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Abstract: Rapid assessment tools are required for monitoring crop nutrient status and managing
fertiliser applications in real time. Hyperspectral imaging has emerged as a promising assessment
tool to manage crop nutrition. This study aimed to determine the potential of hyperspectral imaging
for predicting foliar nutrient concentrations in avocado trees and establish whether imaging different
sides of the leaves affects prediction accuracy. Hyperspectral images (400–1000 nm) were taken of both
surfaces of leaves collected from Hass avocado trees 0, 6, 10 and 28 weeks after peak anthesis. Partial
least squares regression (PLSR) models were developed to predict mineral nutrient concentrations
using images from (a) abaxial surfaces, (b) adaxial surfaces and (c) combined images of both leaf
surfaces. Modelling successfully predicted foliar nitrogen (RP

2 = 0.60, RPD = 1.61), phosphorus
(RP

2 = 0.71, RPD = 1.90), aluminium (RP
2 = 0.88, RPD = 2.91), boron (RP

2 = 0.63, RPD = 1.67),
calcium (RP

2 = 0.88, RPD = 2.86), copper (RP
2 = 0.86, RPD = 2.76), iron (RP

2 = 0.81, RPD = 2.34),
magnesium (RP

2 = 0.87, RPD = 2.81), manganese (RP
2 = 0.87, RPD = 2.76) and zinc (RP

2 = 0.79,
RPD = 2.21) concentrations from either the abaxial or adaxial surface. Foliar potassium concentrations
were predicted successfully only from the adaxial surface (RP

2 = 0.56, RPD = 1.54). Foliar sodium
concentrations were predicted successfully (RP

2 = 0.59, RPD = 1.58) only from the combined images
of both surfaces. In conclusion, hyperspectral imaging showed great potential as a rapid assessment
tool for monitoring the crop nutrition status of avocado trees, with adaxial surfaces being the most
useful for predicting foliar nutrient concentrations.

Keywords: fertilisers; mineral nutrients; Persea americana; plant health; plant nutrition; visible near-
infrared spectroscopy

1. Introduction

Tree crops contribute 600 million tons to global food production yearly, predominantly
in the form of fruits and nuts [1–3]. Nutrient deficiencies in tree crops can result in low
yield and poor fruit quality, and it is imperative to prevent these deficiencies through
timely fertiliser applications [4–7]. Leaves are typically used to analyse crop nutrient status
because foliar nutrient concentrations are often strong indicators of potential yield [8]. How-
ever, nutrient analyses are laborious and time-consuming, creating delays between foliar
sampling and fertiliser application [8,9]. Rapid assessment technology is required to assess
crop nutrition in real time, allowing for the timely scheduling of fertiliser amendments to
sustain crop yield and quality [7,10].

Hyperspectral imaging (HSI) is emerging as a rapid quality assessment technique
for tree crops [11–14]. Hyperspectral imaging integrates both digital imaging and spec-
troscopy to produce a spatial and spectral map of the target that cannot be obtained from
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traditional cameras [14–16]. Accuracies of HSI for predicting nut rancidity can be greater
than using Red–Green–Blue (RGB), with R2 of prediction being 93.48% and 39.13%, re-
spectively [16]. Hyperspectral imaging can indirectly predict the external and internal
composition of food products and detect defects or alterations that are not visible to the
naked eye [14,16–21]. This rapid assessment technique has been successfully used in re-
cent years to detect crop diseases, fruit and nut quality, and the concentrations of foliar
biochemical compounds [17,22]. Hyperspectral imaging methods have been developed
for predicting foliar nutrient concentrations in a variety of tree crops, including apple,
cacao, citrus, macadamia and peach [23–27]. Mineral nutrients are bound to organic macro-
molecules that are essential for cell structure and function, and HSI has the ability to
indirectly detect these mineral nutrients by detecting those organo-mineral bonds [28].
Hyperspectral imaging systems can be ground-based or mounted on unmanned aerial ve-
hicles, both of which have been used to predict foliar nutrient concentrations because they
can acquire high-resolution images [22,29,30]. Image collection from ground-based systems
can be impacted by illumination effects and shadows [22]. On the other hand, drones have
limited battery life, high operational complexity and requirements to comply with flight
regulations [22,31]. The operational issues associated with unmanned aerial vehicles can
be overcome by developing efficient and accessible laboratory-based imaging systems.

Laboratory-based imaging systems have become increasingly cost effective and they
can provide real-time data on foliar nutrient concentrations [23–26]. Hyperspectral imaging
has been used to predict nutrient concentrations by imaging either homogenised leaves
or one surface of fresh leaves [24–26,29]. However, hyperspectral imaging of the adaxial
(top) and abaxial (bottom) sides of leaves has rarely been compared for their capacity to
predict nutrient concentrations. Differences in structure and chlorophyll concentrations
exist between the adaxial and abaxial sides of citrus leaves, which can affect the predic-
tion accuracies for foliar nutrient concentrations [23]. Hyperspectral image data from the
adaxial surface of citrus and macadamia leaves have provided higher accuracy in predict-
ing foliar nutrient concentrations than data collected from the abaxial surface, possibly
because the adaxial side has a smoother wax layer and higher chlorophyll content than the
abaxial side [23,27]. It is important to assess the prediction accuracy of images collected
from the adaxial and abaxial sides of leaves to provide best practice for hyperspectral
image collection.

Avocado is a tropical tree crop that produces fruit rich in unsaturated fatty acids, di-
etary fibre, micronutrients and vitamins [32,33]. Avocado production is increasing annually
to meet the growing demand for healthy, nutrient-rich food [1]. However, avocado orchard
productivity is often constrained by sub-optimal crop nutrient levels [34,35]. Nutrient
levels within the avocado tree need to be sufficient to meet specific physiological demands
during each stage of vegetative growth, flowering and fruit development [35]. Monitoring
and maintaining nitrogen, phosphorus, potassium and boron concentrations during fruit
set and development are critical to sustaining avocado yield [34–36]. Rapid assessment
tools such as airborne laser scanning have been used to estimate the crown area, crown
volume and tree count in avocado orchards [37], and HSI has been used to determine
avocado fruit maturity and flesh nutrient concentrations [18,38]. However, HSI has not
been used to assess avocado crop nutrient status and so further research is required to
determine whether HSI can be used as a rapid assessment tool to detect foliar nutrient
levels in avocado trees. Avocado leaves, like citrus leaves [23], have waxy cuticles and
contain stomata only on their abaxial surface [34,39]. Therefore, the capacity to predict
foliar nutrient concentrations might depend on which surface of the avocado leaf is used to
capture hyperspectral images.

This study investigated the potential of laboratory-based HSI to predict the crop
nutrition status of Hass avocado trees. The aim was to develop a tool for accurate and real-
time assessment of the crop nutrient status, which would enable more efficient management
of crop nutrition. Specifically, this study aimed to determine the accuracy of HSI in
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predicting foliar nutrient concentrations and the extent to which imaging of the two
different sides of the leaf affects the prediction accuracy.

2. Materials and Methods
2.1. Sample Collection

Leaves were collected from 30 Hass trees located at the Eastridge avocado orchard
(25◦13′25′′S 152◦18′54′′E), near Childers, Queensland, Australia. These trees were used
in a previous complementary study on the effect of boron applications on avocado fruit
set, yield and quality [36]. Four heterogeneous leaves were randomly collected from each
experimental tree on each of four occasions: 0, 6, 10 and 28 weeks after peak flower anthesis.
Each tree was divided into four quadrants, with one quadrant at each of the four cardinal
directions around the tree. One young, fully expanded leaf was sampled per quadrant, at
approximately 1.5 m from the ground, on each occasion.

2.2. Hyperspectral Imaging System, Image Acquisition and Spectral Data Extraction

Images of the leaves were captured in a laboratory setting using a visible/near-infrared
HSI system. The system has a 12-bit push-broom line-scanning camera (Pika XC2, Resonon,
Bozeman, MT, USA) with a spectral resolution of approximately ~1.3 nm, producing
462 wavelength bands between 400 nm and 1000 nm. The leaves were placed on a black
background on the camera translation stage. The speed of the translation stage and expo-
sure time were manually set to 1.23 mm s−1 and 19.7 ms, respectively. Image calibration
and data extraction were carried out using SpectrononPro software (Version 2.96, Resonon,
Bozeman, MT, USA). Image calibration was carried out prior to image acquisition via
response correction (white calibration) and the removal of dark current noise (dark calibra-
tion). White calibration was obtained by capturing an image of a white Teflon sheet that
reflected ≈99% of incident light. Dark calibration was carried out by capturing an image
with the camera lens covered by its cap.

Images were acquired of both the abaxial and adaxial surfaces of the leaves, with each im-
age containing four leaves from one tree at each time point, i.e., in total 30 images × 4 sampling
time points per leaf surface were acquired. A region of interest (ROI) was marked on both
the abaxial and adaxial surfaces (Figure 1). The mean raw reflectance (R0) of the ROI was
extracted and the mean corrected relative reference (R) was calculated using SpectrononPro
software, using Equation (1):

R = (R0 −D)/(W−D ) (1)

where D is the reflectance of an image captured with the lens covered and W is the
reflectance of the white Teflon sheet.
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Figure 1. Selection of the regions of interest (denoted in grey colour) on the (a) abaxial and (b) adaxial
surfaces of Hass avocado leaves.

2.3. Mineral Nutrient Analysis

The leaves were dried and ground after capturing the images. The four leaves from
each tree at each sampling time were combined together as one sample. A subsample of
at least 300 mg from each sample was used to analyse the concentrations of 13 nutrients.
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The concentration of nitrogen (N) was determined by combustion analysis using a LECO
CNS 928 analyser (TruSpec®, LECO Corporation, St. Joseph, MI, USA) [40,41]. Aluminium
(Al), boron (B), calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn),
phosphorus (P), potassium (K), sodium (Na), sulphur (S) and zinc (Zn) concentrations
were analysed via inductively coupled plasma–optical emission spectroscopy (Vista Pro®,
Varian Incorporation, Palo Alto, CA, USA), after digestion with a 5:1 mixture of nitric and
perchloric acids [42,43].

2.4. Calibration Model Development

The mean reflectance data from (a) 120 images of abaxial leaf surfaces, (b) 120 images
of adaxial leaf surfaces and (c) combined images of both leaf surfaces (120 × 2 surfaces =
240 images) were used for subsequent model development. Following principal component
analysis, Hotelling’s T2 test at a 95% confidence level was performed to identify spectral
outliers within the samples [44]. The identified spectral outliers were removed and the
remaining samples were divided randomly into two datasets, with approximately 80%
and 20% of the samples being assigned to calibration sets and test sets, respectively [45].
Descriptive statistics for the calibration and test sets are provided (Table 1).

Table 1. Descriptive statistics for foliar mineral nutrient concentrations in Hass avocado using
datasets of images from different leaf surfaces.

Variable Surface
Calibration Set Test Set

Mean SD Min. Max. CV Mean SD Min. Max. CV

N Abaxial 2.51 0.36 1.49 3.28 0.14 2.52 0.27 2.04 2.95 0.11
Adaxial 2.54 0.34 1.48 3.28 0.13 2.41 0.34 1.83 3.04 0.14

Combined 2.51 0.35 1.48 3.28 0.14 2.53 0.30 1.83 3.22 0.12
P Abaxial 0.202 0.042 0.118 0.297 0.208 0.217 0.044 0.133 0.289 0.203

Adaxial 0.204 0.042 0.118 0.284 0.206 0.208 0.048 0.128 0.297 0.231
Combined 0.206 0.043 0.118 0.297 0.209 0.199 0.042 0.118 0.275 0.211

K Abaxial 1.04 0.24 0.56 1.63 0.23 0.96 0.30 0.57 1.57 0.31
Adaxial 1.03 0.26 0.56 1.63 0.25 1.05 0.27 0.70 1.49 0.26

Combined 1.02 0.26 0.56 1.63 0.25 1.04 0.25 0.57 1.63 0.24
Al Abaxial 52.1 46.0 13.1 180.9 0.9 53.8 49.0 15.4 168.6 0.9

Adaxial 53.4 47.4 13.1 177.4 0.9 56.4 53.1 15.7 201.2 0.9
Combined 56.4 49.4 13.1 201.2 0.9 45.8 44.3 13.1 177.4 1.0

B Abaxial 70.0 35.3 24.3 188.1 0.5 69.1 28.4 28.2 155.8 0.4
Adaxial 70.1 34.0 24.3 188.1 0.5 66.6 34.5 25.0 172.2 0.5

Combined 69.4 33.3 24.3 188.1 0.5 68.4 37.3 25.0 188.1 0.6
Ca Abaxial 0.932 0.483 0.300 2.28 0.5 0.840 0.309 0.268 1.62 0.4

Adaxial 0.959 0.486 0.268 2.28 0.5 0.828 0.367 0.373 1.85 0.4
Combined 0.925 0.456 0.268 2.28 0.5 0.928 0.481 0.358 1.85 0.5

Cu Abaxial 55.3 44.6 10.0 160.4 0.8 56.5 45.2 10.6 123.6 0.8
Adaxial 57.0 45.5 10.0 160.4 0.8 44.7 39.8 10.5 121.8 0.9

Combined 57.1 44.7 10.0 160.4 0.8 47.2 42.7 10.3 144.8 0.9
Fe Abaxial 92.7 50.4 40.5 270.9 0.5 99.2 60.4 43.0 252.8 0.6

Adaxial 93.6 51.4 42.6 252.8 0.6 104.1 58.3 40.5 270.9 0.6
Combined 96.7 66.0 40.5 681.6 0.7 112.9 103.8 42.6 681.6 0.9

Mg Abaxial 0.280 0.117 0.129 0.631 0.4 0.286 0.119 0.133 0.495 0.4
Adaxial 0.287 0.121 0.129 0.631 0.4 0.279 0.112 0.157 0.524 0.4

Combined 0.281 0.117 0.129 0.631 0.4 0.298 0.121 0.129 0.611 0.4
Mn Abaxial 926 615 276 2558 0.7 926 530 383 2118 0.6

Adaxial 953 603 276 2697 0.6 965 693 299 2558 0.7
Combined 933 592 276 2697 0.6 1005 706 276 2508 0.7

Na Abaxial 113.0 47.6 40.1 272.6 0.4 115.6 42.1 39.5 207.1 0.4
Adaxial 114.9 48.4 39.5 272.6 0.4 108.1 36.8 51.5 195.2 0.3

Combined 116.3 51.7 39.5 345.9 0.4 110.7 46.3 50.2 345.9 0.4
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Table 1. Cont.

Variable Surface
Calibration Set Test Set

Mean SD Min. Max. CV Mean SD Min. Max. CV

S Abaxial 2373 443 1329 3510 0.2 2416 497 1741 3340 0.2
Adaxial 2379 456 1329 3510 0.2 2461 405 1749 3340 0.2

Combined 2397 461 1329 3954 0.2 2422 513 1538 3954 0.2
Zn Abaxial 39.3 8.4 24.3 59.3 0.2 40.5 8.3 28.4 55.6 0.2

Adaxial 39.0 8.2 24.3 57.5 0.2 41.8 8.0 30.8 59.3 0.2
Combined 40.0 8.7 24.3 76.8 0.2 38.7 9.7 26.7 76.8 0.3

Nutrient concentrations are expressed in mg/kg, except N (nitrogen), P (phosphorus), K (potassium), Ca (calcium)
and Mg (magnesium) concentrations, which are expressed as %. SD: standard deviation; CV: coefficient of
variation. The means of the calibration and test sets within a row did not differ significantly (Student’s t-test;
p < 0.05).

The calibration and test sets were tested for homogeneity of variance, and Student’s
t-test was performed to identify differences between the means. A variety of spectral data
transformations was explored using the calibration datasets to remove scatter effects and
random noise [46,47]. The spectral data transformations explored included multiplicative
scatter correction (MSC), orthogonal signal correction (OSC), standard normal variate (SNV)
and detrending [46,48].

Partial least squares regression (PLSR) models were then developed using both raw
and transformed spectral data to establish correlations between foliar mineral nutrient
concentrations and mean reflectance data in the 400–1000 nm spectral range. PLSR is
the preferred method for analysing data with numerous highly correlated independent
variables and few response variables [47,49]. A full cross-validation (leave-one-out) method
was used during model development to select the optimal number of components and
avoid over-fitting and, therefore, obtain a model with optimum performance [50].

2.5. Model Evaluation

The models were assessed by selection of the highest coefficient of determination
for calibration (R2

C) and cross-validation (R2
V), and the lowest root mean square error

for calibration (RMSEC) and cross-validation (RMSEV). The R2 and RMSE are defined by
Equations (2) and (3):

R2 = 1−
Σn

i=1
(
yi − ŷi)

2

Σn
i=1

(
yi −

−
y)2

(2)

RMSE =

√
(Σ n

i=1(ŷi − yi)
2
)

/n (3)

where yi and ŷi are the reference and predicted values in the ith sample,
−
y is the mean of

the reference values and n was the number of samples. Finally, the prediction ability of all
calibration models was assessed using the test set.

The prediction capacity of the calibration models was evaluated using the coefficient
of determination (R2

P), root mean square error (RMSEP) and the ratio of prediction-to-
deviation (RPD) of the test set [51]. The RPD was calculated using Equation (4):

RPD = SDP/RMSEP (4)

where SDP is the standard deviation of the reference values in the test set [44,52]. Robust-
ness was evaluated by assessing the RPD of the model calculated using the test set [52].
Models with an RPD > 2.0 are considered highly reliable with excellent prediction capacity,
while models with an RPD from 1.4 to 2.0 are considered reliable with good prediction
capacity [53]. PLSR regression coefficients (i.e., β-coefficients) are also used to provide
information about the importance of each wavelength in the developed model [13,47].
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The predicted concentrations for each nutrient from the leaf images were calculated using
Equation (5):

Ŷ = b0 + b1x1 + b2x2 + · · ·+ bkxk (5)

where Ŷ is the predicted response value, x1, x2, . . . , xk are the predictor values at each
wavelength, and b0, b1, b2, . . . , bk are the regression coefficients at each wavelength [54].
Descriptive analysis of the calibration and test sets, outlier detection, spectral data trans-
formations and PLSR model development were carried out using Unscrambler software
(Version 10.5.1, CAMO, Trondheim, Norway).

3. Results
3.1. Descriptive Analysis of Foliar Nutrient Concentrations in the Calibration and Test Sets

The mean concentrations for each foliar nutrient were within the same ranges in the cali-
bration and test sets of each image dataset (abaxial, adaxial and combined surfaces) (Table 1).

3.2. Reflectance of Leaf Images

The mean reflectance of the abaxial surface differed from that of the adaxial surface
at wavelengths between 500 and 700 nm, and between 750 and 1000 nm (Figure 2). The
abaxial surface gave the highest mean reflectance between 500 and 700 nm, whereas the
adaxial surface gave highest mean reflectance between 750 and 1000 nm (Figure 2).
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Figure 2. Mean (± SD) relative reflectance of the Vis/NIR spectrum (400–1000 nm) extracted from
abaxial (n = 120), adaxial (n = 120) and combined surfaces (n = 240) of Hass avocado leaves.

3.3. Prediction Performance

PLSR models were developed that predicted foliar concentrations of N, P, K, Al, B, Ca,
Cu, Fe, Mg, Mn, Na and Zn, with RPDs between 1.43 and 2.91. The best-fit PLSR models for
predicting foliar N, P, K, B and Na concentrations had RPDs between 1.54 and 1.90 (Table 2).
The best-fit PLSR models for predicting foliar Al, Ca, Cu, Fe, Mg, Mn and Zn concentrations
had RPDs > 2.00 (Table 2). A reliable model to predict foliar S concentration was not able to
be developed because the models developed using images of abaxial, adaxial or combined
surfaces all had RPDs < 1.00 (Table 2).
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Table 2. Performance of PLSR models in predicting foliar mineral nutrient concentrations in Hass
avocado leaves using datasets from hyperspectral images of abaxial, adaxial or combined leaf surfaces.

Variable Image Transformation LV
Calibration Set Validation Set Test Set

RMSEC R2
C RMSEV R2

V RMSEP R2
P RPD

N Abaxial – 10 0.20 0.67 0.25 0.52 0.17 0.60 1.61
Adaxial SNV 4 0.22 0.57 0.24 0.50 0.24 0.49 1.43

Combined – 15 0.19 0.72 0.22 0.61 0.22 0.45 1.55

P Abaxial – 6 0.02 0.67 0.03 0.58 0.02 0.71 1.90
Adaxial MSC 5 0.02 0.71 0.03 0.64 0.03 0.63 1.67

Combined – 7 0.03 0.66 0.03 0.63 0.03 0.58 1.04

K Abaxial – 9 0.15 0.60 0.18 0.44 0.22 0.43 1.36
Adaxial OSC 2 0.15 0.66 0.17 0.58 0.18 0.56 1.54

Combined Detrend 9 0.17 0.55 0.19 0.46 0.19 0.43 0.92

Al Abaxial Detrend 5 16.8 0.87 18.5 0.84 16.8 0.88 2.91
Adaxial SNV 4 16.8 0.87 18.1 0.86 22.2 0.82 2.39

Combined – 7 17.1 0.88 18.2 0.86 16.6 0.86 2.67

B Abaxial MSC 5 22.8 0.58 25.5 0.48 19.5 0.51 1.46
Adaxial MSC 4 23.3 0.53 25.4 0.45 20.7 0.63 1.67

Combined SNV 5 29.5 0.48 31.5 0.41 28.5 0.40 1.31

Ca Abaxial – 5 0.18 0.86 0.20 0.83 0.19 0.59 1.59
Adaxial MSC + Detrend 4 0.21 0.82 0.22 0.79 0.23 0.58 1.58

Combined – 6 0.22 0.76 0.23 0.75 0.17 0.88 2.86

Cu Abaxial – 3 19.3 0.81 20.2 0.80 16.4 0.86 2.76
Adaxial OSC 1 17.1 0.86 17.4 0.86 14.7 0.86 2.71

Combined SNV 3 19.9 0.80 20.4 0.79 20.4 0.77 2.09

Fe Abaxial – 4 28.2 0.68 30.9 0.63 25.8 0.81 2.34
Adaxial SNV 4 26.9 0.72 29.2 0.68 29.8 0.73 1.96

Combined – 6 26.1 0.73 27.4 0.71 34.7 0.67 1.75

Mg Abaxial OSC 2 0.04 0.89 0.04 0.88 0.04 0.87 2.81
Adaxial MSC 4 0.05 0.83 0.06 0.80 0.04 0.85 2.68

Combined MSC 6 0.05 0.83 0.05 0.81 0.04 0.87 2.80

Mn Abaxial MSC 3 228 0.86 245 0.84 246 0.85 2.15
Adaxial MSC 4 274 0.79 297 0.76 273 0.84 2.54

Combined MSC 5 273 0.79 289 0.76 256 0.87 2.76

Na Abaxial MSC 4 35.7 0.43 39.6 0.32 34.5 0.30 1.22
Adaxial – 3 40.2 0.31 42.7 0.23 31.1 0.25 1.18

Combined SNV 11 37.1 0.48 43.0 0.31 29.3 0.59 1.58

S Abaxial – 4 341 0.40 369 0.31 545 NA 0.91
Adaxial SNV 4 377 0.31 411 0.20 377 0.09 1.07

Combined – 3 410 0.20 421 0.17 489 0.09 1.05

Zn Abaxial – 5 4.81 0.67 5.26 0.61 3.75 0.79 2.21
Adaxial SNV 5 4.50 0.69 4.98 0.63 5.62 0.49 1.43

Combined – 6 5.45 0.61 5.70 0.57 5.87 0.63 1.66

Nutrient concentrations are expressed in mg/kg, except N (nitrogen), P (phosphorus), K (potassium), Ca (calcium)
and Mg (magnesium) concentrations, which are expressed as %. LV: number of latent variables; SNV: standard
normal variate; MSC: multiplicative scatter correction; OSC: orthogonal signal correction.

The best-fit PLSR models for predicting foliar concentrations of N (RPD = 1.61),
P (RPD = 1.90), Al (RPD = 2.91), Cu (RPD = 2.76), Fe (RPD = 2.34), Mg (RPD = 2.81)
and Zn (RPD = 2.21) used data acquired from images of the abaxial surface (Table 2,
Figures 3 and 4). Foliar N, Al, Cu, Fe, Mg and Zn concentrations were also predicted
successfully from adaxial and combined surface images, which provided RPDs between
1.43 and 2.80 (Table 2). Foliar P concentration (RPD = 1.67) was also predicted successfully
from images of the adaxial surface, but not the combined surface images (Table 2).
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The best-fit PLSR models for predicting foliar concentrations of K (RPD = 1.54) and
B (RPD = 1.67) used data acquired from the adaxial surface (Table 2 and Figure 3). The
concentration of B (RPD = 1.46) could also be predicted from images of the abaxial
surface (Table 2). The best-fit PLSR models for predicting foliar concentrations of Ca
(RPD = 2.86), Mn (RPD = 2.76) and Na (RPD = 1.58) used combined surface images (Table 2,
Figures 3 and 4). Foliar Ca and Mn concentrations could also be predicted successfully
using images of the abaxial or adaxial surfaces, which provided RPDs between 1.58 and
2.54 (Table 2).

The β-coefficients indicated that the most important wavelengths for predicting foliar
N, Al, Cu, Fe, Mg, Mn and Na concentrations were in both the visible and near-infrared
regions (Figures S1–S4). The most important wavelengths for predicting foliar P, B and
Zn concentrations were between 500 and 700 nm in the visible region, and for predicting
foliar K and Ca concentrations between 700 and 1000 nm in the near-infrared region
(Figures S1, S2 and S4).

4. Discussion

Hyperspectral imaging successfully predicted the concentrations of most nutrients in
Hass avocado leaves. The best-fit PLSR models for predicting foliar Al, Ca, Cu, Fe, Mg, Mn
and Zn concentrations provided excellent predictions, with RPDs between 2.21 and 2.91.
The best-fit PLSR models for predicting foliar N, P, K, B and Na concentrations provided
good predictions, with RPDs between 1.43 and 1.90. Foliar N, P, Al, B, Ca, Cu, Fe, Mg,
Mn and Zn concentrations could be predicted from images of either the abaxial or adaxial
surface. The foliar K concentration was only predicted successfully from images of the
adaxial surface, and the foliar Na concentration was only predicted successfully using the
combined surface images.

Model robustness was assessed using RPDs of the predicted nutrient concentrations in
the test set, with an RPD > 2.0 considered highly reliable with excellent prediction capacity,
and an RPD between 1.4 and 2.0 considered reliable with good prediction capacity [53]. The
best-fit PLSR models for predicting foliar Al, Ca, Cu, Fe, Mg, Mn and Zn concentrations
provided excellent predictions, as the RPDs were greater than 2.0. The best-fit PLSR models
for predicting foliar N, P, K, B and Na concentrations provided good predictions, as the
RPDs were between 1.4 and 2.0. High RPD values from the Al, Ca, Cu, Fe, Mg, Mn
and Zn models could be associated partly with their wide and uneven data distributions,
which were each separated into two distinct clusters with low and high concentrations.
Nutrient demands by the crop and fertiliser applications across the period of flowering and
fruit development could have caused these distinct clusters in the data for some nutrient
concentrations. The leaf samples collected during flowering had significantly higher Al,
Ca, Fe, Mg and Mn concentrations, and lower foliar Cu and Zn concentrations than those
collected during fruit development. Foliar Ca, Fe, Mg and Mn concentrations are lowest
during fruit development due to the nutrient demand from developing fruit [55–57]. The
foliar Cu concentration can be low during flowering due to Cu demand by flowers [55,57].

Hyperspectral imaging could not predict foliar S concentrations using PLSR modelling.
PLSR is commonly applied to datasets with a small number of samples [18,27,58–60],
and foliar S concentrations have been predicted using PLSR models previously [18,27].
Therefore, the small number of samples in the dataset may not be directly associated with
the lack of prediction capacity for foliar S concentrations. PLSR is appropriate when a
linear relationship exists between spectral data and the variable of interest [59,60]. Other
advanced machine learning methods such as artificial neural network (ANN) could be
applied to increase the prediction capacity of the models [30,61]. ANN models provide
high prediction accuracy when data are noisy and a nonlinear relationship exists between
spectral data and the variable of interest [62]. However, ANN models are usually developed
when a dataset has a large number of samples [61].

The most important wavelengths for predicting many of the nutrient concentrations
were in both the visible and near-infrared regions. However, the most important wave-
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lengths for predicting K and Ca concentrations were in the near-infrared region. Mineral
nutrients can occur in plants in either organic or inorganic forms, often being bound in
organic complexes [63]. Hyperspectral imaging detects mineral nutrients indirectly in the
visible and near-infrared regions by detecting these organic complexes [63–66]. Reflectance
in the visible region (400–700 nm) may be associated with pigment molecules such as
chlorophyll, and reflectance in the near-infrared region (700–1000 nm) may be associated
with protein, fatty acid and starch molecules [67–69]. The most important wavelengths for
predicting the N concentration were found in the 400–500 nm, 520–680 nm, 700–820 nm
and 850–1000 nm regions. Nitrogen is detected in both the visible and near-infrared re-
gions because it is present as a component of both chlorophyll and proteins [24,58,63,68].
Potassium occurs in plants in an inorganic form and can be detected at 730–1000 nm when
it forms complexes with carbohydrates such as starch and cellulose [24,63]. Calcium exists
in plants as calcium pectate, a major component of cell walls, and this compound reflects at
710–730 nm, 770–820 nm and 860–1000 nm [24,63].

Hyperspectral imaging could predict most foliar nutrient concentrations from images
of either the adaxial or abaxial leaf surface. The stability of the spectral reflectance data
from an image is essential for high prediction accuracy, and the structural uniformity of the
leaf surface contributes to the stability of spectral data [23]. Hyperspectral imaging of the
adaxial surface is more suitable than imaging of the abaxial surface in predicting N and P
concentrations in citrus leaves [23]. The adaxial side of citrus leaves has a continuous wax
layer and is smoother, with a higher chlorophyll content than the abaxial side [23]. The
adaxial surface of avocado leaves also has a continuous, thick, waxy cuticle and no stomata,
while the abaxial surface has stomata and non-continuous wax deposits [34,39,70,71]. The
adaxial side has a high chlorophyll content and dark green colour, while the abaxial side has
a low chlorophyll content and light green colour [72,73]. However, the abaxial surface of
Hass leaves is smoother than that of other avocado cultivars [39], which could explain why
abaxial surface images were often also suitable for predicting many nutrient concentrations
in Hass leaves. The capacity to predict most nutrient concentrations using images of one
leaf surface, most commonly the adaxial surface, will assist in using hyperspectral imaging
as a highly efficient, rapid assessment technique because the leaves will not need to be
rotated to capture images of both surfaces.

The concentrations of essential nutrients for avocado productivity, such as N, P, K, B,
Ca, Mg and Zn, were successfully predicted from the PLSR models. Deficiencies of N, P, K,
Ca, Mg and Zn in avocado trees can induce alternate bearing, reduce yield, and cause fruit
flesh disorders and body rots [34,35,74–77]. Nutrient toxicities in avocado can also occur
due to the excessive use of fertiliser. For example, B is a critical nutrient for avocado fruit
set and yield, but high B concentrations can cause fruitlet abscission and reduce yield [36].
Rapid nutrient assessment tools such as hyperspectral imaging could help growers detect
nutrient deficiencies or toxicities in crops in real time, reduce fertiliser costs and manage
nutrient applications more efficiently.

5. Conclusions

Hyperspectral imaging of either the abaxial or adaxial leaf surface showed great
potential for the rapid assessment of foliar nutrient levels in Hass avocado trees. The
predictive ability of these models should be validated for less commonly grown avocado
cultivars, and further investigations are required into the use of field-based HSI systems to
predict crop nutrient levels in avocado orchards. This technology could be used to diagnose
nutrient deficiencies or toxicities in real time, allowing for an immediate re-scheduling of
nutrient amendments and preventing the excessive use of fertilisers. Hyperspectral imaging
and optimised fertiliser applications have the capacity to reduce fertiliser costs, increase
fruit production, improve fruit quality and minimise nutrient runoff to the environment.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15123100/s1, Figure S1: β-coefficients associated with the best-fit
PLSR models for predicting (a) nitrogen, (b) phosphorus and (c) potassium concentrations in Hass
avocado leaves; Figure S2: β-coefficients associated with the best-fit PLSR models for predicting
(a) boron, (b) calcium and (c) magnesium concentrations in Hass avocado leaves; Figure S3: β-
coefficients associated with the best-fit PLSR models for predicting (a) aluminium, (b) copper and
(c) iron concentrations in Hass avocado leaves; Figure S4: β-coefficients associated with the best-fit
PLSR models for predicting (a) manganese, (b) sodium and (c) zinc concentrations in Hass avocado
leaves; Figure S5: Measured vs. predicted concentrations of foliar (a) aluminium, (b) calcium,
(c) copper and (d) iron from Hass avocado leaves 0, 6, 10 and 28 weeks after peak anthesis; Figure S6:
Measured vs. predicted concentrations of foliar (a) magnesium, (b) manganese and (c) zinc from Hass
avocado leaves 0, 6, 10 and 28 weeks after peak anthesis; Table S1: Mineral nutrient concentrations in
leaves 0, 6, 10 and 28 weeks after peak anthesis of Hass avocado trees.
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