
Citation: Zhu, M.; Cheng, J.; Lei, T.;

Feng, Z.; Zhou, X.; Liu, Y.; Chen, Z.

C-RISE: A Post-Hoc Interpretation

Method of Black-Box Models for SAR

ATR. Remote Sens. 2023, 15, 3103.

https://doi.org/10.3390/rs15123103

Academic Editor: Lionel Bombrun

Received: 12 April 2023

Revised: 31 May 2023

Accepted: 8 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

C-RISE: A Post-Hoc Interpretation Method of Black-Box
Models for SAR ATR
Mingzhe Zhu 1 , Jie Cheng 1,∗ , Tao Lei 2 , Zhenpeng Feng 1 , Xianda Zhou 3, Yuanjing Liu 1

and Zhihan Chen 1

1 School of Electronic Engineering, Xidian University, Xi’an 710071, China; zhumz@mail.xidian.edu.cn (M.Z.);
zpfeng_1@stu.xidian.edu.cn (Z.F.); liuyuanjing@stu.xidian.edu.cn (Y.L.); chenzhihan@stu.xidian.edu.cn (Z.C.)

2 Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology,
Xi’an 710021, China; leitao@sust.edu.cn

3 National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace
Automatic Control Institute, Beijing 100854, China; zhouxianda999@gmail.com

* Correspondence: agentcj@stu.xidian.edu.cn

Abstract: The integration of deep learning methods, especially Convolutional Neural Networks
(CNN), and Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has been widely
deployed in the field of radar signal processing. Nevertheless, these methods are frequently regarded
as black-box models due to the limited visual interpretation of their internal feature representation
and parameter organization. In this paper, we propose an innovative approach named C-RISE,
which builds upon the RISE algorithm to provide a post-hoc interpretation technique for black-box
models used in SAR Images Target Recognition. C-RISE generates saliency maps that effectively
visualize the significance of each pixel. Our algorithm outperforms RISE by clustering masks that
capture similar fusion features into distinct groups, enabling more appropriate weight distribution
and increased focus on the target area. Furthermore, we employ Gaussian blur to process the masked
area, preserving the original image structure with optimal consistency and integrity. C-RISE has been
extensively evaluated through experiments, and the results demonstrate superior performance over
other interpretation methods based on perturbation when applied to neural networks for SAR image
target recognition. Furthermore, our approach is highly robust and transferable compared to other
interpretable algorithms, including white-box methods.

Keywords: Convolutional Neural Networks (CNN); Synthetic Aperture Radar Automatic Target
Recognition (SAR ATR); C-RISE; cluster; Gaussian blur

1. Introduction

Synthetic Aperture Radar (SAR) is a kind of active earth-observation system which
can produce high-resolution image all day, has been widely used in ground observation
and military reconnaissance. One of its primary applications is the detection and identi-
fication of various military targets [1,2]. With the enhancement of SAR data acquisition
capability, Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) [3] has
become a key technology and research hotspot of radar signal processing. Traditional SAR
image recognition methods, such as template matching [4], feature-based approaches [5,6],
and CAD model-based methods [7], predominantly rely on the statistical and physical
characteristics inherent in the image data. This methodology offers robust interpretability,
as the identified features and models possess well-defined statistical or physical interpreta-
tions. Nevertheless, manual modeling approaches [8] merely rely on artificial experience
for feature extraction and selection, which lead to a certain degree of subjectivity and bias
when confronted with the intricacies and variabilities present in SAR imagery, thereby
limiting their practical applicability and performance capabilities. Additionally, it is chal-
lenging to guarantee the effectiveness of recognition results. In recent years, deep learning
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methods [9], especially Convolutional Neural Networks (CNN), have been extensively
used in computer vision [10,11] and demonstrating remarkable achievements. Meanwhile,
based on deep learning, the image processing method has also been successfully extended
to the field of remote sensing images [12,13], presenting a new direction and breakthrough
for SAR target recognition [10,14,15].

At present, CNN has become one of the most effective network architecture for image
recognition tasks. As the earliest CNN network, LeNet-5, proposed by LeCun et al. [16]
in 1998 for handwritten digit recognition, was regarded as the first CNN structure. Over
time, researchers have continuously refined and optimized the classic CNN architecture
and its features, leading to the design of more complex and high-performing CNNs, such
as Alexnet [17], GoogLeNet [18], VGGNet [19], Resnet [20], etc. Despite the outstanding
performance achieved by classic CNN structures, the neural network has a low level of
transparency and is also known as the black boxes [13] due to the lack of a clear visual
explanation for the representation of internal features and parameter organization. These
limitations significantly constrain people’s ability to understand and interpret the internal
workings of neural networks, consequently restricting their potential applications in special-
ized fields, such as medicine, finance, transportation, military, and other domains [21,22].
There are currently two primary research directions for interpretability, which are Intrinsic
Explanation and Post-hoc Explanation [23]. Intrinsic Explanation aims to enhance the
interpretability of the model itself, enabling users to understand the calculating process
and rationale without requiring additional information or algorithms. In contrast, Post-hoc
Explanation mainly focuses on explaining the behavior and decision-making process of
black-box models [24]. Retraining the model can be too costly in terms of time and re-
sources since the model has already been trained and deployed. As such, the Post-hoc
Explanation approach is often more appropriate in such cases. Representation visualization,
as an intuitive method in post-hoc interpretation, mainly involves combining the input,
middle layer parameters, and output information of the pre-trained model to achieve an
interpretation of the decision results. Gradient-based methods, Perturbation, and Class
Activation Map (CAM) are three widely adopted methods for achieving representation
visualization [23,25].

The gradient-based method [25–31] backpropagates the gradients of a specific class
into the input image to highlight image regions that contribute positively or negatively to
the result. The methods are fast computation and high resolution of the generated images
but usually suffer from excessive noise. CAM is one class of the most important methods
specifically designed for CNNs [32–38]. The method utilizes the form of a heatmap to
visually highlight the regions most relevant to the particular category. The CAM-based
method was first proposed by Zhou et al. [32] in 2016. They believed that with the
deepening of CNN layers, the feature map of the intermediate layer contains less and less
irrelevant information, and the last convolutional layer of the CNN achieves the highest-
level semantic information. After that, numerous CAM methods have been proposed,
including Grad-CAM [33], Grad-CAM++ [34], Grad-CAM [35], Group-CAM [36], Score-
CAM [37], Ablation-CAM [38], etc. Although these methods have demonstrated good
performance in image interpretation, they may suffer from low resolution and spatial
precision in some cases. Interpretability methods based on perturbation [39–42] typically
utilize the element-wise product of generated masks and the original image to obtain the
perturbed input images, which are then fed into the model to observe the changes in the
prediction result. The information generated is used to optimize the weighted mask to
obtain the final interpretation result image. Among them, RISE [42] randomly generates a
large number of masks through Monte Carlo sampling method to occlude different parts
of the input image. And the final saliency map is generated by the weighted sum of the
masks and the scores predicted by the base model on the masked images.

In this paper, we propose a post-hoc interpretation method of black-box models for
SAR ATR called Randomized Input Sampling for explanation based on Clustering (C-RISE).
We demonstrate the effectiveness of C-RISE through extensive experimental validation
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and comparative analysis. Specifically, our method exhibits superior performance when
dealing with SAR images that suffer from severe noise interference, as well as cases where
adjacent pixels exhibit mutual influence and dependence. C-RISE offers several advantages
over other neural network interpretable algorithms, including white-box methods:

1. The method is a black-box interpretation method, and the calculation process does
not need to use the weight, gradient, feature map and other information of the model
so that it has better robustness and transferability. Furthermore, the approach avoids
errors caused by unreasonable weight selection and information loss during feature
map upsampling in Class Activation Mapping (CAM) methods;

2. Compared with RISE, our algorithm can group mask images that capture similar
fusion features into different groups by clustering strategy. This allows for the con-
centration of more energy in the heatmap on the target area, thereby increasing the
interpretability of the model.

3. C-RISE employs Gaussian blur to process masked regions, as opposed to simply
setting occluded pixels to 0. This technique ensures the consistency and integrity
of the original image structure while covering certain areas. As a result, it reduces
the deviation of network confidence caused by the destruction of spatial structure,
leading to more credible results when compared to other perturbation-based interpre-
tation methods.

The contents of this article are organized as follows: In Section 2, we introduce the
principle of the RISE algorithm and CAM methods. Section 3 elaborates on the details of
the C-RISE algorithm. Section 4, we verify the effectiveness and robustness of the proposed
method through both qualitative judgment and quantitative description. Finally, in Section 5,
we discuss the experimental results, clarify any confusion, and explore potential future work.

2. Related Work

In this section, we first review the existing classical methods of CAM [32–38] and the
RISE [42] algorithm. Since both CAM methods and RISE interpretation methods display in
the form of heatmaps, we focus our subsequent experiments [42] on comparing the effects
of different CAM methods, RISE, and C-RISE. This chapter provides theoretical support for
the design and experimentation of C-RISE.

2.1. CAM Methods

Zhou et al. [32] proposed the Class Activation Map (CAM) method which utilizes the
final convolutional layer of CNN to extract the most abstract target-level semantic infor-
mation. Its corresponding feature map contained the most abstract target-level semantic
information and each channel detected different activated parts of the target. Thus, the
class activation map relevant to the recognition result of class c can be generated by the
channel-wise weighted summation of the final feature maps. The formal representation of
this process can be expressed as follows:

Lc
CAM = ReLU

(
n

∑
k=1

wc
k AL

k

)
(1)

where wc
k represents the connection weight of the kth neuron pair classified as class c in the

Softmax layer, and AL
k represents the feature map of the kth channel in the lth convolutional

layer. The disadvantage of this method is that it can only be applied to the last layer
feature map and the full connection is GAP operation. Otherwise, it requires the user to
modify the network and retrain, and such costs are sometimes substantial. To overcome
the disadvantages, Selvaraju et al. [33] proposed a method named Grad-CAM and updated
the weight generation method in Equation (1) as follows:

wc
k =

1
Z ∑

i
∑

j

∂yc(x)
∂AL

k,i,j
(2)
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where the sum element is the gradient of the calculated class score (yc(x)) with respect to the
pixel values at each position of AL

k , and Z represents the normalization factor. Compared
to the CAM method, Grad-CAM is more generalized and can be used for different model
structures. Both Grad-CAM++ [34] and XGrad-CAM [35] are improved algorithms based
on Grad-CAM method. The basic form of Grad-CAM++ is the same as Grad-CAM, but the
difference is that the combination of higher-order gradients is used as the channel weight
in Grad-CAM, which improves the visualization effect of multi-object images and the
positioning is more accurate. XGrad-CAM achieves better visualization of CNN decisions
through a clear mathematical interpretation.

Different from the improvement idea based on gradient, Score-CAM [37] is a gradient-
free algorithm for visualizing CNN decisions. It defines the concept of Increase of Confi-
dence (CIC), which measures the increment of confidence relative to a baseline image. The
CIC score for a particular feature map AL

k is computed as:

C
(

AL
k

)
= f

(
X ◦ AL

k

)
− f (Xb) (3)

where X is the input image, ◦ represents the Hadamard product, and Xb is the base-
line image, which can be set to an all-0 matrix with the same size as the original image.
f (·) denotes the neural network’s output score for the target class. The algorithm then
computes CIC scores for all feature maps in a particular layer and updates the scores using
the Softmax operation. These updated scores are used as the weights for the corresponding
feature maps. Finally, the different feature maps are weighted and summed to generate a
visual image.

The CAM approach has been demonstrated to be effective in visualizing the important
regions of objects in various optical image datasets. However, when applied to Synthetic
Aperture Radar (SAR) images, several challenges arise such as gradient dispersion, energy
unconcentration, and inaccurate positioning. These challenges are primarily due to the
unique characteristics of SAR images which include:

1. SAR images are often characterized by low resolution and low Signal-to-Noise Ratio
(SNR), which makes it challenging to visualize important features and information
accurately. Additionally, the imaging principle of SAR images is based on active imag-
ing, which introduces a significant amount of interference spots in the image, thereby
making SAR images significantly different from optical images. These interference
spots can significantly impact the visualization process, leading to inaccurate feature
localization and reduced effectiveness of CAM-based visualization methods;

2. The relatively small difference between different categories in SAR image datasets
poses a challenge to visualization techniques such as CAM, which heavily rely on
distinguishing features between different categories. Furthermore, the target area
of SAR images is often highly localized, which makes accurate positioning critical
for the interpretation of visualizations. However, different CAM methods typically
use feature maps to upsample to the size of the original image, which can introduce
positioning deviations. Despite ongoing efforts to generate high-resolution feature
maps, the visualization effect of SAR images using CAM methods remains suboptimal.

2.2. RISE

Randomized Input Sampling for Explanation (RISE) [42] is a perturbation-based
method that aims to generate a heatmap highlighting important regions in an input im-
age concerning the prediction of a black-box model. The architectural details of RISE
are illustrated in Figure 1. Initially, the Monte Carlo sampling method is employed to
generate a considerable number of masks, which have the same size as the original image.
Subsequently, the element-wise product of these masks and the original image is computed
to derive the corresponding perturbed images. These masked images are then inputted into
the black-box model to acquire prediction probabilities for the inferred category. Finally,
the prediction probabilities serve as weights for aggregating the masks, facilitating the
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superimposition of regions within the original image that significantly contribute to the
specified category. RISE has demonstrated effectiveness in providing local interpretability
for various image classification models. Furthermore, Score-CAM [37] is a gradient-free
method that draws inspiration from RISE.

…
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Figure 1. The flowchart of RISE method.

RISE is a black-box interpretation technique that circumvents the need for utilizing
weight, gradient, and feature map information during the calculation process. Utilizing the
Monte Carlo sampling method, which is a stochastic approximation inference technique,
RISE achieves approximate calculations of complex integrals or expected values through
sampling. Let x denote a specific input condition, and z represent a random variable. By
employing random sampling from the probability distribution p(z | x), a collection of
independent and identically distributed samples {z1, z2, ..., zN} can be generated, with
N representing the total number of random samples.The expression for the expected value
of the function f (z) under the complex probability distribution p(z | x) is presented
in Equation (4).

Ez|x[ f (z)] =
∫

p(z | x) f (z)dz ∼=
1
N

N

∑
i=1

f (zi) (4)

where zi(i = 1, 2, . . . , N) represents the i-th sample obtained after random sampling.
In the RISE algorithm, the predicted probability of the black-box model for the category

to which the perturbed image belongs can be viewed as the importance of the region
retained by the mask. Then the importance of the prominent region of the final generated
image can be viewed as the expectation obtained from all masks, as shown in Equation (5).

SI, f (λ) = EM[ f (I ◦M) | M(λ) = 1] (5)

where λ represents the pixel coordinate in the mask M. The expression M(λ) = 1 indicates
that the pixel at coordinate λ in the mask has a value of 1, implying it is one of the important
or retained regions in the mask. And the notation EM[·] denotes the expectation operator
with respect to the random variable M. SI, f (λ) in Equation (5) represents the expected
score obtained by averaging the predictions of the model f (·) over all masks where the
pixel at coordinate λ is retained.

Then, the expression can be expanded according to the definition of expectation
as follows:

SI, f (λ) = ∑
m

f (I ◦m)P[M = m | M(λ) = 1]

= ∑
m

f (I ◦m)
P[M = m, M(λ) = 1]

P[M(λ) = 1]

=
1

P[M(λ) = 1] ∑
m

f (I ◦m)P[M = m, M(λ) = 1]

(6)



Remote Sens. 2023, 15, 3103 6 of 24

where

P[M = m, M(λ) = 1] =
{

0, if m(λ) = 0
P[M = m], if m(λ) = 1

= m(λ)P[M = m]

(7)

In Equations (6) and (7), m represents an individual binary mask, determining the
retained and non-retained pixels in the mask, and capturing different configurations of
important regions in the image.

By substituting Equations (6) and (7), we can get:

SI, f (λ) =
1

P[M(λ) = 1] ∑
m

f (I ◦m) ·m(λ) · P[M = m] (8)

Since the mask m follows a 0-1 distribution, we can further simplify the equation, we
can obtain Equation (9):

P[M(λ) = 1] = E[M(λ)] (9)

∴ SI, f (λ) =
1

E[M(λ)] ∑
m

f (I ◦m) ·m(λ) · P[M = m] (10)

It is noted that the heatmap can be obtained by summing the masks obtained from
random sampling with weighting based on the predicted probabilities of the perturbed
images. When masks are sampled using uniform sampling, P[M = m] can be expressed as:

P[M = m] =
1
N

(11)

where N represents the total number of masks. When employing the Monte Carlo sampling
method to obtain a set of masks denoted as {Mi}, i = 1, 2, . . . , N, the Equation (10) can be
refined as follows:

SI, f (λ) ≈
1

E[M] · N
N

∑
i=1

f (I ◦Mi) ·Mi(λ) (12)

The equation suggests that the importance score SI, f (λ) is obtained by summing the
weighted predicted probabilities over all sampled masks. The weight for each term is given
by Mi(λ), which indicates the importance of the pixel at coordinate λ in each mask. The
sum is then normalized by the product of the expected value E[M] and the total number of
masks N.

Furthermore, taking into account that pixel-wise masks can result in significant vari-
ations in the model’s prediction and the exponential computational cost associated with
sampling pixel-level masks, a strategy is employed during mask generation. Initially,
smaller masks are created and subsequently upsampled to match the image size, ensur-
ing a smoother transition. This approach aims to balance the importance of capturing
fine-grained details while managing computational complexity.

3. Our Method

As a post-hoc interpretation algorithm based on perturbation, RISE algorithm has
a more intuitive and understandable presentation than the visual interpretation method
based on back propagation. At the same time, RISE also overcomes the limitations of gen-
eral CAM methods by avoiding the generation of unreasonable weights and the problem
of small feature maps during the up-sampling process. However, the effectiveness of RISE
and other optical image-based interpretive methods in SAR ATR scenarios is limited. This
is because the active imaging mechanism of SAR images results in multiplicative noise,
which causes problems such as noise, energy dispersion, and inaccurate positioning when
applying optical image-based interpretive methods to SAR image recognition [3,8]. To
address this issue, we propose an algorithm based on RISE, called Randomized Input
Sampling for Explanation based on Clustering (C-RISE), which is a post-hoc interpretation
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method for black-box models in SAR ATR. Our algorithm considers the structural consis-
tency and integrity of SAR images and highlights the regions that contribute to category
discrimination in SAR images. Figure 2 illustrates the workflow of our proposed approach.
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Figure 2. The flowchart of C-RISE.

3.1. Mask Generation

As shown in Section 2.2, pixel-level occlusion may have a huge impact on the model,
and the computational complexity of sampling is high. Therefore, in order to ensure the
smoothness and the consistency of the target space structure when generating masks, small
masks are generated first and then upsampled back to the image size. The upsampling
process inherently fills in the gaps and creates smoother transitions between mask elements.
The upsampling process distributes the mask values more smoothly across the image,
reducing the visibility of sharp edges and promoting a gradual transition between occluded
and non-occluded regions. The basic process is shown in Figure 3. Formally, the process of
generating masks can be described as follows:

1. N binary masks { grid1, grid2, . . ., grid N} are randomly generated based on Monte
Carlo sampling, where gridi ∈ Rs×s, i = 1, 2, . . . , N. s is smaller than image size H
and W. In gridi, each element independently to 1 with probability p and to 0 with the
remaining probability;

2. Upsample gridi to grid′i ∈ R(s+1)H×(s+1)W ;
3. A rectangular area was randomly selected from grid′i as Mi, where Mi ∈ RH×W ,

i = 1, 2, . . . , N.

Figure 3. The flowchart of generating masks.
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The parameter p governs the density of generated masks and plays a crucial role in
balancing the preservation and obscuration of information within the saliency map. Lower
values of p entail a higher degree of masking, potentially accentuating more localized and
specific salient regions while sacrificing some contextual information.

From Figure 4, the impact of different values of s on the quality of the generated mask
can be observed. It provides visual evidence of how varying s affects the characteristics
of the binary mask grid and the resulting mask M. A larger s value means that each mask
covers a smaller portion of the image, leading to fragmented and disjointed masked regions.
Therefore, selecting an appropriate value for s requires careful consideration of the trade-off
between granularity and the preservation of spatial structure. Empirically, we generally
choose 10 ≤ bmin(H, W)/sc ≤ 15 to ensure that the resulting saliency map provides
meaningful and coherent interpretations while minimizing potential errors introduced by
excessive fragmentation.

𝑠𝑠 = 2 𝑠𝑠 = 4 𝑠𝑠 = 6 𝑠𝑠 = 8 𝑠𝑠 = 10

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑀𝑀

Figure 4. Influence of different s on mask generation.

After obtaining N masks, we introduce Gaussian blur to the occluded part of the
original image, which is in order to make the image after the mask processing can retain
the maximum consistency of the original image, and smoothly occlusion of the region.
Gaussian blur is an image blurring filter that computes the transformation of each pixel in
an image with a normal distribution. The normal distribution equation in 2-dimensional
space can be written as:

G(X) =
1

2πσ2 e−(u2+v2)/(2σ2) (13)

where (u, v) denotes the pixel position and σ means the standard deviation of the normal
distribution. It is worth noting that in 2-dimensional space, the contours of the surface
generated by Equation (13) are normally distributed concentric circles from the center. The
value of each pixel is a weighted average of the neighboring pixel values. The value of the
original pixel has the largest Gaussian distribution value, so it has the largest weight, and
the neighboring pixels get smaller and smaller as they get farther from the original pixel.
The Gaussian blur preserves the edge effect more than other equalization blur filters, which
is equivalent to a low-pass filter.

Based on Gaussian blur, We can use Equation (14) to obtain the image after
mask processing:

X′i = X ◦Mi + G(X) ◦ (1H×W −Mi), i = 1, 2, .., N (14)

where X ∈ RH×W denotes the original image, 1H×W ∈ RH×W means an all-1 matrix and
its shape is H ×W.

SAR images often contain important structural details and information that need to
be preserved during the mask generation process. The application of Gaussian blur to the
occluded part of the image ensures a smooth transition between the occluded and non-
occluded regions. This smooth occlusion helps to maintain the coherence and consistency
of the image by preventing abrupt changes or sharp boundaries between the occluded
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and non-occluded areas. It creates a visually pleasing interpretation by ensuring that the
occluded regions blend smoothly with the rest of the image.

3.2. Clustering

The masked image {X′1, X′2, . . ., X′N} are input to the black-box model f (·) to obtain
the output vector {a1, a2, . . ., aN}. Moreover, we use ai ∈ R1×m, i = 1, 2, . . . , N as the
feature vectors to cluster Mi by k-means. m is the number of categories. The process is
shown in Equations (15)–(17).

ai = f
(
X′i
)
, i = 1, 2, . . . , N (15)

(c1; c2; . . . ; ck) = k−means([(M1, a1), (M2, a2), . . . , (MN , aN)]) (16)

ci =
{

Mi
j

}
, i = 1, 2, .., k; j = 1, 2, ..., Ni (17)

where ci denotes the ith cluster, Mi
j denotes the jth mask in ith cluster, k and Ni represent

the number of clusters and the number of elements in the ith cluster, respectively.
If the original image is identified as class l after the black-box model, we can obtain

the contribution of the jth mask in the ith cluster to the model:

αi
j = ai

j[l], i = 1, 2, .., k; j = 1, 2, ..., Ni; l ≤ m (18)

where l represents the prediction category of the model for the input image and ai
j denotes

the feature vector obtained by inputting the image masked by Mi
j into the black box model

and aj
i [l] represents the value of the l-th dimension of the feature vector, i.e., ,the confidence

that the model identifies the masked image as class l. After that, we use αi
j to estimate the

weight of a specific mask and calculate the weighted sum in each cluster CMi as follows:

CMi =
Ni

∑
j=1

αi
j ·Mi

j, i = 1, 2, .., k (19)

After that, we calculated the CIC value of CMi through Equation (3) and used it as the
classificatory information that CMi was concerned about. Finally, the final result HC−RISE

is generated by weighted summation of the feature maps of different clusters. The process
is formulated as Equations (20) and (21). The pseudo-code is presented in Algorithm 1.

α′i = [ f (X ◦ CMi)− f (Xb)]l , i = 1, 2, ..., k (20)

HC−RISE =
k

∑
i=1

α′i · CMi (21)

The clustering strategy employed in C-RISE plays a crucial role in concentrating more
energy in the heatmap on the target area. Through the clustering process, masks that
exhibit similar patterns or characteristics are grouped together in the same cluster. The
clustering helps to identify a subset of masks that collectively represent important features
associated with the target category. By focusing on these specific masks, C-RISE effectively
filters out irrelevant or less informative regions, allowing it to concentrate more energy
on the target area. In the original RISE algorithm, weights are calculated individually for
each mask, leading to a dispersed distribution of energy in the saliency map. In contrast,
the clustering strategy in C-RISE introduces a grouping scoring strategy. Once the masks
are clustered, C-RISE assigns weights to the individual masks based on their contribution
to the model’s output. Masks that are more influential in determining the target category
receive higher weights. By aggregating the masks based on their weights and cluster
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assignments, C-RISE produces a heatmap that highlights the regions of the image that are
most relevant to the target category. This concentration of energy in the heatmap on the
target area is achieved by prioritizing and emphasizing the masks within the clusters that
capture essential discriminative features.

Algorithm 1: C-RISE.
Input: SAR image X, black-box model f (·),randomly mask gridi
Output: HC−RISE

# masked image and feature vector generation;
for i = 1 : N do

# mask generation;
Mi ← crop(Upsampling(gridi)) ;
# G(·) means Gaussian blur;
X′i ← X ◦Mi + G(X) ◦ (1H×W −Mi);
ai ← f (X′i);

end
# clustering;
for i = 1 : N do

(c1; c2; . . . ; ck) = k−means([(M1, a1), (M2, a2), . . . , (MN , aN)]);
end
# calculate the subheatmap and CIC score in each group;
for i = 1 : k do

CMi = ∑Ni
j=1 αi

j ·Mi
j;

α′i = C(CMi) = [ f (X ◦ CMi)− f (Xb)]l ;
end
# generate final heatmap;
HC−RISE = ∑k

i=1 α′i · CMi;

In conclusion, the C-RISE algorithm offers the following advantages:

1. Perturbation-based Interpretation: The algorithm utilizes the concept of perturbation,
where multiple randomly sampled masks are combined to generate a saliency map
highlighting important regions. This approach is considered a black-box interpretation
method, as it does not rely on model-specific information such as weights, gradients,
or feature maps. By avoiding the need for feature maps, it also circumvents errors
stemming from unsuitable upsampling and weight selection methods employed by
CAM series methods;

2. Smoother Mask Generation: The upsampling process distributes the mask values
more smoothly across the image, reducing the visibility of sharp edges and promot-
ing a gradual transition between occluded and non-occluded regions.This approach
balances global and local considerations and ensures smooth and coherent mask gen-
eration. Additionally, the random generation of each mask ensures representativeness,
diversity, and prevents bias resulting from a specific sampling mode;

3. Feature-based Clustering: The algorithm leverages the confidence vectors obtained
under each mask as feature vectors. These vectors effectively evaluate the importance
of unmasked areas for a particular image, the feature vectors enable clustering of
masks based on their fusion features. This clustering approach serves two purposes:
first, masks with similar fusion features are grouped, reducing redundancy in cal-
culations; second, the original RISE algorithm’s weight calculation for each mask is
enhanced through a grouping scoring strategy. This improvement leads to a more
concentrated saliency map generation.
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4. Experiment
4.1. Experimental Settings

This study employs SAR images of ten vehicle target types under standard operating
conditions (SOC) from the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset [43] as the experimental data. The dataset comprises 5172 SAR im-
ages with dimensions of 1× 100× 100, with 2536 images used for training and 2636 for
testing. The ten target categories include 2S1, BRDM2, BTR60, D7, SN_132, SN_9563,
SN_C71, T62, ZIL131, and ZSU_23_4. Figure 5 displays ten representative SAR images for
each category.

Figure 5. 10 typical SAR images for each category in MSTAR. The first row depicting random images
from 2S1, BRDM2, BTR60, D7, and SN_132, and the second row showing randomly selected images
from SN_9563, SN_C71, T62, ZIL131 and ZSU_23_4.

During the experiment, the Alexnet model [9] was utilized as a classifier, and its
structure is depicted in Figure 6. It is worth mentioning that, as the C-RISE algorithm is
primarily tailored for black-box models, alternative efficient models may be employed
in place of Alexnet. After conducting multiple iterations of training, the neural network
achieved a recognition rate of 97.6%, which indicates the effectiveness of using various
methods to generate saliency maps. However, since this paper primarily focuses on
interpreting and analyzing the network structure using different visualization methods, the
training techniques and processes are not extensively discussed. During the implementation
of the C-RISE algorithm, several parameters were set, including k = 4, N = 2000, s = 8,
p = 0.5. p = 0.5 ensures an equitable probability for each pixel to be masked or preserved.
The selection embodies a balanced masking strategy that seeks to strike a reasonable
equilibrium between information preservation and obscuration within the resulting saliency
map. Empirically, we generally choose 10 ≤ bmin(H, W)/sc ≤ 15. The impact of different
values for N and k on the experimental results will be thoroughly examined and discussed
in Section 4.5.

Conv(11×11×96)

100×100×1

Conv(5×5×256)

Conv(3×3×384)

Conv(3×3×384)

Conv(3×3×256) fc(1024)

fc(1024)

Conv(5×5×96)

fc(10) Class
2S1
BMP2
ZIL131
…

Figure 6. The structure of Alexnet.

4.2. Class Discriminative Visualization

Since the class activation map generated by CAM methods and the saliency map
generated by C-RISE algorithm are presented in the form of heatmap, we focus on com-
paring the experimental effects of different CAM methods, RISE algorithm and C-RISE
algorithm in the following experimental part, referring to the comparison method in [42].
In this section, we randomly selected ten graphs that were correctly classified in different
networks from the testset, and used Grad-CAM [33], Grad-CAM++ [34], XGrad-CAM [35],
Score-CAM [37], RISE [42] and C-RISE to visually analyze the model recognition process,
and the comparison is shown in Figure 7.
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SAR image Grad-CAM   Grad-CAM++ Xgrad-CAM    Score-CAM        RISE             C-RISE

Figure 7. Comparison of Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE, C-RISE. The
first column is the SAR images of ten classes. The rest of columns are corresponding heatmaps
generated by each method respectively.

We can verify the fairness and localization ability of the C-RISE algorithm from a
qualitative and quantitative perspective. The employed interpretation methods produce
saliency heatmaps, which serve the purpose of highlighting the crucial regions or features
within an image. These heatmaps undergo visual comparison to evaluate the efficacy of
the interpretations. Qualitative analysis encompasses the crucial task of evaluating the
consistency between interpretation results and human perception. This evaluation process
serves to determine the extent to which the methods align with human intuition and offer
meaningful interpretations. It can be intuitively seen from Figure 7 that CAM methods, RISE
and C-RISE are all heatmap-based network interpretation methods that visually analyze
the importance of different image regions. Heatmaps represent an image with varying
color intensities, where the intensity of each pixel corresponds to its level of importance.
Compared to gradient-based CAM algorithms like Grad-CAM and Grad-CAM++, the
heatmaps generated by Score-CAM, RISE and C-RISE exhibit higher concentration of
relative energy within the target area of the original image.

CAM methods tends to produce divergent activation areas that are roughly located
around the target and its surroundings. However, it often suffers from positioning devia-
tions and lacks granularity. These errors can be attributed to the improper weight selection
method as well as the positioning deviation introduced when upsamping the feature map
to match the original image size.In the original RISE algorithm, weights are calculated
individually for each mask, leading to a dispersed distribution of energy in the saliency
map.In terms of visual effect, the C-RISE algorithm outperforms the RISE algorithm and
the CAM method in localizing the heatmap. It exhibits more concentrated energy, better
category discrimination, and produces more stable saliency map results. These advantages
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contribute to the superior performance of C-RISE in generating high-quality heatmaps for
interpreting the target regions of interest.

Subsequently, we perform a quantitative analysis of the heatmap by examining its
energy characteristics. Our focus lies in evaluating the amount of energy present within
the bounding box of the target object in the saliency map. Therefore, we adopted a similar
measure to [37], the specific process is shown in Figure 8. The evaluation process involved
the following steps:

Firstly, we manually annotated the bounding boxes of the objects in all the images
within the test set. This step involved marking the regions that corresponded to the target
objects of interest. After obtaining the bounding box annotations, we binarized the images
based on a specific rule. The inner region of the bounding box was set to 1, representing
the target area, while the outer region was set to 0, representing the background. We
then computed the sum of the energy values within the target bounding box in these
heatmaps.This step quantified the concentration of energy within the specified region of
interest. In parallel, we also calculated the sum of the energy values in the entire heatmap,
including both the target bounding box and the background regions. proportion was calcu-
lated by dividing the sum of energy within the bounding box by the sum of energy within
the bounding box plus the sum of energy in the background, which served as a quantitative
measure to evaluate the localization and recognition capabilities of different interpretation
methods. Higher Proportion values indicated that more energy was concentrated within
the target area. By employing this quantitative evaluation approach, we were able to
compare and analyze the effectiveness of different interpretation methods in terms of their
ability to concentrate energy within the target bounding box and provide accurate saliency
maps. The mathematical expression of proportion is shown in Equation (22).

C-RISE

binarize

Figure 8. The flowchat of calculating proportion.

Proportion =
∑ E(i,j)∈bbox

∑ E(i,j)∈bbox + ∑ E(i,j)/∈bbox
(22)

where E(i,j) denotes the energy value of the pixel at position (i, j) in the heatmap.
It is worth mentioning that the information contained in each image in the MSTAR

dataset is a single target. And in different pictures, the position occupied by the target
is usually a large area of the image, which facilitates us to label each subset. Figure 9
shows the binarization results of ten groups of data randomly selected. We calculate
proportion of images in each category of the testset separately, and the results are shown in
Table 1. Based on the experimental results, it has been observed that the C-RISE algorithm
demonstrates higher accuracy in weak target supervision and positioning compared to other
methods in various types of SAR images. Additionally, the degree of matching between the
energy distribution in the heatmap and the actual target is notably higher. These findings
provide empirical evidence supporting the effectiveness of the C-RISE algorithm in SAR
image interpretation.
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Figure 9. The first and third rows represent randomly selected images with bounding boxes from
10 categories in the test set and the results of binarization of each images are shown as the second
and fourth rows.

Table 1. The proportion of images in each category. The best records are marked in bold.

Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

2S1 0.5764 0.4252 0.5785 0.5524 0.3483 0.5876
BRDM_2 0.5881 0.5138 0.5970 0.6230 0.3621 0.5930
BTR_60 0.4355 0.3744 0.4553 0.3892 0.1024 0.4731

D7 0.3782 0.6225 0.3920 0.5425 0.6406 0.4394
SN_132 0.3820 0.5579 0.4168 0.4915 0.4797 0.4723

SN_9563 0.4895 0.4024 0.4851 0.4421 0.2964 0.4817
SN_C71 0.4121 0.2868 0.4409 0.3823 0.0856 0.4494

T62 0.4975 0.3894 0.5158 0.4886 0.3374 0.5233
ZIL131 0.5420 0.3984 0.5559 0.5265 0.4254 0.5498

ZSU_23_4 0.4018 0.5315 0.4298 0.4616 0.5209 0.4474
average 0.4758 0.4555 0.4918 0.4976 0.3726 0.5060

4.3. Conservation and Occlusion Test

In Section 4.3, we conducted quantitative analyses of different methods’ localization
capability using occlusion and conservation tests [35,43]. The occlusion test involved
selectively discarding specific areas of the input images, while the conservation test aimed
to maintain certain regions intact. These experiments evaluated the effectiveness of energy-
concentrated regions in heatmaps by inputting mask-processed or reverse mask-processed
images into the black-box model and observing the resulting score changes. The resulting
maps were then binarized at various thresholds to obtain masks or reverse masks. These
tests provided insights in identifying and highlighting relevant regions in SAR images,
providing insights into its effectiveness in understanding the decision-making process of
the black box model. The way masks generated is shown as Equations (23) and (24).

Mthreshold(i, j) =
{

1, if HC−RISE(i, j) ≥ threshold
0, otherwise

(23)

M̄threshold = 1H×W −Mthreshold (24)

where threshold ∈ [0, 1], HC−RISE denotes the pixel value of the heatmap from C-RISE.
Mthreshold and M̄threshold mean the masks/reverse masks, respectively.
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Based on Equations (23) and (24), we could use the element-wise product to get the
processed images I/ Ī after masked/reverse masked and the results after masked/reverse
masked are shown in Figure 10.

I = Mthreshold ◦ X (25)

Ī = M̄threshold ◦ X (26)

Figure 10. The first column represents a randomly selected image from 2S1, the second column
represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent
images after masked/reverse masked, respectively. The threshold selected in the three lines were 0.25,
0.50 and 0.75, respectively.

The conservation test examines the ability of methods to identify and preserve the
important visual features or regions that contribute to the classification decision made
by the black box model. It verifies whether the algorithm highlights the significant re-
gions consistently which the model depends on. And the occlusion test evaluates the
robustness of the C-RISE algorithm by assessing its resistance to occlusion or masking
of specific regions in the input image. In this test, different parts of the input image are
occluded, and the algorithm’s response is analyzed to determine if it correctly identifies the
occluded regions as significant contributors to the classification decision. The occlusion
test helps validate the interpretability of methods by examining its sensitivity to important
image regions.

However, directly replacing some pixels with black may produce high-frequency sharp
edges [8], and these artificial traces may also lead to changes in the prediction probability,
which cannot guarantee the fairness and objectivity of the model recognition process. In
order to solve the above problems, we improved the original experiment and proposed two
new measures, namely, introducing multiplicative noise and Gaussian blur to the occluded
region. The follow two experiments show the effectiveness and rationality of our algorithm.

4.3.1. Based on Multiplicative Noise

In the experiments, we firstly add multiplicative noise to the occluded region and
updated Equations (23) and (24) to Equations (27) and (28). The reason for adding multi-
plicative noise is based on the physical scattering mechanism of SAR coherent imaging.
We believe that the intensity of each resolved element of SAR image is modulated by the
Radar Cross Section (RCS) [3] of the ground object in the element and a multiplicative noise
whose intensity follows the exponential distribution of unit mean (mean = 1). So we can
consider the SAR image as the product of the RCS of the ground object in the scene and the
noise of the unit mean exponential intensity distribution. Therefore, in the process of signal
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processing, we generally consider the noise of SAR image as multiplicative noise [3,9].
Figure 11 shows the above processing of the same image.

I = Mthreshold ◦ X + M̄threshold ◦ Noise(X) (27)

Ī = M̄threshold ◦ X + Mthreshold ◦ Noise(X) (28)

where Noise(X) denotes add high-variance Gaussian multiplicative noise to the input
image X.

Figure 11. The first column represents a randomly selected image from 2S1, the second column
represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent
images after masked/reverse masked based on multiplicative noise, respectively. The threshold
selected in the three lines were 0.25, 0.50 and 0.75, respectively.

Then we define con f idence_drop(a, b) to represent the divergence in the confidence
that the processed image b and the original image a are classified into the same category.
The mathematical expression of con f idence_drop(a, b) is shown in Equation (29).

con f idence_drop(a, b) =
Sc(a)− Sc(b)

Sc(a)
(29)

where Sc(x) is used to represent the score of the input image x being classified as class c.
Based on this, we use con f idence_dropcon(X, I) and con f idence_dropocc(X, Ī) to represent
the scores in the conservation and occlusion test, respectively. The process is shown as
Equations (30) and (31).

con f idence_dropcon(X, I) =
Sc(X)− Sc(I)

Sc(X)
(30)

con f idence_dropocc(X, Ī) =
Sc(X)− Sc( Ī)

Sc(X)
(31)

It is worth noting that the smaller con f idence_dropcon(X, I), the greater the difference
between the values of Sc(X) and Sc(I), and the generated heatmap can be considered to be
located in the salient feature part of the target. Similarly, the larger the con f idence_dropocc,
the lager the difference between the values of Sc(X) and Sc( Ī), and the main features after
image processing can be considered to be preserved.

The con f idence_dropcon(X, I) and con f idence_dropocc of various methods under dif-
ferent thresholds including Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE
and C-RISE, are shown in Tables 2 and 3.
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Table 2. con f idence_dropcon(X, I) of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise. The best records are marked in bold.

Threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.6975 0.6731 0.6949 0.7017 0.7364 0.6672
0.50 0.6750 0.7063 0.6760 0.6776 0.8257 0.6658
0.75 0.7620 0.7691 0.7644 0.7615 0.7646 0.6626

Table 3. con f idence_dropocc of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise. The best records are marked in bold.

Threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.7008 0.6434 0.6973 0.6427 0.4372 0.4934
0.50 0.3524 0.3287 0.4791 0.4804 0.1867 0.5361
0.75 0.1306 0.0475 0.1026 0.1359 0.1537 0.2637

4.3.2. Based on Gaussian Blur

From Tables 2 and 3, we can see that compared with other methods, C-RISE achieved
relatively optimal performance under different thresholds. Similarly, we can also use high-
variance Gaussian blur to process the masked area, and the processed results are shown in
Figure 12. Experimental indicators are shown in Tables 4 and 5 respectively. The mathematical
expressions are updated from Equations (23) and (24) to Equations (32) and (33).

I = Mthreshold ◦ X + M̄threshold ◦ G(X) (32)

Ī = M̄threshold ◦ X + Mthreshold ◦ G(X) (33)

where G(X) denotes introduce high-variance Gaussian blur to the input image X.

Figure 12. The first column represents a randomly selected image from 2S1, the second column
represents HC−RISE, the third column represents Mthreshold, and the fourth and fifth columns represent
images after masked/reverse masked based on Gaussian blur, respectively. The threshold selected in
the three lines were 0.25, 0.50 and 0.75, respectively.

Table 4. con f idence_dropcon(X, I) of Different Methods in Conservation and Occlusion Test Based on
Gaussian blur. The best records are marked in bold.

Threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.0665 0.1038 0.0768 0.0205 0.0137 0.0064
0.50 0.0285 0.2391 0.1764 0.0944 0.0924 0.1692
0.75 0.3147 0.3721 0.3249 0.2893 0.2466 0.1631
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Table 5. con f idence_dropocc of Different Methods in Conservation and Occlusion Test Based on
Multiplicative Noise. The best records are marked in bold.

Threshold Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

0.25 0.2805 0.2250 0.2682 0.3283 0.3898 0.3985
0.50 0.1634 0.0968 0.1519 0.2217 0.2513 0.2870
0.75 0.0350 0.0119 0.0305 0.0556 0.0906 0.1663

4.4. Insertion and Deletion Test

In this experiment, we compared different methods by insertion-deletion test [42]. The
experiment is a metric used to evaluate visual interpretation methods and measures the
ability of visual interpretation to capture important pixels. During the deletion experiment,
the k most important pixels in the heatmap are successively removed, and then we calculate
the degree of change in the prediction probability. The insertion curve is the opposite.
The curves are shown in Figure 13, with smaller AUC of deletion curves and higher
AUC of insertion curves indicative of a better explanation. We randomly select an image
from the test set for demonstration and plot its deletion and insertion curves of different
algorithms. The results are shown in Figure 14. We calculate AUC of both curves and the
Over_All score [36] (AUC(insertion)− AUC(deletion)) of all images from the test set as a
quantitative indicator. The average results over 2636 images is reported in Table 6. We
found that C-RISE achieves splendid results, indicating that the pixel importance revealed
by the visualization method is in high agreement with the model and has great robustness.

Original Image C-RISE+Original Image Deletion Curse Insertion Curse

Figure 13. The heatmap generated by C-RISE(second column) for two representative images (first col-
umn) with deletion (third column) and insertion (fourth column) curves.

Deletion Curve Insertion CurveInput Image

Figure 14. Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM, RISE and C-RISE generated saliency
maps for a seleted image randomly (firstly column) in terms of deletion (second column) and insertion
curves (third column).
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Table 6. Comparative evaluation in terms of deletion (lower AUC is better) and insertion (higher
AUC is better) AUC. The Over_All score (higher AUC is better) shows that C-RISE outperform other
related methods significantly. The best records are marked in bold.

AUC Grad-CAM Grad-CAM++ XGrad-CAM Score-CAM RISE C-RISE

Insertion 0.2768 0.3011 0.4145 0.5512 0.4659 0.6875
Deletion 0.1317 0.1676 0.1255 0.0246 0.0420 0.1317
Over_All 0.1451 0.1335 0.2890 0.5266 0.4239 0.5558

4.5. Ablation Study

A comprehensive ablation study was conducted to assess the impact of the number
of clusters k and the number of generated masks N on the performance of the C-RISE
algorithm. The study was conducted on a subset of 100 randomly sampled images from
the testset. Figure 15 and Table 7 highlight the AUC mentioned in Section 4.4 of Insertion,
Deletion curve and the Over_All scores obtained for different combinations of k and N.
A single image was randomly selected from the dataset, which was correctly recognized
by the network and the results are presented in Figure 16, which illustrates the saliency
maps obtained using different combinations of N and k. Each saliency map highlights
the important regions and features in the image, providing insights into the network’s
decision-making process.By comparing the saliency maps generated with different N and
K values, we can observe the variations in the interpretation results.

When the parameter k is frozen, a higher value of N (N = 1000, 2000) enables the gen-
eration of a larger number of masks, resulting in more detailed interpretations. This allows
for better coverage of the image space and the potential identification of smaller or more
subtle features. Conversely, a lower value of N leads to more generalized interpretations
that emphasize larger regions or prominent features. However, generating a larger num-
ber of masks (N = 4000) may introduce redundancy and impose a heavy computational
burden without significantly improving the quality of the interpretations. With a small
value of N (N = 200, 500), the diversity and representativeness of the generated masks
may be limited and result in inconsistent localization of important areas in the saliency
maps. The interpretation results may not fully capture the range of important regions or
features in the image. This can lead to incomplete or biased interpretations, potentially
missing out on crucial information.The interpretation results may exhibit high variability
or instability, making it challenging to identify reliable and consistent regions of interest,
which can hinder the interpretability and reliability of the algorithm.

Selecting an appropriate value for k is essential to achieve effective clustering and
meaningful interpretation results. A large value of k (k = 8, 16, 32) may cause over-
segmentation of the generated masks. This means that the masks within each cluster
may capture fine-grained or localized details, resulting in fragmented interpretations. The
saliency maps may exhibit numerous small regions of interest, making it challenging to
extract meaningful insights or identify coherent patterns. On the other hand, a small
value of k (k = 2) may result in under-segmentation of the generated masks. This means
that the masks within each cluster may capture broader regions or features, potentially
overlooking finer details or localized variations. The saliency maps may exhibit larger,
less specific regions of interest, making it challenging to distinguish important elements
within them. Furthermore, it is essential to take into account the computational efficiency
when selecting the value of k. As k increases, the number of clusters and associated
computations also increase. It is necessary to strike a balance between interpretability and
computational efficiency by choosing a value that provides meaningful results without
excessive computational overhead.

Through this ablation study, a comprehensive understanding of the relationship
between k, N, and the interpretability of the algorithm was achieved. The results serve as a
valuable reference for researchers and practitioners working with the C-RISE algorithm,
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providing guidance on selecting appropriate values for k and N to achieve the desired
interpretation outcomes.

Figure 15. Ablation studies of N with k = 4 in terms of insertion (higher AUC is better ), deletion
(lower AUC is better) curve and the over-all scores (higher AUC is better) on a subset of 100 randomly
sampled images from the testset.

Table 7. Ablation studies of k with N = 2000 in terms of insertion (higher AUC is better ), deletion
(lower AUC is better) curve and the over-all scores (higher AUC is better) on a subset of 100 andomly
sampled images from the testset.

AUC k = 2 k = 4 k = 8 k = 16 k = 32

Insertion 0.5687 0.7140 0.5076 0.5329 0.4619
Deletion 0.0942 0.0910 0.1697 0.1753 0.1783
Over_All 0.4745 0.6230 0.3379 0.3576 0.2836

𝑁𝑁 = 200

𝑁𝑁 = 500

𝑁𝑁 = 1000

𝑁𝑁 = 2000

𝑁𝑁 = 4000

𝑘𝑘 = 2 𝑘𝑘 = 4 𝑘𝑘 = 8 𝑘𝑘 = 16 𝑘𝑘 = 32𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Figure 16. The saliency maps which generated by a randomly selected image obtained using different
combinations of N and k.

4.6. Generalization Analysis

Although the experimental results presented so far have been obtained using the
AlexNet architecture, the C-RISE algorithm exhibits remarkable generalization capabilities
across a range of commonly used SAR target recognition networks. In this section, we
extend our evaluation to two well-known network models: VGG16 and ResNet50. These
models achieve classification accuracies of 95.05% and 92.24%, respectively, after training.
Figure 17 illustrates the results obtained by applying the C-RISE algorithm to ten randomly
selected images from ten different categories, using each of the aforementioned networks.
To facilitate a comprehensive analysis of target localization performance, we overlay the
original images with their corresponding saliency heatmaps.
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Figure 17. The results obtained by applying the C-RISE algorithm to ten randomly selected images
from ten different categories, using each of the aforementioned networks.

The observations reveal that the C-RISE algorithm demonstrates consistent transfer-
ability across different networks, with the generated heatmaps consistently highlighting
the target regions. However, the distribution patterns of energy vary among the different
networks. Notably, ResNet50 exhibits greater divergence in energy organization, which
correlates with its relatively lower recognition rate. In contrast, VGG16 achieves higher
recognition rate, with increased concentration of energy across different types of heatmaps.
This superior performance can be attributed to VGG16’s ability to capture and effectively
utilize the advanced semantic information inherent in SAR images.

SAR images possess distinct characteristics compared to traditional optical images,
arising from the imaging modality and physical properties of the radar system. These
images exhibit rich texture and structural details due to the interaction of radar waves with
the target and surrounding environment. The deeper architecture and larger receptive
field of VGG16 enable it to effectively capture and leverage these intricate details, enabling
accurate recognition of subtle variations in texture and structure. On the other hand,
ResNet, with its deeper architecture and skip connections, may encounter challenges in
capturing and modeling the diverse and intricate energy organization present in SAR
images. This can result in less accurate localization and recognition of targets, leading to
lower overall performance.

It is important to note that SAR images have unique characteristics compared to
optical images, including different scattering mechanisms, imaging geometry, and signal
properties. These differences can impact the recognition mechanisms of different methods,
especially CNNs. While deeper network architectures have demonstrated advantages in
various computer vision tasks, the specific attributes of SAR images may require different
network architectures or adaptations to fully leverage the SAR-specific information. The
design of ResNet may not be optimized for these specific SAR image characteristics, which
could explain its relatively lower performance compared to other networks. This highlights
the need for further investigation and exploration to better understand and adapt SAR ATR
architectures to SAR image recognition tasks.

5. Conclusions

This paper introduces C-RISE, a novel post-hoc interpretation method for black-box
models in SAR ATR, which builds on the RISE algorithm. We compare the interpretation
effects of different methods and C-RISE algorithm using both qualitative analysis and
quantitative calculation. C-RISE offers several advantages, including its ability to group
mask images that capture similar fusion features using a clustering strategy, which allows
for concentration of more energy in the heatmap on the target area. Additionally, Gaussian
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blur is used to process the masked area, ensuring the consistency and integrity of the
original image structure and taking into account both global and local characteristics.
Compared with other neural network interpretable algorithms and even white box methods,
C-RISE’s black-box model-oriented characteristics make it more robust and transferable.
Furthermore, C-RISE avoids the error that can be caused by the unreasonable weight
generation method in general CAM methods and the small feature map in the CNN model
during the up-sampling process to the original image size. In addition to SAR ATR, the
C-RISE algorithm has several other potential applications:

1. Weak Supervised Target Location (WSOL): Currently, both the CAM algorithm and
RISE algorithm have gained widespread usage in WSOL scenarios. Similarly, C-RISE
can be applied to object detection tasks, assisting in identifying important areas in an
image that contribute to the presence of specific objects. By generating saliency maps
and highlighting distinctive regions, C-RISE aids in object localization and provides
insights into the decision-making process of black-box object detection models;

2. Weakly supervised semantic segmentation (WSSS) : WSSS methods primarily rely on
CAM for target localization using image-level labels. However, CAM tends to focus
on the most salient part of the object while exhibiting false activations in the back-
ground region, resulting in inadequate target activation and excessive background
activation. C-RISE algorithm presents a similar form to CAM but offers improved
target localization capabilities. The paper demonstrates that C-RISE achieves more
accurate target positioning, effectively activating the target area, and providing guid-
ance for precise semantic segmentation by leveraging the semantic information of
category attributes;

3. Adversarial sample detection: Most existing neural network interpretability methods
focus on real samples and lack explanations for classification results on adversarial
samples. Adversarial sample attacks expose the vulnerability and limitations of neural
network models, emphasizing the need for reliable and robust models. By generating
saliency maps, C-RISE helps identify key features or patterns that contribute to
detecting fraudulent activities or anomalies in large datasets. The C-RISE algorithm
can qualitatively and quantitatively evaluate the reasons for misclassifications of
adversarial samples by neural networks, offering effective visual explanations for the
network’s incorrect judgments and novel insights for adversarial sample detection.

In addition to conducting experiments on the MSTAR (SOC) database, we will ap-
ply the C-RISE algorithm to experiments involving extended operating conditions (EOC)
and other SAR image datasets. By conducting experiments on diverse datasets, we can
assess the applicability and performance of the C-RISE algorithm across different scenarios
and datasets, thereby confirming its portability. In our future research, our objective is
to concentrate on the specific application of C-RISE in the aforementioned scenarios and
explore its potential in detecting improper behaviors manifested by black-box models.
We aim to leverage the insights provided by C-RISE to guide parameter adjustments,
thus enabling us to systematically investigate the capabilities of our proposed approach
in identifying and diagnosing the sources of model inaccuracies. By devising strate-
gies to enhance the performance of black-box models, our research endeavors will con-
tribute to bolstering the interpretability and robustness of these models across diverse
practical applications.
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