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Abstract: The leaf area index (LAI) is a crucial variable in climate, ecological, and land surface
modeling. However, the estimation of the LAI from coarse-resolution remote sensing data can be
affected by the spatial scaling bias, which arises from the nonlinearity of retrieval models and the
heterogeneity of the land surface. This study provides an algorithm named Arithmetic Mean and
Geometric Mean (AM–GM) to correct the spatial scaling bias. It is established based on negative loga-
rithmic functions and avoids second-order stationarity. In this algorithm, relationships are derived
between the scaling bias of LAI and the arithmetic and geometric means of directional gap probability
for two commonly used remote sensing models, the Beer–Lambert law and a semi-empirical transfer
function, respectively. According to the AM–GM algorithm, the expression representing the model
nonlinearity is derived and utilized for the analysis of LAI scaling bias. Furthermore, the AM–GM
algorithm is simplified by a linear relationship, which is constructed between two quantities related
to the directional gap probability between two specific resolutions. Two scenes simulated by the
LargE-Scale remote sensing data and image Simulation framework (LESS) model and three sites are
used to evaluate the proposed algorithm and analyze the scaling bias of LAI. The validation results
show that the AM–GM algorithm provides accurate correction of LAI scaling bias. The analyses
based on the AM–GM algorithm demonstrate that the scaling bias of LAI increases with the increase
in the LAI value, with stronger surface heterogeneity and coarser spatial resolution. The validation
results of the simplified AM–GM algorithm demonstrate that at the Sud-Ouest site, the absolute value
of the bias for the estimated LAI decreases from 0.10, 0.22, 0.29, and 0.31 to 0.04, 0.01, 0.04, and 0.05 at
200 m, 500 m, 1000 m, and 1500 m resolutions, respectively. In conclusion, the proposed algorithm is
effective in the analysis and correction of the scaling bias for coarse-resolution LAI.

Keywords: leaf area index (LAI); spatial scaling bias; coarse resolution; Arithmetic Mean and
Geometric Mean (AM–GM); Taylor series expansion method (TSEM)

1. Introduction

The leaf area index (LAI) is an essential variable in ecological, land surface, and climate
modeling, as it explains the transfer of water, carbon, and energy between vegetation
and the atmosphere [1,2]. The LAI is defined as one-half of the total green leaf area per
unit of horizontal ground surface area [3]. In recent years, much research has applied
coarse-resolution LAI (250 m–1000 m) to comprehend global vegetation change [4,5] and
ecosystem productivity [6,7]. However, the accurate estimation of LAI at coarse resolution
using remote sensing methods has been challenging due to the scaling effect [8].

The scaling effect is caused by model nonlinearity and surface heterogeneity. Most
retrieval functions are nonlinear and built at a local scale (fine resolution) [9,10], which
only interprets the surface heterogeneity at the corresponding scale [11,12]. When these
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functions are applied to a coarse spatial resolution, the scaling effect causes spatial scaling
bias of LAI estimation [13,14]. Yin et al. reported that the scaling bias in LAI inversion can
reach up to 26% [15]. Hence, scaling bias is an important consideration for the LAI estimated
from coarse-resolution remote sensing data, especially on a heterogeneous surface [16–18].

To deal with this task, previous studies have proposed several methods. On the
one hand, statistical regression relationships have been developed to calculate the spatial
scaling bias [19,20]. For example, Zhao and Fan established a statistical regression rela-
tionship between a spatial heterogeneity coefficient and the scaling bias of LAI. However,
empirical methods require external factors that limit their applicability. On the other hand,
a series of universal methods have been provided [8,21–26]. For instance, the computa-
tional geometry method (CGM) sets the upper and lower envelopes of the retrieval model
to achieve accurate parameter estimation at coarse resolutions [21]. The advantage of
this method is that it is not affected by the continuity of the remote sensing model and
does not require high-resolution remote sensing data. However, the true distribution of
parameters is not considered. Chen et al. addressed the limitations of the CGM algorithm
by introducing variable weights instead of fixed weights [26]. Nevertheless, the inherent
flaw of the CGM method—its inability to express the scaling bias using a formula—has
yet to be resolved. Similarly, machine learning models estimated parameters at coarse
resolution based on the relationships built at a fine resolution, and the accuracy of the
inversion parameter was controlled by the reference parameters at a coarse resolution [27].
Such methods are not suitable for analyzing scaling bias because a relevant formula cannot
be established. The Taylor series expansion method (TSEM) is another universal method in
which each term has a physical meaning [22]. This method is helpful for analyzing scaling
bias. However, the arithmetic mean of the input variable for the LAI retrieval models is
used to derive the second derivative term in the TSEM, which also ignores the true distribu-
tion of parameters [10,28]. This method also requires synchronous fine-resolution remote
sensing data. Later, Garrigues et al. extended the TSEM algorithm to a multivariate transfer
function but still left the problem unresolved [8]. Recently, several upscaling models are
proposed based on fractal theory [23–25]. A number of studies have attempted to explain
the fractal dimension [29], but no consensus has been reached. In summation, the TSEM
algorithm is more suitable for analyzing and correcting the scaling bias, but the algorithm
itself is limited by second-order stationarity and fine-resolution data.

TSEM is closely related to the model type [30]. In mathematics, scaling bias is referred
to as negative Holder’s defect. When the model form is a negative logarithmic function,
Holder’s defect can be accurately expressed by utilizing the arithmetic and geometric means
of the input variables [31]. Hence, the negative logarithmic functions can be employed
to develop a method for calculating and correcting the scaling bias. Two commonly used
LAI inversion models with negative logarithmic form, the Beer–Lambert law [32] and a
semi-empirical transfer function that establishes the relationship between the normalized
difference vegetation index (NDVI) to LAI [33], are employed in this research. Notably, the
equation for NDVI related to reflectance is nonlinear, leading to the scaling bias of NDVI
on heterogeneous surfaces [8,34]. This bias not only affects the scaling bias calculation but
also hinders the analysis of the scaling bias and the comprehensive understanding of the
scaling effect.

In this study, an Arithmetic Mean and Geometric Mean (AM–GM) algorithm is pro-
posed to deeply analyze and correct the LAI scaling bias. The algorithm aims to solve the
inherent flaws of the TSEM. The practicality of this algorithm is enhanced by establishing a
linear relationship between two specific resolutions, eliminating the need for fine-resolution
remote sensing data.

2. Materials

In this study, data are obtained from both simulated scenes and in situ sites to validate
the algorithm and analyze the scaling bias of LAI. The LargE-Scale remote sensing data
and image Simulation framework (LESS) model were employed to simulate heterogeneous
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3D scenes [35]. The in situ data were downloaded from the VAlidation of Land European
Remote-sensing Instruments (VALERI) project (http://w3.avignon.inra.fr/valeri/,
accessed on 15 March 2023). Two simulated scenes and three in situ sites are used to analyze
and validate the proposed algorithm, and the land cover type includes cropland and forest.
Four additional cropland sites are selected to simplify the AM–GM algorithm. At simulated
scenes, the data are simulated at 1 m and then aggregated to 5 m, 9 m, 15 m, and 45 m.
At the VALERI sites, the data are obtained at 20 m spatial resolution and aggregated to
200 m, 500 m, 1000 m, 1500 m, and 3000 m.

2.1. Simulated Data

Two 3D forest scenes are constructed using the LESS model in this paper, as shown
in Figure 1. Both scenes have an area of 45 m × 45 m. The first scene consists of
581 trees. These trees are derived from 42 single-tree models, simulated by 6 different
canopy shapes and 7 levels of leaf area index. Each tree’s position is determined based on
field measurements. The LAI of the whole scene is 2.67. For more detailed information on
the scene construction, please refer to Scene S4, which was constructed by Xu et al. [36].
Additionally, a virtual forest scene with stronger surface heterogeneity is constructed from
the same single-tree models and different numbers of trees. The LAI of this virtual scene
is 2.14. The spectral information of leaves and soil has been measured on the ground by
Xu et al. [36]. The data simulations are performed with an observation zenith angle of 0◦.
Detailed parameter settings can be found in Table 1.

Table 1. Parameter settings of the LESS model.

Sensor Parameter Value Optical Database Parameter Value

Type Orthographic Larch Branch Ground Measurements
Width (pixels) 45 Brown Loam Ground Measurements
Height (pixels) 45 Larch Leaf Ground Measurements

Samples (/pixel) 64 Terrain Parameter Value

Spectral Bands 482:60, 561.5:57, 654.5:37, 865:28 Type Plane
Image Format Spectrum XSize (m) 45
NoData Value −1 YSize (m) 45
Width Extent (m) 45 BRDF Type Lambertian
Height Extent (m) 45 Optical Property Brown Loam
Four Components Product Tick

Observation Parameter Value Objects Parameter Value

View Zenith (◦) 0 Single-Tree Models of Larch Constructed by Xu et al. [36]
View Azimuth (◦) 180
Sensor Height (m) 30

Illumination and Atmosphere Parameter Value Advanced Parameter Value

Sun Zenith (◦) 30 Minimum Iterations 5
Sun Azimuth (◦) 90 Number of Cores 20
Sky-Type SKY_TO_TOTAL
Sky-Percentage 0, 0

Over the simulated scenes, the directional gap probabilities are calculated from
four component products, which are simulated using the LESS model:

p(θ) = pis + pss (1)

where pis and pss represent the proportions of illuminated soil and shaded soil within
each pixel, respectively. At a spatial resolution of 1 m, the directional gap probabilities are
simulated. The results are then aggregated to coarser spatial resolutions of 5 m, 9 m, 15 m,
and 45 m.

http://w3.avignon.inra.fr/valeri/
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Figure 1. Standard false-color images of two forest scenes simulated using the LESS model: (a) Genhe
scene; (b) virtual scene.

2.2. Site Data

Seven VALERI sites are used and the data of these sites are downloaded from the
VALERI website (Figure 2). To validate the algorithm and analyze the scaling bias,
three sites are used. In particular, the vineyard dominates the Plan-de-Dieu site; Quercus
ilex dominates the Puéchabon site; and the Sud-Ouest site includes nine crops, including
corn, soya, sunflower, harvest wheat, etc. To simplify the AM–GM algorithm, four addi-
tional cropland sites covered by a variety of crops are chosen, including Les Alpilles, Barrax,
Demmin, and Haouz. Table 2 provides detailed information about these sites, including
land cover, image acquisition time, site size, and location.
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Figure 2. Standard false-color images of the VALERI sites: (a) Plan-de-Dieu; (b) Puéchabon;
(c) Sud-Ouest; (d) Les Alpilles; (e) Barrax; (f) Demmin; (g) Haouz.

Table 2. Detailed information of the VALERI sites.

Site Name Land Cover Day of Year Image Year Spatial Resolution Site Size Location

Plan-de-Dieu Crops 181 2004 20 m 3 km × 3 km 44◦11′N, 4◦56′E
Puéchabon Mediterranean Forests 163 2001 20 m 3 km × 3 km 43◦43′N, 3◦38′E
Sud-Ouest Nine Crops 201 2002 20 m 3 km × 3 km 43◦30′N, 1◦14′E

Les Alpilles Crops 204 2002 20 m 3 km × 3 km 43◦48′N, 4◦42′W
Barrax Crops 195 2003 20 m 5 km × 3 km 39◦40′N, 2◦60′W

Demmin Crops 164 2004 20 m 5 km × 3 km 53◦53′N, 13◦12′E
Haouz Crops 73 2003 20 m 3 km × 3 km 31◦39′N, 7◦36′W
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Near-infrared (ρNIR) and red (ρR) reflectances are obtained from SPOT images, which
have a spatial resolution of 20 m. These data are aggregated to coarser resolutions
(200 m, 500 m, 1000 m, 1500 m, and 3000 m), then NDVI and directional gap proba-
bility are computed at those spatial resolutions. The in situ LAI data are also downloaded
to build the retrieval model at 20 m spatial resolution.

3. Methods

In this study, a novel algorithm called AM–GM is proposed to more accurately evalu-
ate, analyze, and correct the scaling bias of LAI. This algorithm utilizes the advantage of
negative logarithmic functions to avoid the second-order stationarity hypothesis, and this
algorithm considers the scaling bias of NDVI. Moreover, the practicality of this algorithm
is improved by eliminating the requirement for fine-resolution remote sensing data. In
particular, the relationship between the LAI scaling bias and the arithmetic and geometric
means of directional gap probability is investigated based on negative logarithmic func-
tions. This relationship is exploited to derive the LAI scaling bias. In addition, the AM–GM
algorithm uses Taylor’s theorem [22,31] to indirectly calculate the accurate values of the
second derivative term, obtaining conditions for in-depth analysis of the model nonlinearity.
Lastly, statistical relationships are established between two quantities related to directional
gap probability between two specific scales for cropland. The flowchart depicting this
process is shown in Figure 3.
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3.1. Mathematical Theory of the AM–GM Algorithm
3.1.1. Holder’s Defect and AM–GM Inequality

In the field of mathematics, suppose that X = {x1, x2, . . . , xN} is a random variable
and model f is twice continuously differentiable. The value estimated by the expected
value of X based on the function f is denoted by f (E(X)), and the expected value of the
function is denoted by E( f (X)). Holder’s defect (∆) is used to express the discrepancy
between the two terms [31]:
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∆ = E( f (X))− f (E(X)) =
1
2

µVar(X) (2)

where Var(X) is the variance of X, and there exists a real value µ for the above formula.
When f is a negative logarithmic function, the AM–GM inequality associated with random
variable X can be given an explicit formula following Holder’s defect [31].

− ln( xA
xG
) = − ln(xA)− (− ln(xG)) = − ln

(
1
N

N
∑

k=1
xk

)
−
(
− ln

(
N

√
N
∏

k=1
xk

))
= − ln

(
1
N

N
∑

k=1
xk

)
− 1

N

N
∑

k=1
(− ln(xk)) = f (E(X))− E( f (X)) = −∆

(3)

where xA is the arithmetic mean of X; xG is the geometric mean of X; xk ∈ X; N is a natural
number; k is equal to 1 to N. Accordingly, Holder’s defect can be expressed by the AM–GM
inequality, as follows:

∆ = ln
(

xA
xG

)
(4)

3.1.2. Calculation of LAI Scaling Bias

The LAI retrieval model f is constructed at fine spatial resolution. Applying f to
fine-resolution data, then aggregating the resulting data to coarse resolution, yields the
exact LAI (LAIexa). The LAIexa is the reference LAI at coarse resolution because leaf area
follows the law of conservation of matter [10]. The approximate LAI (LAIapp) is obtained
by applying model f to coarse-resolution data, which are aggregated from fine-resolution
data. The difference between LAIapp and LAIexa is the spatial scaling bias [23], as shown
in Figure 4.

In the field of remote sensing, according to Equations (2) and (4), the real scaling bias
of the inverted parameter can be expressed as follows:

biasReal = LAIapp − LAIexa = f (E(X))− E( f (X)) = −∆ = − ln
(

xA
xG

)
(5)

Next, two LAI retrieval models with negative logarithmic form are used to derive the
scaling bias of LAI.

The Beer–Lambert law is a negative logarithmic function [37,38]:

LAI = − cos θ

ΩG(θ)
ln(p(θ)) (6)

where G(θ) represents the leaf projection coefficient on a plane perpendicular to the ob-
servation direction θ. θ is set to 30 degrees in Table 1. Assuming that foliage angles are
distributed spherically, G(θ) is set to 0.5 [39]. Ω is the foliage clumping index, which is set
as a constant according to the vegetation type [40,41]. Here, fine-resolution directional gap
probability p(θ) is measured based on geometric features, and there is no scaling effect [42].
According to Equations (5) and (6), the scaling bias of LAI is:

biasAM−GM = − cos θ

ΩG(θ)
ln
(

A[p(θ)]
G[p(θ)]

)
(7)

where G[p(θ)] and A[p(θ)] are the geometric and arithmetic means of fine resolution p(θ)
within a coarse-resolution pixel, respectively.

The NDVI-LAI semi-empirical transfer function also has a negative logarithmic
form [43],

LAI = − 1
KLAI

ln
(

NDVI − NDVImax

NDVImin − NDVImax

)
(8)
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where NDVImax is the asymptotic value of NDVI, which is obtained when LAI is greater
than 8; NDVImin is the NDVI value for bare soil; KLAI represents the extinction coefficient,
which relates to vegetation spatial structure and vegetation canopy structure [33,44]. Here,
the directional gap probability is obtained using Equation (9) [41]:

p(ρNIR, ρR) =

ρNIR − ρR
ρNIR + ρR

− NDVImax

NDVImin − NDVImax
(9)

where ρNIR and ρR represent near-infrared and red reflectances, respectively. To avoid
introducing the scaling bias of NDVI into the directional gap probability calculation at
coarse resolution, we use the aggregated reflectance rather than the aggregated NDVI.
According to Equations (5) and (8), the scaling bias of LAI is:

biasρ_AM−GM = − 1
KLAI

ln

(
p
(

A
[
ρNIR

]
, A[ρR]

)
G
[
p
(
ρNIR, ρR

)] )
(10)

where G
[
p
(
ρNIR, ρR

)]
is the geometric mean of fine resolution p

(
ρNIR, ρR

)
within a coarse-

resolution pixel, and p
(

A
[
ρNIR

]
, A[ρR]

)
is the directional gap probability at coarse resolu-

tion estimated based on the arithmetic mean of the fine-resolution reflectance.
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Figure 4. Schematic diagram of the scaling bias of LAI at coarse resolution in quantitative remote
sensing. The LAI retrieval model f is built at fine resolution. DATAn represents the fine-resolution
remote sensing data, and their corresponding LAI values at fine resolution (LAIn ) are retrieved
using f . LAIexa represents the exact LAI at coarse resolution; this is acquired by averaging LAIn.
DATAm represents the coarse-resolution remote sensing data, which is obtained by averaging DATAn.
LAIapp represents the approximate LAI at coarse resolution, which is obtained by applying model f
to data DATAm. biasreal represents the LAI scaling bias of a coarse resolution pixel, indicated by the
difference between LAIapp and LAIexa.

3.2. Calculate Factor µ

The second derivative term µ absorbs the impact of all higher-order moments asso-
ciated with X in Equation (2). p(θ) is measured according to the canopy geometry [45],
the value at coarse resolution is equal to the arithmetic mean of fine-resolution directional
gap probability p(θ). The value of µ can be derived directly from Equation (2). It can also
be obtained using the second derivative. Therefore, the µ value based on Equation (6) is
shown as follows:

µAM−GM = −2biasAM−GM
Var(X)

=
1

ΩG(θ)
cos θ × ck

2
(11)

where ck is related to p(θ).
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When the directional gap probability calculation involves a nonlinear model, such as
Equation (8), the value of p

(
A
[
ρNIR

]
, A[ρR]

)
is not equal to the value of A

[
p
(
ρNIR, ρR

)]
(the arithmetic mean of fine-resolution p

(
ρNIR, ρR

)
). The first-order derivative term cannot

be eliminated. Thus, Equation (2) is modified as follows:

∆ =
1
2

µρ_AM−GMVar(X) + f ′
(

xM
) N

∑
k=1

(
xk − xM)

N
(12)

where xk is the kth value of p
(
ρNIR, ρR

)
within a coarse-resolution pixel; xM represents the

directional gap probability at coarse resolution, i.e., p
(

A
[
ρNIR

]
, A[ρR]

)
; µρ_AM−GM is the

second derivative term and Var(X) is the mean square error. According to Equations (10)
and (12), the value of µ based on Equation (8) can be expressed as follows:

µρ_AM−GM = −

2

biasρ_AM−GM + f ′
(
xM) N

∑
K=1

(xk−xM)

N


Var(X)

=
1

kLAI × ck
2 (13)

where ck is related to p
(
ρNIR, ρR

)
.

3.3. Simplify the AM–GM Algorithm

The application of the AM–GM algorithm is limited by its use of fine-resolution remote
sensing data. In this section, this algorithm was simplified. According to Equation (A4) in
Appendix A and Equation (10), the following formula can be derived:

biasρ_AM−GM = LAIapp ×
(

1−
ln
(
G
[
p
(
ρNIR, ρR

)])
ln
(

p
(

A
[
ρNIR

]
, A
[
ρR
]))) (14)

where ln
(

p
(

A
[
ρNIR

]
, A[ρR]

))
represents the logarithm of the directional gap probabilities

at coarse resolution and ln
(
G
[
p
(
ρNIR, ρR

)])
represents the logarithm of the geometric

mean of fine resolution p
(
ρNIR, ρR

)
within a coarse-resolution pixel.

A linear relationship between ln
(

p
(

A
[
ρNIR

]
, A[ρR]

))
and ln

(
G
[
p
(
ρNIR, ρR

)])
was

found between two specific resolutions; the relationship will be described in further detail
in the Results section. Equation (14) can be simplified according to the linear relationship,
as follows:

biasρ_AM−GM = LAIapp ×
(

b
ln
(

p
(

A
[
ρNIR

]
, A
[
ρR
])) − a

)
(15)

where parameters a and b are constants between two specific resolutions. According to
Equation (15), the scaling bias of LAI can be calculated based on the coarse resolution data.

4. Results
4.1. Validation Results of the AM–GM Algorithm

Firstly, this study validates the correction effectiveness of the AM–GM algorithm when
the Beer–Lambert law is the LAI retrieval model. The computation of LAI scaling bias
based on the Beer–Lambert law is derived in Equation (7). Figure 5 and Table 3 show the
magnitude of the scaling bias before and after correction. Before the correction, the retrieval
LAIapp at coarse resolution exhibits significant negative scaling biases (bias = −0.67 and
bias = −0.62). After correction, the bias and RMSE values between LAIcor and LAIexa are
both reduced to almost 0. Furthermore, the spatial distribution of the corrected values
LAIcor coincides with LAIexa. These results indicate that the AM–GM algorithm is effective
when the Beer–Lambert law is the retrieval model.

We also assess the correction effectiveness when the NDVI-LAI semi-empirical trans-
fer function is the LAI retrieval model. The equation for the calculation of LAI scaling
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bias is shown in Equation (10). Figure 6 and Table 3 show that the scaling biases are
small at the Plan-de-Dieu site, with RMSE = 0.05 and bias = −0.03; moderate at the
Puéchabon site, with RMSE= 0.19 and bias = −0.14; and high at the Sud-Ouest site, with
RMSE = 0.25 and bias =−0.22. After correction, the values of RMSE and bias between LAIcor
and LAIexa are also deduced to almost 0, and all spots are clustered on the 1:1 line. Mean-
while, the spatial distributions of LAIcor coincide with LAIexa. These results indicate that the
AM–GM algorithm is effective when the NDVI-LAI semi-empirical transfer function is the
retrieval model.
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Figure 5. Numerical and spatial correction effectiveness of the AM–GM algorithm over two simulated
scenes. The exact LAI (LAIexa, m2/m2) at 9 m spatial resolution is obtained from directional gap
probability at 1 m spatial resolution and then aggregated to 9 m spatial resolution; the approximated
LAI at 9 m spatial resolution (LAIapp, m2/m2) is evaluated from the aggregated directional gap
probability at 9 m spatial resolution. The corrected LAIapp (LAIcor, m2/m2) are achieved using the
AM–GM algorithm at 9 m spatial resolution. The errors between LAIapp and LAIexa over (a) the
Genhe scene and (c) the virtual scene; the errors between LAIcor and LAIexa over (b) the Genhe scene
and (d) the virtual scene. (a1–d1) spatial distributions of LAIexa, LAIapp, LAIcor, and the difference
between LAIexa and LAIcor over the Genhe scene; (a2–d2) spatial distributions of LAIexa, LAIapp,
LAIcor, and the difference between LAIexa and LAIcor over the virtual scene.
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Table 3. LAI scaling bias before and after correction at 500 m spatial resolution.

Site Name
Before Correction After Correction

RMSE Bias RMSE Bias

Genhe 0.71 −0.67 0.00 0.00
Virtual 0.74 −0.62 0.00 0.00

Plan-de-Dieu 0.05 −0.03 0.00 0.00
Puéchabon 0.19 −0.14 0.00 0.00
Sud-Ouest 0.25 −0.22 0.00 0.00

4.2. Analysis of LAI Scaling Bias

Two figures are used to analyze the LAI scaling bias based on three aspects: spatial
resolution, model nonlinearity, and surface heterogeneity. In Figure 7, we calculate the
average of LAI scaling bias for each scene and site using the AM–GM algorithm at multiple
scales. In Figure 8, the values of µ and Var(X) are calculated for each coarse pixel based on
Equations (11) and (13).

• Spatial resolution.

When the spatial resolution for LAI estimation becomes coarser, the scaling bias of
LAI increases. The scaling bias of LAI between two close resolutions may also be large.
In Figure 7, as the spatial resolution moves from 1 to 45, the value of LAI scaling bias
decreases and the LAI scaling bias increases. For the Beer–Lambert law, the scaling bias
of LAIapp at 5 m spatial resolution relative to LAIexa estimated at 1 m spatial resolution is
large, as shown in Figure 7a.
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Figure 6. Numerical and spatial correction effectiveness of the AM–GM algorithm over three VALERI
sites. The exact LAI (LAIexa, m2/m2) at 500 m spatial resolution is obtained from reflectance at
20 m spatial resolution and then aggregated to 500 m spatial resolution. The approximate LAI
(LAIapp, m2/m2) at 500 m spatial resolution is estimated from the aggregated reflectance at 500 m
spatial resolution. The corrected LAIapp (LAIcor, m2/m2) is achieved using the AM–GM algorithm
at 500 m spatial resolution. The errors between LAIapp and LAIexa over (a) the Plan-de-Dieu site,
(c) the Puéchabon site, and (e) the Sud-Ouest site; the errors between LAIcor and LAIexa over (b) the
Plan-de-Dieu site, (d) the Puéchabon site, and (f) the Sud-Ouest site. (a1–d1) spatial distributions
of LAIexa, LAIapp, LAIcor, and the difference between LAIexa and LAIcor over the Plan-de-Dieu site;
(a2–d2) spatial distributions of LAIexa, LAIapp, LAIcor, and the difference between LAIexa and LAIcor

over the Puéchabon site; (a3–d3) spatial distributions of LAIexa, LAIapp, LAIcor, and the difference
between LAIexa and LAIcor over the Sud-Ouest site.
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When the LAI value increases, the degree of model nonlinearity also rises. This is
because the model nonlinearity is related to 1/ck

2 in Equations (11) and (13), and the value
of ck is related to directional gap probability. When the value of ck for a coarse pixel is small,
the directional gap probability of this pixel is also small, and the LAI value is large [46].
For example, in Figure 6, the exact LAI values for row 2 to 4 in the fourth column of the
Sud-Ouest site are relatively large. Correspondingly, in Figure 8, the values of µρ_AM−GM
calculated by the AM–GM algorithm for these pixels are also relatively high.

• Surface heterogeneity.

When vegetation in a coarse pixel has different growing seasons, the degree of surface
heterogeneity is high. The Sud-Ouest site includes nine crops with various growing seasons,
while both the Plan-de-Dieu and Puéchabon sites have a relatively singular growing season.
Therefore, Figure 8 shows that the Var(X) values of the Sud-Ouest site are larger than those
of the other two sites.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

column of the Sud-Ouest site are relatively large. Correspondingly, in Figure 8, the values 
of _ AM GMρμ −  calculated by the AM–GM algorithm for these pixels are also relatively high. 

• Surface heterogeneity. 
When vegetation in a coarse pixel has different growing seasons, the degree of sur-

face heterogeneity is high. The Sud-Ouest site includes nine crops with various growing 
seasons, while both the Plan-de-Dieu and Puéchabon sites have a relatively singular grow-
ing season. Therefore, Figure 8 shows that the ( )Var X  values of the Sud-Ouest site are 
larger than those of the other two sites. 

 

 

Figure 7. Average of LAI scaling bias calculated using the AM–GM algorithm at multiple scales for 
each scene and site: (a) based on the Beer–Lambert Law at two LESS simulated scenes, and (b) based 
on the NDVI-LAI semi-empirical transfer function at three VALERI sites. 

 
Figure 8. Spatial distribution maps of the LAI scaling bias and two factors (Var(X) and µρ_AM−GM)
computed by the AM–GM algorithm based on the NDVI-LAI semi-empirical transfer function at
500 m resolution over three VALERI sites. (a1–a3) the local variance of directional gap probability
at the Plan-de-Dieu site, the Puéchabon site, and the Sud-Ouest site, respectively. (b1–b3) the
second derivative µρ_AM−GM absorbs the impact of all higher-order moments at the Plan-de-Dieu
site, the Puéchabon site, and the Sud-Ouest site, respectively. (c1–c3) the scaling bias of LAI at the
Plan-de-Dieu site, the Puéchabon site, and the Sud-Ouest site, respectively.

4.3. Scaling Bias Calculated by the Simplified Algorithm

Although the AM–GM algorithm can correct the LAI scaling bias more accurately, it
requires fine-resolution remote sensing data, which limits the applicability of this algorithm.
The simplified AM–GM algorithm does not use fine-resolution data.

Figure 9 shows that linear relationships between the two quantities ln
(

p
(

A
[
ρNIR

]
, A[ρR]

))
and ln

(
G
[
p
(
ρNIR, ρR

)])
are observed at four croplands between the fine and multiple

resolutions (200 m, 500 m, 1000 m, and 1500 m), respectively. Due to the limited sample
size, this relationship is not built at the spatial resolution of 3 km. The parameters a and b
for simplified AM–GM algorithm in Equation (15) are shown in Table 4.
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Barrax, Demmin, and Haouz cropland sites.

Table 4. The parameters a and b at multiple scales for the simplified AM–GM algorithm.

Parameters
Spatial Resolution

200 m 500 m 1000 m 1500 m

a 0.052 0.089 0.056 0.043
b 0.011 0.022 0.063 0.081

The simplified AM–GM algorithm corrected the scaling bias of LAI at multiple scales
over the Sud-Ouest site. Figure 10 shows that after correction, the values of LAIcor are close
to the values of LAIexa. The absolute values of bias at the Sud-Ouest site decrease from
0.10, 0.22, 0.29, and 0.31 to 0.04, 0.01, 0.04, and 0.05 at 200 m, 500 m, 1000 m, and 1500 m,
respectively. Moreover, Figure 11 shows that the spatial distributions of LAIcor are well
corrected, particularly at spatial resolutions of 1000 m and 1500 m. Therefore, the simplified
AM–GM algorithm, which does not use fine-resolution images, is feasible.
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Figure 10. Correction of LAI scaling bias using the simplified AM–GM algorithm at multiple reso-
lutions (200 m, 500 m, 1000 m, and 1500 m) over the Sud-Ouest site. Panels (a–d) show the errors
between LAIapp and LAIexa before correction, while panels (e–h) show the errors after correction.
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Figure 11. Spatial distributions of the exact LAI (LAIexa), approximate LAI (LAIapp ), corrected
LAI (LAIcor ), and the differences between LAIcor and LAIexa at multiple resolutions (200 m,
500 m, 1000 m, and 1500 m) over the Sud-Ouest site. (a1–d1) represent LAIexa, LAIapp, LAIcor,
and the difference between LAIcor and LAIexa at 200 m spatial resolution, respectively; (a2–d2) repre-
sent LAIexa, LAIapp, LAIcor, and the difference between LAIcor and LAIexa at 500 m spatial resolution,
respectively; (a3–d3) represent LAIexa, LAIapp, LAIcor, and the difference between LAIcor and LAIexa

at 1000 m spatial resolution, respectively; (a4–d4) represent LAIexa, LAIapp, LAIcor, and difference
between LAIcor and LAIexa at 1500 m spatial resolution, respectively.

5. Discussion
5.1. Algorithm Comparison

Prior work has documented the flaws in the TSEM algorithm resulting from the
second-order stationary hypothesis, which assumes that the mean of a random function
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is a constant [30]. The AM–GM algorithm considered the higher-order moments, i.e., the
skewness that measures the asymmetry, and the kurtosis that measures the heaviness of
the tails of distribution without discarding [31]. We compared the values of µ calculated
using the AM–GM and TSEM algorithms in Table 5. The results show bias in µ up to 7.16.
However, the numerical discrepancies of the input variable used for µ calculation are
less than 0.02. It is inferred that the µ value is sensitive to the input variable. On the
heterogeneous surfaces, the skewness and kurtosis of the random variable may be large,
and the AM–GM algorithm may exhibit a better performance for the computation of µ and
LAI scaling bias.

Table 5. Model nonlinearity factor (µ) and input variable for the AM–GM and TSEM algorithms at
500 m resolution.

Site Name
µ Input Variable

RMSE Bias RMSE Bias

Plan-de-Dieu 5.56 −3.99 0.01 −0.00
Puéchabon 5.48 −4.58 0.02 −0.01
Sud-Ouest 13.43 7.16 0.02 0.01

In the improved CGM, the relative errors decreased from 3.35%, 11.01%, and 19.62%
to an average of 0.28%, 1.48%, and 5.16%, respectively, at kilometer scales [26]. Jiang et al.
indicated that the LAI scaling bias decreased to around 0.27 by the TSEM, Wavelet-Fractal
(WF), and Fractal theory (TT) [30]. We determine that the AM–GM algorithm decreases
the LAI scaling bias to almost zero. The simplified AM–GM algorithm decreases relative
error from 16.07% to 4.3% at 1 km resolution. The LAI scaling bias decreases from 0.10,
0.22, 0.29, and 0.31 to 0.04, 0.01, 0.04, and 0.05 at 200 m, 500 m, 1000 m, and 1500 m
resolutions, respectively. On the heterogeneous surfaces, the correction effect is comparable
or even better. The simplified algorithm, TSEM, WF, or TT, does not perform well at
homogeneous sites.

5.2. The Influence of NDVI Aggregation on the AM–GM Algorithm

To minimize errors of LAI estimation, care should be taken in relation to the scale
issue of NDVI. In the past, studies usually used the vegetation index (VI) to calculate the
scaling bias of LAI [30]. However, most of the equations for VIs are nonlinear, including the
NDVI equation related to reflectance. The scaling bias of NDVI complicates the evaluation
of the LAI scaling bias on the heterogeneous surface. Table 6 shows that the aggregated
NDVI results in inaccurate estimates of LAI scaling bias based on the AM–GM algorithm.
Additionally, the bias may be a positive or a negative value. In particular, several ap-
proaches have been provided to reconstruct time-series data for NDVI using both fine- and
coarse-resolution NDVI data. The discussion in 5.2 may indicate that if the time-series
data are used for LAI estimation, the scaling bias of NDVI should be considered during
data reconstruction.

Table 6. Influence of NDVI aggregation on the AM–GM algorithm at 500 m resolution.

Site Name
Considering the Scaling Bias of NDVI Ignoring the Scaling Bias of NDVI

RMSE Bias RMSE Bias

Plan-de-Dieu 0.00 0.00 0.18 0.01
Puéchabon 0.00 0.00 0.49 0.04
Sud-Ouest 0.00 0.00 0.61 −0.08

5.3. Limitation of the AM–GM Algorithm

This algorithm is only suitable for negative logarithmic functions because Holder’s
defect provides an accurate expression of the AM–GM inequality for negative logarithmic
functions [31]. This limitation restricts the application of the AM–GM algorithm. In
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addition, this study corrected LAI scaling bias due to the spatial heterogeneity of vegetation
growth but did not consider the model difference caused by vegetation types. In the future,
we plan to further improve this algorithm for use with mixed land surfaces.

6. Conclusions

We found that scaling bias in remote sensing can be accurately expressed by the
AM–GM inequality for negative logarithmic function. Based on this relationship, the
AM–GM algorithm was proposed. This algorithm avoids the influence of the second-order
stationary hypothesis. In addition, the aggregation of NDVI, which was ignored in previous
research about scaling bias correction, is considered in the AM–GM algorithm. In this study,
we validated the AM–GM algorithm at two simulated scenes and three sites, proving its
effectiveness in the correction and analysis of the LAI scaling bias at coarse resolution.

In addition, upon analyzing the second derivative term, we identified a positive
correlation between the LAI value and the degree of model nonlinearity. This means that as
the LAI value increases, the nonlinearity in the model also increases. It was also observed
that when the spatial resolution is coarse and the surface heterogeneity increases, there is a
greater scaling bias in the LAI estimation. Adjusting for the LAI scaling bias was critical in
the above three cases.

Furthermore, we identified a linear statistical relationship between two quantities
related to directional gap probability between two specific scales. The AM–GM algorithm
is simplified by the relationship. The results indicate that the simplified algorithm can
practically correct the scaling bias without the requirement of fine-resolution remote sensing
data. In conclusion, the correction effect of this algorithm is reliable. Future work includes
the improvement of this algorithm on mixed land surfaces.
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Appendix A

Based on the Beer–Lambert law, the LAIexa is estimated as follows:

LAIexa =

N
∑

k=1
− cos θ

ΩG(θ)
ln(pk(θ))

N
= − cos θ

ΩG(θ)
ln(G[pk(θ)]) (A1)

where N is the quantity of subpixels within a coarse resolution pixel; k is equal to 1 to N;
foliage projection function G(θ) is set to 0.5; and cos θ is set to 1. G

[
pk(θ)

]
is the geometric

mean of fine spatial resolution pk(θ) within a coarse resolution pixel. LAIapp is:

LAIapp = − cos θ

ΩG(θ)
ln


N
∑

k=1
pk(θ)

N

 = − cos θ

ΩG(θ)
ln(A[pk(θ)]) (A2)
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where A
[
pk(θ)

]
is the arithmetic mean of pk(θ) within a coarse resolution pixel. Based on

the semiempirical transfer function, LAIexa is:

LAIexa = −
1

KLAI
ln
(

G
[

p
(

ρk
NIR, ρk

R

)])
(A3)

where KLAI is the extinction coefficient, p
(

ρk
NIR, ρk

R

)
represents the kth directional gap

probability at fine spatial resolution, which is estimated by Equation (9) in the body of
the article. G

[
p
(

ρk
NIR, ρk

R

)]
is the geometric mean of p

(
ρk

NIR, ρk
R

)
within a coarse spatial

resolution. The approximate LAI is:

LAIapp = − 1
KLAI

ln
(

p
(

A
[
ρk

NIR

]
, A
[
ρk

R

]))
(A4)

where A
[
ρk

NIR

]
and A

[
ρk

R

]
are the arithmetic means of red reflectance ρk

R and near-infrared

reflectance ρk
NIR within a coarse resolution pixel, respectively. p

(
A
[
ρNIR

]
, A[ρR]

)
is the

directional gap probability of that coarse-resolution pixel.

Appendix B

When the scaling bias of LAI is calculated using the TSEM algorithm, an approximate
value directly obtains as follows:

biasTSEM ≈ −
1
2

f ′′ (xA)
N

∑
k=1

(xk − xA)

N

2

= −1
2

µTSEMVar(X)TSEM (A5)

where N is the quantity of subpixels within a coarse resolution pixel, xA is the arithmetic
mean of the input variable X = {x1, x2, . . . , xN}, and f ′′ (xA) is the second derivative at
xA, which is denoted by µTSEM. xk is the kth input variable in a coarse pixel. Var(X)TSEM
is the variance of X.
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