion is presented
to provide deeper insights. Finally, Section 5 outlines the conclusions drawn from the
method. The framework of the proposed method is illustrated in Figure 1.
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Figure 1. The framework of the proposed method.

2. Materials and Methods

This section presents the proposed method for SAR image despeckling. Prior to
the proposed method, the multiplicative noise is converted to an additive model using a
logarithmic transformation. Then, the entire image is divided into overlapping patches and
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similar patches within a local search window are selected for each reference patch. Firstly,
the gradient of the image is calculated and used to identify similar patches. Next, these
similar patches are combined into third-order tensor patches. Subsequently, the iterative
low-rank tensor patch approximation is applied to recover the clean tensor patches. Finally,
the ultimate results are obtained by exponential transformation and aggregation of all
patch estimates.

2.1. Statistics of Log-Transformed Speckle

Considering an intensity SAR image, the intensity Y is related to the backscatter return
X and speckle noise B by the following multiplicative model:

Y = BX (1)

Assuming that the speckle noise is fully developed, Goodman’s model indicates
that it follows a gamma distribution with a probability density function (PDF), expressed
as follows:

p(B) =
LLBL−1

Γ(L)
exp(−LB), B ≥ 0 (2)

where Γ(·) denotes the gamma function. Logarithmic transformation is often used to
convert multiplicative noise into additive ones. Using the logarithmic operator applied on
Equation (1):

Ỹ = ln(Y) = ln(B) + ln(X) = B̃ + X̃ (3)

The random variable B̃ follows the Fisher–Tippett distribution, defined as follows:

p(B̃) =
LLeB̃L

Γ(L)
exp(−LeB̃) (4)

The mean and variance of B̃ can be computed as follows:

E[B̃] = Ψ(L)− ln(L), Var[B̃] = Ψ(1, L) (5)

where Ψ(·) is the digamma function, and Ψ(·, L) is the polygamma function of order L.
Formula (5) shows that the noise has a non-zero mean. Therefore, a de-biasing step is
required after inverse logarithmic operations.

2.2. Searching Similar Patches of SAR Images
2.2.1. Measure for Non-Local Similarity

In the presence of noise, a similar patch-searching algorithm may select irrelevant
candidates, resulting in undesired artifacts due to averaging the selected patches with
irrelevant data values. Conversely, it can be difficult to find enough similar patches in
regions with edges or unique structures, leading to the incorrect despeckling of pixels in
such areas. To address these weaknesses in the similar patch-searching algorithm, the
similarity criterion proposed in [38] is utilized in this study. The similarity criterion uses
the gradient information to calculate the similarity between patch x and patch y in the SAR
images, as follows:

S(x, y) = ‖x− y‖2
Ga + ρ

(
Ex
)∥∥Ex − Ey

∥∥2
Ga (6)

where ‖ • ‖Ga represents the Gaussian norm [39] and ρ is the continuous increasing bounded
function. The basic idea behind the similarity criterion is to consider the gradient informa-
tion, especially in regions near singular points. The gradient vector |∇x(i, j)| of the patch
x in the position (i, j) is calculated and expressed as (Ex)ij = |∇x(i, j)|. The matrix with
entries is denoted by Ex, while Ex represents the average value of the elements of matrix Ex.
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2.2.2. Computation of Gradient

This paper utilizes the constrained least squares method [40] to estimate gradient
information from SAR images. Specifically, given a pixel point θ ∈ R2 in a patch, the vector
of data values is denoted by f:= [ f (θv) : v = 1, . . . , V]T . Let {Zu : u = 1, . . . , U}, U < V be
a basis for ΠU , which represents the space of algebraic polynomials of degree < U, and put

Φ :=
[
zj(θi) : i = 1, . . . , V, j = 1, . . . , U

]
, Z(ϕ)(θ) :=

[
z(ϕ)

j (θ) : j = 1, . . . , U
]T

.

The approximation of the derivative f (ϕ) can be expressed as follows:

f (ϕ)(θ) ≈ K(ϕ)(θ)Tf (7)

where K(ϕ)(θ) :=
[
K(ϕ)

v (θ) : v = 1, . . . , V
]T

is the appropriate coefficient vector that can be
obtained by solving the following convex optimization problem:

min
K(ϕ)(θ)

V

∑
v=1

K(ϕ)
v (θ)2δ(θ − θv) s.t. ΦT ·K(ϕ)(θ) = Z(ϕ)(θ) (8)

The penalty function δ is typically chosen to be a smooth function that increases
rapidly. A typical example is as follows:

δ(θ) = exp
(
‖θ‖2/2

)
(9)

The matrix form K(ϕ)(θ) = M−1Φ
(

ΦTM−1Φ
)−1

z(ϕ)(θ) can be used to represent the
solution to the optimization problem (8), where matrix M is defined as follows:

M := 2 diag(δ(θ − θv) : v = 1, . . . , V).

2.3. Tensor and Third-Order Tensor Decomposition
2.3.1. Definition of Tensor

To better exploit the self-similarity of similar patches, 2D patches are converted into
third-order tensors for SAR image despeckling. The tensors are equivalent to multidi-
mensional vector arrays, which are vectors and matrices extended to multiple dimensions.
Specifically, scalars, vectors, and matrices can be viewed as zero-order, first-order, and
second-order tensors, respectively. To further explain the third-order tensor decomposi-
tion, a few basic definitions of tensors are provided as follows. The mode-n vector of the
third-order tensor is shown in Figure 2.

(a) mode-1 vector (b) mode-2 vector (c) mode-3 vector

Figure 2. The mode-n vector of the third-order tensor.
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Definition 1. Given two tensors A ∈ RI1×I2×I3 ...×IN and B ∈ RI1×I2×I3 ...×IN of the same dimen-
sion, their inner products can be calculated as follows:

〈A, B〉 = ∑
i1

∑
i2

∑
i3
· · ·∑

iN
ai1i2i3...iN · bi1i2i3...iN (10)

the Frobenius norm of tensor A ∈ RI1×I2×I3 ...×IN can be obtained as follows:

‖A‖F =
√
〈A, A〉 =

√
∑

i1,i2,··· ,iN
|ai1i2...iN |2 (11)

Definition 2. The elements of tensor A are mapped to the elements of the mode-n matrix A(n) ∈
RIn×(I1×···×In−1×In+1×···×IN), and a mode-n expansion of a tensor A ∈ RI1×I2×I3 ...×IN of order n
can be obtained. All elements of the tensor are expanded using modulo and then rearranged into a
two-dimensional matrix.

Definition 3. The mode-n rank of A ∈ RI1×I2×I3 ...×IN for a given tensor A of order N is the rank
of the tensor A mode-n expanded matrix A(n), it can signify rankn(A).

The corresponding mode-n expansion of the third-order tensor A is shown in Figure 3.

A(3)

A(2)

A(1)

I3

I1

I2

I3

I2

I1

I1

I2

I3
I3

I1

I2

A

I3

I1

I2

I3

I1

I2

A

A

Figure 3. Mode-n expansion of the third-order tensor A.

2.3.2. Higher-Order Singular Value Decomposition

The CP decomposition and Tucker decomposition are two commonly used methods
for tensor decomposition. The CP decomposition expresses a given observation tensor
as a combination of a sequence of rank-one quantities. The Tucker decomposition can be
regarded as the extension of the matrix component analysis to higher dimensions. The
HOSVD is a special form of the Tucker decomposition and can be obtained by generalizing
the mode-n product of the matrix singular value decomposition (SVD) to the nth-order
tensor A ∈ RI1×I2×I3 ...×IN [41].
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A = R×1 U(1) ×2 U(2) ×3 U(3) × · · · ×N U(N) (12)

where U(n) ∈ RIn×In , n = 1, 2, 3, · · · , N is the orthogonal basis matrix and R is the kernel
tensor obtained by factorization. Unlike SVD for 2D matrices, the kernel tensor R coefficient
distribution for HOSVD does not have a diagonal structure and is not necessarily non-
negative. R can be expressed as follows:

R = A×1 U(1)T ×2 U(2)T × 3U(3)T × · · · ×N U(N)T
(13)

The HOSVD of the third-order tensor A ∈ RI1×I2×I3 is expressed as follows:

A = R×1 U(1) ×2 U(2) ×3 U(3) (14)

Figure 4 shows the schematic diagram of the HOSVD of the third-order observation
tensor.

I2

I2

I3

I3

I3

I1

I2

I1

I1

I3

I1

I2

A


1U
2U

3U

Figure 4. Schematic diagram of the HOSVD of the third-order tensor.

where U(n) ∈ RIn×In(n = 1, 2, 3) is the orthogonal basis matrix and R ∈ RI1×I2×I3 is the
kernel tensor obtained by factorization. Since the third-order tensor A is obtained by
stacking similar patches, the traditional HOSVD denoising algorithm assumes that the core
tensor is sparse. The kernel tensor R coefficient of the HOSVD decomposition is shrunk by
a hard threshold as follows:

R̂ = Tτ(R) (15)

where Tτ is hard-thresholding and is defined as follows:

Tτ(R) =

{
R(i, j, k), R(i, j, k) ≥ τ

0, R(i, j, k) < τ
(16)

The coefficient of the kernel tensor that is less than the threshold τ is set to zero by
Equation (16), and then the estimated value Â of the kernel tensor intercepted by the hard
threshold can be obtained by the inverse HOSVD transformation.

Â = R̂×1 U(1) ×2 U(2) ×3 U(3) (17)

Therefore, the HOSVD is used for image denoising, mainly by decomposing the
high-order structure of the image tensor to extract useful information. Subsequently,
the tensor is reconstructed to achieve the denoising effect. For denoising, appropriate
thresholds can be selected to remove the noise from the image tensor, and the remaining
parts can be recombined to form a denoised image. Let us explore the application of SVD
in image denoising. The self-similarity of an image refers to the presence of a high degree
of similarity between similar patches. If there is no noise, the similar patch matrix should
have a low-rank property when converted to column vectors. Based on this observation,
image denoising has been formulated as a low-rank matrix approximation problem. Let
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Y ∈ Rm×n be the observation matrix that comprises similar blocks of noisy observation
images converted to column vectors, and X ∈ Rm×n be the corresponding noiseless matrix
to be estimated, which has a low-rank property. Typically, the denoising model [28] based
on the 2D low rank is approximated as follows:

X̂ = arg min
X

1
2
‖Y− X‖2

F s.t. rank(X) ≤ r (18)

The above equation can be solved by performing SVD on the noisy observation matrix
Y ∈ Rm×n. In the SVD domain, Y can be decomposed into

Y = UΛVT (19)

the following is
Yr = UΛrVT (20)

including,
Λr = diag(λ1, λ2, · · · , λr, 0, · · · , 0) (21)

That is, the r singular values before the singular value decomposition of Y are retained,
and Yr is the solution of Equation (18). However, the above rank constraint is an NP
problem. Determining the shrinkage of rank r for singular values is the key. However,
it is difficult to determine a reasonable threshold in despeckling based on SVD. Building
on these observations, a new methodology for approximating low-rank tensor patches is
proposed in this study. The proposed approach involves penalizing the adaptive weighted
singular values of the core tensor, which is obtained via HOSVD, to achieve the low-rank
tensor patch approximation.

2.4. SAR Image Despeckling Based on the Iterative Low-Rank Tensor Patch
Approximation Algorithm

The basis of HOSVD is different from the fixed basis used in the SAR-BM3D wavelet
transform and is obtained by decomposing the 3D observation tensor. The objective func-
tion for the low-rank tensor estimation of SAR image despeckling is expressed as follows:

arg min
X

1
2‖Y− X‖2

F +W‖z(X)‖∗

where Y and X denote the noisy and latent clean images, respectively; ‖ • ‖F represents
the Frobenius norm, which can be calculated using Equation (11). W denotes adaptive
weights; ‖z(X)‖∗ denotes the proposed low-rank tensor patch nuclear norm, and z(X)
represents HOSVD, which is used to obtain the low-tensor patches from X.

In the field of SAR image processing, natural scenes are often represented by SAR
images that exhibit low-rank features. Generally, `1 norm regularization or nuclear norm
regularization is frequently employed to approximate the rank function of the image. While
these regularization methods can yield sparse solutions, the convexity in both approaches
may introduce significant estimation bias [42]. In contrast, non-convex penalties, such as
`q(0 ≤ q < 1), smoothly clipped absolute deviation (SCAD), or minimax concave (MC)
penalties can improve the deviation problem. Non-convex penalty regularization has
demonstrated many advantages over convex penalty regularization in numerous appli-
cations. In recent years, there has been significant interest in non-convex regularization
methods for sparse and low-rank recovery, driven by advancements in non-convex and
non-smooth optimization algorithm theories. Building upon these developments, this pa-
per proposes an iterative adaptive weight scheme for the regularization term, the adaptive
weights with `1-norm can be seen as types of non-convex penalties applied to the core ten-
sor [43]. The proposed scheme involves assigning varying penalty weights to the singular
values of the tensor to achieve an optimal approximation of the low-rank tensor patches.
Furthermore, soft threshold operators are used to solve the non-convex objective function.
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For each tensor patch Ak, k = 1 · · ·K, the count of reference patches is represented by
K, and the minimization problem is further expressed as follows:

min
X

wk
∥∥∥Ak

∥∥∥
∗
= ∑

i
wk

j

∣∣∣λk
j

∣∣∣ (22)

the adaptive weight is denoted by wk
j , where λk

j is the elemental value in the core tensor

R. Due to the varying weights wk
j , the adaptive weights with the `1-norm penalized

optimization problem are non-convex. However, if the weights wk
j are assigned in a non-

increasing manner to the increasing absolute values
∣∣∣λk

j

∣∣∣ of the core tensor Rk, the penalized
optimization problem becomes a convex problem [35].

With the above analysis, the third-order tensor A is directly despeckled. The objective
function can be expressed as follows:

arg min
At

x

1
2

∥∥∥At
y − At

x

∥∥∥2

F
+ ∑

j
wt

j

∣∣∣λt
j

∣∣∣, t = 1, . . . , T (23)

the kth reference tensor patch of noisy image Y is denoted by At
y, where At

x is the potential
clean tensor patch corresponding to At

y, and λt
j is the value of the core tensor R. The

adaptive weight is denoted by wt
j , which is assigned to

∣∣∣λt
j

∣∣∣. After obtaining the despeckling

estimate At
x, the despeckled tensor patches are put back into their original positions to form

a clean image, which requires an aggregation procedure. Up to this point, the despeckling
of the nth image is completed and the despeckled SAR image X̂n is obtained.

2.5. Soft-Thresholding Proximal Operator

Compared to traditional convex penalty functions, the non-convex penalty functions
may be more difficult to solve. Therefore, this paper uses the proximity operator to solve the
non-convex penalty function. By solving the proximity problem for the objective function at
each iteration, the proximity operator can provide an approximation to the optimal solution
of the objective function. This approach effectively overcomes the difficulty of solving
non-convex penalty functions and facilitates efficient optimization in high-dimensional
spaces. Given a proper and lower semi-continuous penalty function Pλ(·) and a threshold
parameter λ > 0, the scalar proximal projection can be defined as follows:

proxpλ(h) = arg min
x

{
Pλ(x) +

1
2
(x− h)2

}
(24)

the proxpλ(h) represents the proximity operator of a vector h = [h1, . . . , hn] ∈ Rn, which
can be expressed as follows:

proxpλ(h) =
[
proxpλ(h1), . . . , proxpλ(hn)

]T (25)

For commonly used proximity operators, the following soft-thresholding proximal
operator is used in this paper:

proxpλ(h) = sign(h)max{|h| − λ, 0} (26)

Given a patch tensor A, P̃λ(·) denotes a generalized penalty on the elemental values
λi of the core tensor R, which can be expressed as follows:

P̃λ(A) = ∑
i

Pλ(λi) (27)
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2.6. Residual Iteration and Adaptive Weight Setting to wt
j

To further enhance the efficacy of SAR image despeckling, the residual image is utilized
and iteratively processed. The residual image is effective in capturing the differences
between noise and signal. The iterative process facilitates continuous optimization of
despeckling outcomes, resulting in improved despeckling effects and image quality. The
key element of the iterative algorithm is to add the residual

(
Y− X̂n

)
from the nth iteration

to refine the (n + 1)th step despeckled image Yn+1.

Yn+1 = X̂t
n + µ

(
Y− X̂t

n
)

(28)

where n stands for the number of iterations; and the relaxation parameter is denoted by µ.
To incorporate the residual information into the despeckled image, the remaining noise
variance should be estimated, which is expressed as follows:

σn = η

√
σ2 − 1

q× r
‖Y−Yn−1‖2

F (29)

where η represents the scaling factor, which is used to control the re-estimation of noise
variance. The noise variance of Y is indicated by σ, and the number of pixels in Y is denoted
by q× r.

The iterative adaptive weights wt
j related to each λj are assigned as follows:

wt
j =

2
√

2
√

Nσ2
n∣∣λj

∣∣+ $
(30)

where N denotes the number of patches per tensor At
y; the small positive parameter is

represented by $ > 0, which is chosen to prevent division by zero, and σn can be computed
using Equation (29). The optimization problem (22) of the proximal soft-threshold operator
(26) is solved using an iterative adaptive weight wt

j . The adaptive thresholding retains the
large values while filtering out the small values, thereby preserving important structural
information in the image. Consequently, solution τt

j to the jth element of At
x can be

expressed as follows:
τk

j = sign
(
λj
)

max
{∣∣λj

∣∣− wt
j , 0
}

(31)

2.7. Aggregation of Despeckled Tensor Patches

When the patches are reassembled into the image, a weight is assigned to each tensor
patch based on its level of noise. Specifically, the weight is defined as follows:

v =


r2 × N

r2 × N + C
, if C ≥ 1

0, otherwise
(32)

where r denotes the patch size; C represents the number of thresholded elements in the
core tensor and N is the count of patches in the current tensor. The resulting image can be
obtained as follows:

X̂(x, y) =
∑i∈Nx,y ∑j∈j(j)x,y vi,jΩi,j

∑i∈Nx,y ∑j∈j(j)x,y vi,j
(33)

where Nx,y represents all tensor patches overlapping in position (x, y); J(i)x,y represents all
tensors in the ith tensor that overlap at position (x, y); and Ωi,j represents a pixel located at
position (x, y). The flow of the tensor despeckling algorithm is shown in Algorithm 1.
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Algorithm 1 Iterative low-rank tensor patch approximation algorithm for SAR image
despeckling

Input: SAR image Y, the ENL L, the number of reference patches K, and iteration F
Output: despeckled SAR image X

1: Initialization:
Initialize X0 = Y, Y0 = Y, SAR image patch tensor A

2: Iteration:
1© Outer loop: for n = 1:F do

(I) Re-estimate Yn by (28)
(II) Re-estimate noise variance σn by (28)

2© Inner loop: for t = 1:T do
(I) Compute U(1), U(2), U(3) and core tensor R(t)

y of A(t)
y by HOSVD via Equation (14)

(II) For each λj in core R
(t)
y calculate the wt

j via Equation (22)

(III) Apply threshold wt
j to λj in R

(t)
y via Equation (27)

(IV) Estimate despeckling patches tensor by (23)
End for

3© Obtain the nth step despeckled SAR image X̂n via Equation (33)
End for

4© Obtain the despeckled SAR image X

3. Results

This section presents the despeckling experiments conducted on simulated multiplica-
tive noise images and real SAR images. The experimental results verify the effectiveness of
the proposed method. The proposed method is compared with the current state-of-the-art fil-
ters, including PPB [24], SAR-BM3D [25], FANS [26], and Mulog [44]. The executable codes
for these methods can be downloaded from the authors’ websites, accessed on 29 May 2023.
(https://www.charles-deledalle.fr/pages/ppb.php; http://www.grip.unina.it/download/
prog/SAR-BM3D/; http://www.grip.unina.it/download/prog/FANS/; https://www.
charles-deledalle.fr/pages/mulog.php) To better measure the despeckling performance
of the proposed method, three objective evaluation metrics, i.e., peak signal-to-noise ratio
(PSNR), feature similarity index (FSIM) [45], and structural similarity index (SSIM) [46],
are used for the simulated multiplicative noise images. A higher PSNR indicates better
image quality, while a higher FSIM suggests improved preservation of image structure
information, which is represented as a number between 0 and 1. For real SAR images, the
equivalent number of looks (ENL) and the mean of ratio image (MoR) are used to measure
the superiority of the proposed method. Moreover, the ratio image is calculated to objec-
tively evaluate the real SAR image-despeckling performance. To facilitate a well-informed
selection of parameters within the proposed algorithm, this paper conducted an analysis of
their influence using PSNR and SSIM metrics, as presented in Table 1. The PSNR and SSIM
values were computed by averaging across multiple images. In the proposed algorithm, the
patch size was set to 7 × 7 and the search window size was set to 30 × 30. Additionally, the
parameter patch number and patch stack number were set to 300 and 60, respectively.

Table 1. PSNR and SSIM performance comparison with different patch sizes, patch numbers, patch
stack numbers, and search windows. The best results are highlighted in bold.

Patch size 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9
PSNR 23.11 23.14 23.26 23.24 23.19
SSIM 0.679 0.681 0.687 0.680 0.679

Patch number 100 150 200 250 300
PSNR 23.23 23.27 23.33 23.31 23.38
SSIM 0.683 0.687 0.691 0.693 0.695

Patch stack number 30 40 50 60 70
PSNR 23.07 23.25 23.40 23.42 23.37
SSIM 0.683 0.687 0.691 0.693 0.695

Search window 10 × 10 15 × 15 20 × 20 25 × 25 30×30
PSNR 23.21 23.34 23.41 23.43 23.45
SSIM 0.686 0.691 0.697 0.696 0.698

https://www.charles-deledalle.fr/pages/ppb.php
http://www.grip.unina.it/download/prog/SAR-BM3D/
http://www.grip.unina.it/download/prog/SAR-BM3D/
http://\www.grip.unina.it/download/prog/FANS/
https://www.charles-deledalle.fr/pages/mulog.php
https://www.charles-deledalle.fr/pages/mulog.php
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3.1. Experiments on Simulated Multiplicative Noise Images

In this study, initial evaluations were conducted on three simulated multiplicative
noise images, i.e., house, monarch, and Napoli. These three images are commonly used
as test images in SAR image despeckling. To simulate realistic conditions, multiplicative
speckle noise with different appearance levels (L = 1, 2, 4, 8) was added to each noise-free
image. Reference images and corresponding noisy images (with L = 2) are presented in
Figure 5.

3.1 Experiments on synthetic SAR images

In this study, we conducted initial evaluations on three simulated SAR images:

House, Monarch, and Napoli. These three images are commonly used as test images

in SAR image despeckling. To simulate realistic conditions, we added multiplicative

speckle noise with different levels of appearance (L=1, 2, 4, 8) to each noise-free

image. Reference images and corresponding noisy images (with L=2) are presented in

Figure 5.

Figure 5. Test synthetic multiplicative noise images (Top line, from left to right: House,

Monarch, and Napoli, are the clear optical images. Bottom line, from left to right: House,

Monarch, and Napoli, are the simulated SAR images, L=2)

In Figure 6, we present the despeckling results of each filter on the House image,

along with the relevant quantitative indexes reported in Table II. The PPB filter

excessively smooths the image visually, leading to the loss of detail and structural

information. For instance, the window details highlighted by the red box are affected

when compared to the clean images. FANS effectively suppresses noise while

preserving the structural information of the image, but it has poor performance in

retaining details. Although SAR-BM3D and Mulog can preserve the details and

structural information of the image well, and have good despeckling performance in

homogeneous regions, some unwanted artifacts are introduced during the despeckling

process. Overall, our proposed method preserves more details and structural

Visually, compared to the clear

images, the PPB filter smooths the image excessively,

resulting in the loss of detail and structural information, such

as the window details highlighted by the red box.

删除[拿着叉子的猹. [2]]:

Figure 5. Test of synthetic multiplicative noise images (top line, from left to right—house, monarch,
and Napoli are the clean optical images. Bottom line, from left to right—house, monarch, and Napoli
are the simulated SAR images, L = 2).

Figure 6 shows the despeckling results of each filter on the house image, along with
the relevant quantitative indexes reported in Table 2. Visually, compared to the clear
images, the PPB filter smooths the image excessively, resulting in the loss of detail and
structural information, such as the window details highlighted by the red box. FANS
effectively suppresses the noise while preserving the structural information of the image,
but it has poor performance in retaining details. Although both SAR-BM3D and Mulog
can preserve the details and structural information of the image well and have good
despeckling performance in homogeneous regions, some unwanted artifacts are introduced
during the despeckling process. Overall, the proposed method effectively despeckles the
SAR images while preserving more details and structural information. Regarding the
quantitative evaluation, Table 2 shows that Mulog performs well in terms of SSIM and
PSNR, while FANS performs well in terms of ENL. The proposed method achieves the
highest PSNR when L = 1, and consistently achieves higher FSIM and PSNR than the PPB
and SAR-BM3D filters for L > 2.
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clear optical images. Bottom line, from left to right: House, Monarch, and Napoli, are the simulated SAR

images,L=2)
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Fig2. The results of all filters on House (L = 4). The red box highlights the zoomed region of interest. (a) Clean

image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) Proposed method.
Figure 6. The results of different filters on the house (L = 4). The red box highlights the zoomed region
of interest. (a) Clean image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) proposed method.

Table 2. The PSNR, FSIM, and SSIM of different filters on the simulated multiplicative noise images
(L = 1, 2, 4, 8). The best results are highlighted in bold.

L = 1 L = 2 L = 4 L = 8

Methods PSNR FSIM SSIM PSNR FSIM SSIM PSNR FSIM SSIM PSNR FSIM SSIM

House

Noisy image 12.16 0.427 0.096 14.71 0.504 0.152 17.32 0.584 0.225 20.04 0.663 0.316
PPB 25.13 0.786 0.642 27.16 0.840 0.724 29.02 0.877 0.786 30.39 0.893 0.823

FANS 25.34 0.804 0.757 28.66 0.854 0.811 31.17 0.883 0.842 32.95 0.903 0.860
SAR-BM3D 24.62 0.836 0.772 28.14 0.877 0.816 30.90 0.905 0.845 32.12 0.922 0.863

Mulog 25.01 0.835 0.783 28.36 0.870 0.822 31.15 0.894 0.847 32.97 0.914 0.862
Proposed 25.54 0.813 0.733 28.28 0.857 0.797 30.76 0.888 0.836 32.38 0.904 0.854

Monarch

Noisy image 13.47 0.536 0.258 16.04 0.614 0.349 18.75 0.691 0.444 21.52 0.762 0.546
PPB 23.00 0.826 0.716 24.72 0.866 0.790 25.99 0.892 0.835 27.63 0.916 0.873

FANS 24.21 0.856 0.805 26.57 0.895 0.864 28.52 0.919 0.900 30.23 0.938 0.924
SAR-BM3D 23.61 0.853 0.800 26.13 0.890 0.856 28.13 0.915 0.893 29.84 0.933 0.919

Mulog 23.80 0.866 0.813 26.24 0.901 0.867 28.43 0.924 0.904 30.30 0.942 0.929
Proposed 23.51 0.843 0.750 26.04 0.890 0.825 28.28 0.921 0.890 30.30 0.943 0.920

Napoli

Noisy image 14.64 0.606 0.229 17.27 0.628 0.337 20.08 0.759 0.463 22.97 0.826 0.593
PPB 21.74 0.713 0.561 23.23 0.783 0.659 24.94 0.845 0.741 26.40 0.885 0.800

FANS 22.26 0.710 0.598 24.24 0.804 0.703 26.24 0.869 0.784 28.12 0.910 0.848
SAR-BM3D 22.64 0.760 0.639 24.42 0.825 0.724 26.36 0.880 0.802 28.12 0.916 0.865

Mulog 22.43 0.735 0.628 24.08 0.801 0.704 26.02 0.861 0.778 27.96 0.908 0.843
Proposed 22.33 0.780 0.600 24.15 0.826 0.690 26.14 0.881 0.775 28.04 0.915 0.842
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Figure 7 shows the results of the Monarch image, while the relevant quantitative
indexes are reported in Table 2. It can be observed that, although the PPB filter can suppress
speckle well, it removes a significant amount of textural details. FANS preserves more
details than PPB, but the solution appears slightly over-smoothed. The SAR-BM3D can
preserve details and textures well, but it has poor despeckling performance in homogeneous
regions, which is opposite to Mulog. Overall, the proposed method can effectively balance
despeckling and detail preservation, albeit with some minor artifacts. Regarding the
quantitative evaluation, Mulog shows the best results in terms of SSIM and FSIM, while
the highest values of PSNR are achieved by FANS. The proposed method consistently
outperforms PPB, and when L= 8, it achieves the best performance in both FSIM and PSNR.

(a) (b) (c)

(d) (e) (f)

Fig4. The results of all filters on Napoli (L = 4). The red box highlights the zoomed region of interest. (a) Clean

image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e) (f)

Fig3. The results of all filters on Monarch (L = 4). The red box highlights the zoomed region of interest. (a) Clean

image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) Proposed method.
Figure 7. The results of different filters on monarch (L = 4). The red box highlights the zoomed region
of interest. (a) Clean image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) proposed method.

Figure 8 shows the results of the Napoli image, with the corresponding quantitative
indexes reported in Table 2. It can be seen from Figure 8 that PPB over-smooth the image,
resulting in a significant loss of details and texture. FANS and Mulog preserve more details
than the PPB, but the resulting solution is slightly over-smoothed. The SAR-BM3D can
preserve details and textures well, but its despeckling performance in homogeneous regions
is suboptimal. The despeckling ability of the proposed method needs to be strengthened in
the homogeneous region, but the texture and details are well preserved, which is better
conducive to image interpretation. In terms of quantitative assessment, SAR-BM3D shows
the best results in terms of SSIM and PSNR, while the proposed method achieves the highest
values of SSIM. It can be observed from Table 2 that the proposed method consistently
outperforms the PPB. All of the above objective results show that our proposed method
can suppress speckle noise in homogeneous regions and preserve image details well in
edge regions.
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(a) (b) (c)

(d) (e) (f)

Fig4. The results of all filters on Napoli (L = 4). The red box highlights the zoomed region of interest. (a) Clean

image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e) (f)

Fig3. The results of all filters on Monarch (L = 4). The red box highlights the zoomed region of interest. (a) Clean

image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) Proposed method.

Figure 8. The results of different filters on Napoli (L = 4). The red box highlights the zoomed region
of interest. (a) Clean image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f) proposed method.

3.2. Experiments on Real SAR Images

To assess the despeckling performance of the proposed method on real SAR images,
three remote-sensing images from different sensors were selected. Figure 9a is a 2-look
SAR image, denoted as R1, acquired by the British DRA SAR. Figure 10a is a 1-look SAR
image, denoted as R2, acquired by the German TerraSAR-X satellite. The 8-look SAR image,
denoted as R3, as shown in Figure 11a, was acquired by Sentinel-1. In the experiment, the
ENL values were measured in the blue rectangular areas. The specific results are shown
in Table 3. A larger ENL generally indicates better despeckling ability. Furthermore, ratio
images were computed to compare the residual speckle noise. As per the findings of [47],
an ideal filter’s ratio image (the ratio between noisy and despeckled images) should solely
preserve the speckle. Hence, based on the multiplicative noise model, the MoR of the three
images should be 1. To facilitate a comprehensive assessment of the proposed despeckling
method’s efficiency in real-world scenarios, a comparative analysis of computational times
was performed for different filters. The results are presented in Table 3, which highlights
the differences in processing times among the different filters.

Table 3. The ENL, MoR, and times of different filters on real SAR images. The best results are
highlighted in bold.

R1 R2 R3

Methods ENL1 ENL2 MoR Time ENL1 ENL2 MoR Time ENL1 ENL2 MoR Time

Noisy image 2.90 2.62 - - 2.20 2.62 - - 22.47 12.78 - -
PPB 55.58 366.65 1.00 23.08 1345.02 340.70 0.99 22.36 1327.92 1181.27 1.00 23.11

FANS 32.65 74.58 1.02 1.62 100.75 98.03 1.11 1.74 525.66 770.60 1.01 1.58
SAR-BM3D 19.63 22.27 0.99 24.31 127.05 77.99 0.99 24.54 3837.38 111.76 0.99 24.09

Mulog 29.74 69.61 1.07 10.25 216.92 144.60 1.38 10.02 878.76 859.67 1.01 11.36
Proposed 38.04 151.58 0.96 50.63 137.74 151.58 0.99 49.47 401.67 951.58 0.98 49.33
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(a) (b) (c)

(d) (e) (f)

Fig5. The results of all filters on R1 (L = 2). The blue boxes highlight the regions of interest being used to compute

the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e) Mulog; (f)

Proposed method.

(a) (b) (c)

(d) (e)

Figure 6. The corresponding ratio images for R1. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog; (e) Proposed

method.

Figure 9. The results of different filters on R1 (L = 2). The blue boxes highlight the regions of
interest used to compute the equivalent number of looks (ENL). (a) Noisy image; (b) PPB; (c) FANS;
(d) SAR-BM3D; (e) Mulog; (f) proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 7. The results of all filters on R2 (L = 1). The blue boxes highlight the regions of interest being used to

compute the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e)

Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e)

Figure 8. The corresponding ratio images for R2. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog; (e) Proposed

method.

Figure 10. The results of different filters on R2 (L = 1). The blue boxes highlight the regions of
interest used to compute the equivalent number of looks (ENL). (a) Noisy image; (b) PPB; (c) FANS;
(d) SAR-BM3D; (e) Mulog; (f) proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 9. The results of all filters on R3 (L = 8). The blue boxes highlight the regions of interest being used to

compute the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e)

Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e)

Figure 10. The corresponding ratio images for R3. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog; (e) Proposed

method.

Figure 11. The results of different filters on R3 (L = 8). The blue boxes highlight the regions of
interest used to compute the equivalent number of looks (ENL). (a) Noisy image; (b) PPB; (c) FANS;
(d) SAR-BM3D; (e) Mulog; (f) proposed method.

Figures 9–11 display the despeckling results of real-world SAR images. Compared
to the other filters, PPB leads to excessive smoothing, resulting in the loss of a consid-
erable amount of detail and texture information, as shown in Figures 9b and 10b. The
SAR-BM3D can preserve details and structural information well but it has poor noise
removal performance in homogeneous areas, as shown in Figure 10d. Both FANS and
Mulog can reduce noise while preserving details and structural information well; how-
ever, they may introduce some unnecessary artifacts, as shown in Figures 9c,e and 10c,e.
Since the proposed method is an edge-preserving filter, it focuses on preserving edges
and does not over-smooth details. Therefore, it does not over-smooth the homogeneous
regions, such as the PPB filter, resulting in lower ENL values. Table 3 also shows that
the proposed method can better use the similarity of the image to denoise and retain the
detailed information. Figures 12–14 show the ratio image results. The despeckled SAR
images show that both PPB and FANS tend to remove excessive details during despeckling,
especially in SAR images with more structural information, as shown in Figure 13a,b. This
excessive despeckling of structural and edge information adversely affects the subsequent
SAR image processing. On the other hand, the SAR-BM3D effectively despeckles homoge-
neous regions while preserving edge regions and structural information, as seen in the ratio
image results in Figures 12c and 13c. However, the despeckled SAR images appear dis-
torted, resulting in the blurring of many details. While Mulog preserves details and edges
information well, it introduces unnecessary artifacts in homogeneous regions, as shown
in Figures 12d and 13d. In contrast, the proposed method achieves perfect homogeneous
despeckling while maintaining details and structural information to the greatest extent. To
summarize, the experimental comparative analysis of SAR image despeckling shows that
the proposed method achieves advanced visual quality, structure preservation, and speckle
reduction results. However, a comparison of the filtering time results in Table 3 reveals that
the despeckling time for the PPB and SAR-BM3D methods is approximately 23–24 s, while
the Mulog method takes 10–11 s, and the FANS method requires only 1–2 s. In contrast, the
proposed method exhibits a longer despeckling time of around 49–50 s. This indicates that
there is still considerable room for improvement in achieving real-time despeckling with the
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proposed method. The primary contributing factor is the computationally demanding task
of gradient-based similar patch classification, which necessitates significant computational
resources. Additionally, the 3D tensor-based despeckling process involves the stacking of
numerous 2D similar patches and relies on HOSVD, both of which further contribute to the
overall computation time. Nevertheless, in practical applications of SAR despeckling, if
real-time processing is not a strict requirement, the preservation of texture and detailed
information is of utmost importance, and the proposed method remains a good choice.

(a) (b) (c)

(d) (e) (f)

Figure 9. The results of all filters on R1 (L = 2). The blue boxes highlight the regions of interest being used to

compute the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e)

Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e)

Figure 12. The corresponding ratio images for R1. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog;
(e) proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 7. The results of all filters on R2 (L = 1). The blue boxes highlight the regions of interest being used to

compute the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e)

Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e)

Figure 8. The corresponding ratio images for R2. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog; (e) Proposed

method.
Figure 13. The corresponding ratio images for R2. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog;
(e) proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 9. The results of all filters on R3 (L = 8). The blue boxes highlight the regions of interest being used to

compute the Equivalent Number of Looks (ENL). (a) Noisy image; (b) PPB; (c) FANS; (d) SAR-BM3D; (e)

Mulog; (f) Proposed method.

(a) (b) (c)

(d) (e)

Figure 10. The corresponding ratio images for R3. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog; (e) Proposed

method.
Figure 14. The corresponding ratio images for R3. (a) PPB; (b) FANS; (c) SAR-BM3D; (d) Mulog;
(e) proposed method.

4. Discussion

In this paper, a 3D despeckling method is proposed that stacks similar patches into
tensor patches and uses the HOSVD method for low-rank tensor approximation despeck-
ling. The proposed approach extends the application of image self-similarity to 3D and
better utilizes the spatial geometric structure information of similar patches. The effec-
tiveness of the proposed method is comprehensively evaluated and compared with the
state-of-the-art despeckling methods through despeckling experiments on both simulated
and real SAR images.

The experimental results demonstrate that the FSIM metric consistently outperforms
FANS and PPB, particularly in the case of SAR images with more complex structural infor-
mation, such as the Napoli image. Despite not having the highest PSNR and SSIM scores,
the proposed method consistently outperforms PPB in terms of despeckling value across
all view numbers. Visually, the proposed method achieves excellent speckle reduction
while preserving image details. Although the ENL value is not the highest, the MoR values
demonstrate that the proposed method effectively preserves edge information. Overall,
the experimental results demonstrate and validate that the proposed method achieves an
optimal balance between preserving an image’s structural and texture information and
achieving effective despeckling.

However, it is noted that the proposed method may result in some artifacts while
despeckling homogeneous areas. To minimize these artifacts, future work will focus on
improving the accuracy of patch classification. Additionally, the process of classifying
similar patches based on gradients poses significant computational demands, necessitating
substantial computational resources. Moreover, the 3D tensor-based despeckling procedure
involves the aggregation of multiple 2D similar patches and relies on HOSVD, both of which
contribute to the overall computation time. This complexity is crucial for achieving im-
proved despeckling performance and preserving essential image details. In future research,
the authors intend to utilize approximate methods or efficient algorithms to minimize the
computational complexity and reduce the despeckling time as much as possible.



Remote Sens. 2023, 15, 3118 20 of 22

5. Conclusions

This paper proposes an SAR image-despeckling method that utilizes high-dimensional
information from similar patches by employing a search for similar patches and applying
the tensor patch HOSVD theory. Specifically, the method extends 2D to 3D for SAR image
despeckling using tensor patches for the first time. The proposed effectively achieves high-
dimensional SAR image despeckling using a low-rank tensor approximation technique
to exploit the potential correlation and low-rank structure of SAR image data. Previous
image low-rank algorithms tended to destroy the topological structures of image patches
by pulling similar patches into column vectors, which is detrimental to preserving image
details. As a high-order generalization of vectors and matrices, tensors can stack 2D
similar patches into 3D tensor patches, enabling HOSVD to directly despeckle the 3D
tensor patches and leverage the high-dimensional structural information of similar patches.
Extensive experiments demonstrate and validate the superior performance of the proposed
method in synthetic and real SAR image despeckling compared with the existing advanced
filters in the subjective visual evaluation and objective evaluation indices. However,
the computational complexity of classifying similar patches and performing high-order
singular value decomposition to approximate 3D tensor patches makes the proposed
method time-consuming for despeckling. In the future, the focus will be on optimizing the
mathematical algorithm and extending 3D despeckling to higher dimensions. This will
leverage the self-similarity information of similar patches for SAR despeckling.
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