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Abstract: Evergreen broad-leaved forests with rich biodiversity play a key role in stabilizing global
vegetation productivity and maintaining land carbon sinks. However, quantitative and accurate
classification results for humid, evergreen, broad-leaved forests (HEBF) and semi-humid evergreen
broad-leaved forests (SEBF) with different vegetation productivity and significant differences in
species composition are lacking. Remote sensing technology brings the possibility of vegetation
subtype classification. Taking the mountainous evergreen broad-leaved forests distributed in Sichuan
Province as an example, this study proposed a hierarchy-based classifier combined with environ-
mental variables to quantitatively classify the two vegetation subtypes with different ecological
characteristics but similar image features. Additionally, we applied Sun–Canopy–Sensor and C
parameter(SCS + C) topographic correction to preprocess the images, effectively correcting the ra-
diometric distortion and enhancing the accuracy of vegetation classification. Finally, achieving an
overall accuracy (OA) of 87.91% and a Kappa coefficient of 0.76, which is higher than that of directly
using the classifier to classify the two vegetation subtypes. The study revealed the widespread
distribution of evergreen broad-leaved forests in Sichuan, with a clear boundary between the distri-
bution areas of HEBF and SEBF. The HEBF in the east is located in the basin and the low marginal
mountains; the SEBF is located in the southwest dry valley. The methods employed in this study
offer an effective approach to vegetation classification in mountainous areas. The findings can pro-
vide guidance for ecological engineering construction, ecological protection, and agricultural and
livestock development.

Keywords: vegetation classification; semi-humid evergreen broad-leaved; humid evergreen broad-leaved
forest; remote sensing; hierarchy-based classifier

1. Introduction

Evergreen broad-leaved forests are characteristic zonal vegetation in subtropical re-
gions, hosting abundant biodiversity and playing a critical role in stabilizing global vegeta-
tion productivity and maintaining land carbon sinks under more intense climate extremes
in the future [1,2]. In China, the evergreen broad-leaved forests have the widest distribution,
occupy the most extensive area, and display remarkable complexity and diversity [3,4], yet
they have been subject to drier soil and more frequent droughts over the recent decades [5,6].
The scientific and rational mapping and classification of evergreen broad-leaved forests
serve as a fundamental approach to comprehending the spatial distribution, structure
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characteristics, and species composition and evaluating their ecological functions and
ecosystem services.

In China, evergreen broad-leaved forests are classified into two vegetation subtypes,
namely, the semi-humid evergreen broad-leaved forests (SEBF) and the humid evergreen
broad-leaved forests (HEBF). The classification principle is established by differentiating
the ecological characteristics of the HEBF and SEBF vegetation, such as variations in group
species, which were identified through extensive field investigations [7–9]. This classifica-
tion is qualitative and preliminary, originating from labor-intensive, time-consuming, and
expensive manual field surveys conducted in the 1980s. Hence, this classification is qualita-
tive and preliminary, derived from labor-intensive, time-consuming, and expensive manual
field surveys conducted in the 1980s. Presently, numerous research stations established by
the International Biological Program (IBP) have provided indications of differences in vege-
tation productivity between HEBF and SEBF [10–14]. However, there is still no quantitative
classification of the HEBF and SEBF. Additionally, an accurate map of vegetation subtypes
serves as the foundation for estimating the ecological benefits of evergreen broad-leaved
forests and developing an optimal model for regional sustainable development.

Vegetation classification involves grouping different vegetation types based on their
similarity. Geographically, each unit of vegetation classification is characterized by scat-
tered and discontinuous distribution, often exhibiting a generalized and abstract [15,16].
Remote sensing technology offers robust support for vegetation distribution range assess-
ment, mapping, forestry resources survey, and monitoring. It provides comprehensive
coverage, a large amount of information, and a short update cycle [17–19]. The underlying
principle involves utilizing classifiers to differentiate various vegetation types based on
spectral, texture, and temporal features extracted from remote sensing images, thereby
generating thematic vegetation maps. However, global remote sensing dataset products,
such as GLC_FCS30 [20], MCD12Q1 [21], GCL2000v1.1, and UMD Land Cover [22], are
only classified into vegetation type (e.g., evergreen broad-leaved forest or evergreen conif-
erous forest), and there is no remote sensing dataset classified into vegetation subtypes
(the HEBF and SEBF). Optical remote sensing images with higher spatial resolution, such
as Landsat 8 and sentinel-2A data, show promise in detecting differences in vegetation
properties [23,24]. Different combinations and calculations of spectral bands can capture
distinct vegetation conditions, leading to the development of various vegetation indices, in-
cluding the normalized difference vegetation index (NDVI), the improved soil–atmosphere
corrected vegetation index (EVI), Tasseled Cap Transformation, etc. [25–27]. Furthermore,
Synthetic Aperture Radar (SAR) is extensively employed due to its all-weather, all-day, and
high-resolution remote sensing capabilities. Moreover, it is also proved that Sentinel-1 SAR
contains vegetation structure features, which are complementary to optical [28,29]. In addi-
tion, variations in environmental variables, such as climate, geomorphology, and moisture,
lead to subdividing the same vegetation type into different subtypes. These environmental
variables play a crucial role in shaping the spatial distribution of vegetation [7]. Therefore,
they serve as significant reference data for vegetation classification, enhancing the accuracy
of the classification process [30–32].

Meanwhile, machine learning algorithms have gained popularity in vegetation clas-
sification for extracting vegetation features. These algorithms, such as maximum likeli-
hood [33], K-nearest neighbor (KNN) [34], Support Vector Machine (SVM) [35,36], Random
Forest (RF) [37,38], Gradient Tree Boosting (GTB) [39], leverage the full potential of remote
sensing images. Moreover, traditional vegetation remote sensing classification studies
the impact of different classifiers on accuracy, typically involving the direct extraction of
spectral information from multiple vegetation types within a complex area. However,
native evergreen broad-leaved forests are often widely distributed in mountainous ar-
eas with diverse vegetation types, posing challenges in extracting individual vegetation
types and classifying their subtypes from complex backgrounds [40,41]. In recent years,
hierarchy-based classifiers have emerged as a solution to the classification and extraction
challenges posed by complex backgrounds. These classifiers can be organized into different
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layers based on distinct vegetation features, offering greater expressiveness and flexibility
compared to single classifiers [42–46]. Additionally, current research on mountain vegeta-
tion classification predominantly concentrates on small areas or specific mountains [46,47].
The challenge arises from the variation in spectral information caused by the topographic
undulations of the mountains, significantly impacting the accuracy of vegetation extraction
information. Topographic correction is commonly used to mitigate radiometric distortions
caused by topography in remote sensing images [48,49]. Existing methods involve trans-
forming the radiance or reflectance of all image elements to a reference plane (typically
horizontal) and then minimizing the variations in image values caused by topographic
relief. This approach aims to enhance the capture of spectral characteristics. The primary
objective of topographic correction is to derive the radiance values that the sensor would
have measured on a perfectly flat surface [50,51]. Numerous studies have highlighted
the crucial importance of topographic correction in improving land classification [52],
particularly in the extraction and classification of vegetation information in mountainous
areas. The topographic correction has become an indispensable preprocessing step for
vegetation classification in mountain remote sensing [50,53,54]. Topographic correction
models have been proposed, mainly classified into empirical, semi-empirical, and physical
models [46,49,51]. Among them, semi-empirical models are simple and have physical
meaning, and they require the introduction of the Digital Elevation Model (DEM) to assist
in the correction [55]. These methods assume a Lambertian surface and may neglect the
Bidirectional Reflectance Distribution Function (BRDF) effect or employ empirical param-
eters for topographic corrections [56]. The Sun–Canopy–Sensor and C parameter(SCS +
C) correction is a semi-empirical terrain correction model Sun–Canopy–Sensor correction
model that considers the upward growth characteristics of trees in forest cover scenes.
However, the topographic correction of remote sensing images is mainly performed for
single-view images [57]. With the advancement of remote sensing research and com-
mercialization, cloud computing is one of the most powerful big data technologies. The
Google Earth Engine (GEE https://developers.google.com/earth-engine/, accessed on
27 April 2023) cloud computing platform brings the possibility of topographic correction
for large areas [58,59]. Thus, it has a great potential to classify into HEBF and SEBF in
mountainous areas.

The evergreen broad-leaved forest in Sichuan province is the most important vegeta-
tion in horizontal zonality and the baseband vegetation in vertical zonality [60–62]. The
study aims to provide a quantitative and accurate classification of the HEBF and SEBF
subtypes in the mountainous evergreen broad-leaved forests of Sichuan Province, China.
A hierarchy-based classifier combined with environmental variables is proposed for the
classification, while SCS + C topographic correction is applied to improve classification
accuracy. The findings of this research enhance the understanding of the spatial distri-
bution, structure, and composition of HEBF and SEBF and provide valuable insights for
ecological engineering, ecological protection, and agricultural and livestock development
in mountainous areas.

2. Materials and Method
2.1. Study Area

Sichuan Province, with an area of 486,000 km2, is located in southwestern China
(longitude 97◦30′~110◦10′E, latitude 26◦02′~34◦20′N), in the transition zone between the
Tibetan Plateau and the middle-lower Yangtze River Plain (Figure 1). The eastern part
of Sichuan Province is occupied by the well-known Sichuan Basin, while the western
part consists of plateaus and high mountain valleys. The Sichuan Basin is surrounded
by mountains, including the Micang Mountains and Daba Mountains in the North, the
Wushan and Qiyao Mountains in the east and southeast, the Dalou Mountains in the
south, and the Longmen Mountains, Emei Mountains, and the large and small Liangshan
Mountains in the west and southwest. The elevation of these mountains generally ranges

https://developers.google.com/earth-engine/
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from 1500 to 2000 m, with Wushan and Daloushan being exceptions and mostly below
2000 m in elevation.
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Figure 1. The geographical overview of the study area. (a) Location of the study area in China.
(b) Digital elevation model map of the study area. (c) Global Land Cover with a Fine Classification
System at 30 m in 2020 of the study area [20].

Eastern and southwestern parts of Sichuan Province are home to extensive evergreen
broad-leaved forests characterized by diverse community species composition, including
endemic tree species in China. The alpine valleys of western Sichuan are dominated by
flourishing subalpine coniferous forests, primarily consisting of endemic tree species in
western China. In northwestern Sichuan, the plateaus are covered with scrub and meadows
specially adapted to alpine habitats (Figure 1). As mentioned in the 2000 publication
“Vegetation in Sichuan”: the group species of HEBF contains Phoebe zhennan, Polyspora
speciose, Castanopsis carlesii, Castanopsis eyrei, Castanopsis fargesii, Castanopsis platyacantha,
Schima sinensis, Schima argentea, Machilus microcarpa, Cyclobalanopsis glauca, and Lithocarpus
cleistocarpus. While the group species of SEBF contains Cyclobalanopsis gracilis, Castanopsis
delavayi, Lithocarpus cleistocarpus, and other Fagaceae family plants (the Latin texts of the
vegetation mentioned above are in the Flora of China classification system) [63].

2.2. Data Sources
2.2.1. Datasets

In this study, remote sensing images from three datasets were utilized (Table 1):
Landsat 8 Level 2 Collection 2 Tier 1, Sentinel-1 Ground Range Detected (GRD) scenes, and
NASADEM. Landsat 8 Level 2 Collection 2 Tier 1 is a reflectance product created by the
Land Surface Reflectance Code (LaSRC) and processed by a single-pass algorithm. It was
used as a vegetation classification image feature and to invert land surface temperature
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as an environmental variable. Sentinel-1 GRD scenes is an ortho-corrected product that
was processed using Sentinel-1 Toolbox to generate calibrated data and was used as a
vegetation classification image feature. NASADEM is a reprocessing of STRM data with
improved accuracy by incorporating auxiliary data from ASTER GDEM, ICESat GLAS,
and PRISM datasets. It provides terrain information through topographic correction and
environmental variables such as elevation, slope, and aspect. All these datasets were
preprocessed and made available on the Google Earth Engine (GEE https://developers.
google.com/, accessed on 27 April 2023) cloud platform.

Table 1. Detail information on datasets.

Datasets Spatial
Resolution

Temporal
Resolution

Landsat 8 30 m 16 days
Sentinel-1 10 m 12 days

NASADEM 30 m
Precipitation data Monthly

Sunshine duration data Monthly

Additionally, monthly meteorological data on precipitation and sunshine duration
obtained from 105 meteorological stations in Sichuan Province and surrounding regions
were acquired from the China Meteorological Science Data Sharing Service (http://cdc.
cma.gov.cn/, accessed on 27 April 2023). These data were incorporated as environmental
variables in the classification process to enhance the accuracy of classification results.

2.2.2. Field Data

A vegetation survey was conducted in Sichuan Province from 2018 to 2020 to ana-
lyze survey density and sample distribution, which is highly significance for vegetation
distribution mapping. The survey was conducted in three phases. In the first phase, the
forest was stratified using Google Earth imagery on the OvitalMap mobile application
(https://www.ovital.com/tg-guge/, accessed on 27 April 2023) and recording field-based
geolocations with OvitalMap. The second phase involved recording 10 m × 10 m sample
plots with central coordinates, community composition, and dominant species. The domi-
nant species present in each condition were identified and recorded as vegetation types.
The field data were organized in the third phase according to the recorded vegetation type,
and the sample plots were classified into four vegetation classification levels based on
the Flora of China classification system. The determination method involved identifying
whether the sample plot belongs to the evergreen forests, evergreen broad-leaved forests,
HEBF, or SEBF. As shown in Figure 2, 6866 sample plots were collected, representing almost
all vegetation types in Sichuan Province.

2.3. Data Preprocessing
2.3.1. Images Preprocessing

• Image compositing

There were significant differences between the HEBF and SEBF in the dry and wet
seasons. Using the Operational Land Imager (OLI) on-board Landsat 8, forty-three cover-
ages (comprising five Bands from Band 2 to Band 7) were selected in the study area. All
available remote sensing images from 1 May 2020 to 30 September 2020 were filtered for the
least cloudiness and highest quality and then composited to form the dry season images
of the entire study area. Similarly, all available remote sensing images from 1 November
2019 to 31 March 2020 were filtered for the least cloudiness and highest quality and then
composited to form the wet season images of the entire study area. The information on
filtered coverages information for the synthetic dry and wet seasons images is provided in
Appendix A (Tables A1 and A2). Subsequently, cloud removal was performed using the

https://developers.google.com/
https://developers.google.com/
http://cdc.cma.gov.cn/
http://cdc.cma.gov.cn/
https://www.ovital.com/tg-guge/
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“QA_PIXEL” band in Landsat SR provided by Google Earth Engine (GEE), and the images
were interpolated for the null values after cloud removal.
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Figure 2. The spatial distribution map of the samples. (a). Samples distribution of forest and
non-forest. (b). Samples distribution of evergreen forests and non-evergreen forest. (c). Samples dis-
tribution of evergreen broad-leaved forest and evergreen needleaved forest. (d). Samples distribution
of HEBF and SEBFThis method is standard for the Sichuan Wildlife Survey and Protection Project
(No.80303-KZZ031).

• Topographic correction

The topographic effects of medium and high-resolution remote sensing images can
significantly impede the application of remote sensing images for vegetation classification
in mountainous areas. Topographic correction can partially mitigate the impact of topog-
raphy, resulting in parameters that are more consistent with the reflection and radiation
characteristics of the natural ground surface. Soenen et al. [57] proposed the modified
Sun–Canopy–Sensor (SCS + C) topographic correction method, which combines the Sun–
Canopy–Sensor (SCS)) [64] with a semi-empirical moderator (C) to account for diffuse
radiation. The results of their study suggest that SCS + C should be considered for the
topographic correction of remote sensing imagery in forested terrain, as expressed by
Equation (1).

ρn = ρ
cos α cos θ + C

cos i + C
(1)

where ρn is the reflectance after topographic correction, ρ is the reflectance before topo-
graphic correction, α is the slope angle of the plane where the image element is located, θ is
the solar zenith angle, i is the solar incidence angle, and C is an empirical parameter.

The cosine of the solar incidence angle (i) in Equation (2):

cos i = cos a cos q + sin a sin q cos(j− b) (2)

where ϕ is the solar azimuth angle; β is the aspect angle of the terrain.
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The parameter C can be found from the linear relationship between the reflectance and
the cosine of the incident angle before topographic correction and the linear relationship in
Equation (3):

ρ = a + b cos i (3)

where a is the intercept of the linear Equation and b is the slope of the linear Equation. The
parameter C can be calculated by fitting the intercept a and slope b of Equation (3). The
parameter C can be calculated in Equation (3)

C =
a
b

(4)

Additionally, the NASADEM was used to provide α and β, θ and i are the header file
of Landsat 8 provided. The before and after topographic correction of the study area for
Landsat 8 is shown in Figure 3.
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Figure 3. The comparison of topographic corrections for Landsat 8 OLI. (a). Before and after topo-
graphic corrections in region (a). (b). Before and after topographic corrections in region (b). (c). Before
and after topographic corrections in region (c). (d). Before and after topographic corrections in
region (d). The Sentinel-1 Ground Range Detected (GRD) data provided by GEE does not perform
topographic correction due to artifacts on mountain slopes. In this study, we followed the method
proposed by Mullissa et al. [65] and performed speckle filtering and topographic correction on the
data in Google Earth Engine (Figure 4). The polarization was set as VV and VH, and the orbit was
in the descending direction. The time period covered 1 January 2020 to 13 January 2020, capturing
images during the dry season. The resulting image represents a snapshot of the dry season. To
maintain data consistency, the spatial resolution of the Sentinel-1 data, which was originally 10 m,
was resampled to 30 m when exporting the images using Google Earth Engine.
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2.3.2. Environmental Variables Preprocessing

The precipitation data from 1 November 2019 to 31 March 2020 were synthesized into
raster data with a spatial resolution of 30 m. The synthesized data included the average
precipitation (Wpre), minimum precipitation (Wpre-min), and maximum (Wpre-max)
precipitation during the dry season, as well as the average precipitation (Dpre), minimum
precipitation (Dpre-min), and maximum precipitation (Dpre-max) during the wet season
(from 1 May 2020 to 30 September 2020), all with a spatial resolution of 30 m. The differences
between these variables were denoted as WDpre-min, WDpre, and WDpre-min (as shown
in Appendix B Figure A1).

Similarly, the sunshine duration data from 1 November 2019 to 31 March 2020 were
synthesized into raster data with a spatial resolution of 30 m using Kriging interpolation
on ArcGIS into the average sunshine duration (Wssd), minimum sunshine duration (Wssd-
min), and maximum (Wssd-max) sunshine duration in the wet season. The sunshine
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duration data from 1 May 2020 to 30 September 2020 were synthesized into raster data with
a spatial resolution of 30 m using Kriging interpolation on ArcGIS into the average sunshine
duration (Dssd), minimum sunshine duration (Dssd-min), and maximum (Dssd-max)
sunshine duration in the dry season with a spatial resolution of 30 m. Their difference was
represented as WDssd-min, WDssd, and WDssd-min (as shown in Appendix B Figure A2).

Land surface temperature (LST) was obtained by inversion of the single window
algorithm (SMW) proposed by Sofia et al. [58]. Specifically, we applied an inversion process
to obtain three variables of LST: LST in the wet season (Wlst), LST in the dry season (Dlst),
and their difference (DWlst) (as shown in Appendix B Figure A3). The entire process was
implemented on the GEE cloud platform.

The NASADEM_HGT elevation data were used to calculate the slope and aspect for
the terrain factor (as shown in Appendix B Figure A4).

2.3.3. Sample Datasets

The evergreen broad-leaved forests, a zonal vegetation, are widely distributed in
Sichuan Province. To ensure uniform distribution of sample points, we visually interpreted
the sampling points to supplement the sample data according to the characteristics, result-
ing in two types of sample plots: (i) field sampling plots and (ii) plots interpreted from
images. We then established buffers around the recorded coordinates to balance the sample
area of each layer, with the final number of samples shown in Table 2.

Table 2. The final number of samples.

Number of Field
Sample Plot

Number of
Interpreted

Sample Plots

Number of
Sample Plots

Buffer
Distance

Sample Areas
(m2)

Forests 6866 0 6000 30 m 16,964,586

Non-forests 0 1000 1000 70 m 15,393,804

Evergreen forests 3049 0 3000 30 m 8,482,309

Non-evergreen forests 3817 0 3000 30 m 8,482,309

Evergreen broad-leaved forests 1389 111 1500 30 m 4,241,150

Evergreen non-broad-leaved
forests 1660 0 1500 30 m 4,241,150

HEBF 1046 0 1000 30 m 3,141,592

SEBF 343 157 500 45 m 3,179,250

2.4. Hierarchy-Based Classifier
2.4.1. The Hierarchical Structure

Following the principle of “from top to bottom, from simple to complex, and from
coarse to specific” [44], a hierarchical design was constructed, starting with the top layer
(Layer 1) of “All land cover,” which was split into two child nodes, “Forest” and “Non-
forest”. Next, the second layer focused on “Forest” while excluding “Non-forest”.The
parent node was split into two child nodes, “Evergreen forest” and “Non-evergreen forest”.
Similarly, the third layer focused on “Evergreen forest”, while excluding “Non-evergreen
forest”. The parent node was further split into two child nodes, “Evergreen broad-leaved
forest” and “Evergreen non-broad-leaved forest”. Finally, the fourth layer was created,
the “Evergreen broad-leaved forest” being split into “HEBF” and “SEBF”. As the layers
progressed from top to bottom, the splitting of the parent node to the next layer became
increasingly intricate, necessitating more input features. Hence, the hierarchical struc-
ture illustrated in Figure 5 was designed based on the separability analysis of different
vegetation types.
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2.4.2. Features Selection

• Feature selection for extracting evergreen broad-leaved forests

Each layer in the proposed hierarchical structure has distinct features to differentiate
specific vegetation properties. Figure 4 demonstrates that spectral information reflects
the magnitude of electromagnetic wave energy reflected by ground objects, providing an
intuitive representation of the characteristics. The top layer, represented by the parent node,
encompasses all land cover types and can be easily divided into forest and non-forest due
to their distinct spectral responses. We employed the normalized difference vegetation
index (NDVI), the improved soil-atmosphere corrected vegetation index (EVI), and the
forest discrimination index (FDI), which are commonly used to differentiate vegetation
from non-vegetation [25]. The mathematical Equations (5)–(7) are as follows:

FDI = Nir− (Red + Green) (5)

NDVI =
Nir− Red
Nir + Red

(6)

EVI = 2.5
Nir− Red

Nir + 6Red− 7.5Blue + 1
(7)

The second layer was targeted to extract evergreen forests, which retain foliage year-
round. Unlike non-evergreen forests, the NDVI and EVI values of evergreen forests show
less variation over the year. Since the seasonal rhythm of vegetation is difficult to capture
by single-date remote sensing images, the difference between NDVI and EVI between the
dry and wet seasons serves as an effective means to identify evergreen forests.

The third parent node, “Evergreen forest,” encompasses both broad-leaved and ever-
green coniferous forests. Spectrally, these forest types exhibit similarities, posing challenges
in their differentiation based on spectral features alone. However, their textural features
in remote sensing images display notable distinctions [63]. Haralik et al. [66,67] proposed
14 texture features using the Grey-Level Co-occurrence Matrix (GLCM). Mean, variance,
homogeneity, contrast, dissimilarity, entropy, second moment, and correlation are texture
features often used to automatically classify vegetation types. Principal Component Anal-
ysis (PCA) [68] is often employed to reduce the dimensionality of the 16 texture feature
information to three principal component information, namely PC1, PC2, and PC3, to miti-
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gate data redundancy. Hence, texture features were added to the third layer to distinguish
evergreen broad-leaved forests and evergreen non-broad-leaved forests on remote sensing
images, thus obtaining the evergreen broad-leaved forests map.

• Feature selection for classifying the HEBF and SEBF

Based on field surveys, we concluded the environment conditions and canopy appear-
ance differences between HEBF and SEBF. The HEBF predominantly occurs in the basin
and low-middle mountains on the edge, featuring a warm and humid climate, abundant
clouds and fog, high humidity, and less sunshine. The average annual temperature is
14–18 ◦C, and the precipitation is evenly distributed throughout the year, averaging annual
precipitation of 900–1000 mm. The average monthly temperature in the dry season is
5–8 ◦C, and the average monthly temperature in the wet season is 15–20 ◦C, without a
clear demarcation between wet and dry seasons. The HEBF exhibits a diverse community
composition with a variety of dominant species, and its understory is rich in plants and
characterized by heat and humidity-loving plants. The canopy of HEBF is deep green, and
the hierarchical structure is complex.

The climate of the southwestern mountainous region, where SEBF occurs, is charac-
terized by warm winters and cool summers, featuring well-defined wet and dry seasons,
limited cloud cover, and ample sunshine. The annual mean temperature ranges from 12
to 17 ◦C, and the annual precipitation ranges from 800 to 1050 mm, with 95% of the total
precipitation occurring during the wet season and the average temperature during the
dry season being 4–9.5 ◦C with less precipitation. The total sunshine hours per year is
approximately 2400 h, accounting for 55% of the total sunshine hours. The SEBF community
displays relatively low species diversity, with a sparse understory of trees, primarily com-
prising drought-tolerant grasses and seedlings. The community appears pale yellow-green
in color, with a simple stratification and distinct seasonal canopy.

In summary, the key to distinguishing HEBF and SEBF is the differences in canopy
appearance and structure during the dry season. Therefore, we employed vegetation
moisture indices, Tasseled Cap Transformation (TCT), and other spectral band changes
to characterize canopy information in the fourth layer to differentiate between the two
types of forests. The canopy moisture index integrates the total water column content
by combining the absorption characteristics of water in the near-infrared and short-wave
infrared ranges and the penetration of light in the near-infrared range. Several vegetation
indices were selected to represent the water content of the vegetation canopy, including
the Ratio Vegetation Index (RVI) [69], the Normalized Infrared Index (NDII), and the
Moisture Stress Index (MSI) [70]. The mathematical equations for these indices are given
by Equations (8)–(10). Tasseled Cap Transformation (TCT) [27] transforms vegetation and
soil information onto a plane in multi-dimensional space, where the temporal trajectory
of vegetation growth (spectral graph) and the soil brightness axis are perpendicular to
each other. TCT enables us to represent the “brightness”, “greenness”, and “yellowness”
of vegetation through TC1, TC2, and TC3, respectively. These indices reflect information
about soil and rock, vegetation, and water content in soil and vegetation. The change
matrix of the tasseled-cap transformation of the Landsat 8 OLI image was used to analyze
the differences between HEBF and SEBF.

The mathematical Equations (8)–(10) are as follows:

RVI =
Nir
Red

(8)

NDII =
Nir− Swir1
Nir + Swir1

(9)

MSI =
Swir1

Nir
(10)
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Furthermore, Sentinel-1 is a short-wavelength Synthetic Aperture Radar (SAR) that
interacts with the upper part of the vegetation canopy to retrieve biophysical vegetation
parameters. The vegetation structure information derived from Sentinel-1 SAR data com-
plements the optical data. We performed SCS + C topography correction and Peron–Malik
speckle filtering for the C-band SAR (VV and VH) data. The resampled data were matched
to the Landsat 8 data, which have a spatial resolution of 30 m and were added as a layer
for features classification.

Vegetation and environmental factors, such as climate, geomorphology, and moisture,
especially the dominant factors, exhibit a strong correlation and relative consistency in
spatial distribution [37,38]. At a regional scale, zonal climate conditions are the dominant
factors determining the spatial pattern of vegetation. In mountainous areas, vertical zona-
tion is a prominent characteristic of vegetation. From the foothills to the mountain tops,
there are significant differences in climatic conditions, and the composition of vegetation
changes markedly with altitude, slope direction, and slope [71,72]. Different environmental
conditions give rise to distinct subtypes of the same vegetation type. Thus, environmental
variables were incorporated to enhance the classification accuracy of HEBF and SEBF. Six
types of environmental variables (precipitation, sunshine duration, surface temperature
(LST), elevation, slope, and aspect) were selected to explore the influence of environmental
factors on the spatial differentiation of evergreen broad-leaved forest from three aspects:
heat, moisture, and topography. As HEBF and SEBF also exhibit seasonal differences in
precipitation, sunshine duration, and surface temperature (LST), the maximum, minimum,
and mean values of these three variables were calculated for both the dry season and
wet season. Therefore, it was necessary to prioritize the selection of environmental vari-
ables that contributed significantly to the classification of HEBF and SEBF to avoid data
redundancy. Traditional statistical methods and models, such as regression and correlation
analysis, have been widely used to determine the contribution of driving factors to spatial
vegetation differentiation [73,74]. Traditional models often ignore multicollinearity and
spatial relationships among driving factors. Geodetector, a powerful tool that can detect
spatial heterogeneity, offers a notable advantage by revealing the detect the relationship
between driving factors and geographical phenomena without any linear assumptions.
Thereby revealing the driving role of variables in geographical phenomena. Therefore,
it is widely used for quantitative analysis of environmental factors driving vegetation
spatial differentiation. Geodetector includes four detectors: Coverage Detector, Interaction
Detector, General Detector, and Intervention Detector. The Coverage Detector examines the
influence of each factor on the variation in geographic phenomena, indicating the indepen-
dent contribution of each factor. Its q statistic can quantify the contribution of an individual
driving factor and the interaction strength between two detection factors. The value ranges
from 0 to 1, representing the relative size of the contribution. A higher q value indicates
greater explanatory power of the variable for other variables and a stronger influence of its
change on other variables. The Interaction Detector is used to analyze the influence degree
of the interaction between factors on the variation of geographic phenomena, that is, the
mutual influence between each factor [75–77]. In this study, the Coverage Detector and
Interaction Detector were used to assess the explanatory power of environmental variables
in the spatial differentiation of evergreen broad-leaved forests, and environmental variables
with high explanatory power were selected as inputs for the classifier.

2.5. Classification Scheme Device

This study aimed to classify two types of vegetation, HEBF and SEBF, by considering
their characteristic combinations across different layers. To achieve this, we employed three
well-known classifiers, namely RF, SVM, and GBT, to identify the classifier with the highest
accuracy for each layer. Among them, both RF and GBT employ 100 initial decision trees. To
evaluate the performance of our models and identify overfitting or underfitting problems,
we employed 10-fold cross-validation in each layer. This involved dividing our dataset into
10 parts, using one part for validation while training the model on the remaining nine parts.



Remote Sens. 2023, 15, 3053 13 of 32

We repeated this process 10 times and selected the classifier parameters with the highest
training accuracy from the selected fold for classifying the entire region. All classification
experiments were conducted using the Google Earth Engine (GEE) platform. For the fourth
layer, we interpolated the environmental variables data using ArcGIS and imported it into
GEE for classification. The classification scheme is summarized in Table 3.

Table 3. Descriptions of the classification schemes.

Layer Classifier Features Group

Layer 1
RF

Spectral featuresSVM
GTB

Layer 2
RF Spectral features

Temporal featuresSVM
GTB

Layer 3
RF Spectral features

Temporal features
Sentinel 1 features

SVM
GTB

Layer 4

RF Spectral features
Temporal features
Sentinel 1 features

Environment variables

SVM

GTB

2.6. Accuracy Assessment

To verify the accuracy of the hierarchy-based classifier, we calculated the User’s
Accuracy (UA), Producers Accuracy (PA), Overall Accuracy (OA), and Kappa coefficient.
These indices are calculated based on the confusion matrix, which represents the accuracy
evaluation with an n column and n row. Each column represents the predicted category,
and the total number of each column represents the number of data predicted to be in
that category; each row represents the true attribution category of the data, and the total
number of data in each row represents the number of data instances in that category. The
value in each column represents the number of real data predicted to be in that category.
Users’ accuracy reflects misclassification error, Producers’ accuracy reflects omission error,
and OA and Kappa coefficient can accurately reflect the overall classification accuracy. The
formulas are as Equations (11)–(14):

PA = Xij/X+i (11)

UA = Xij/Xi− (12)

OA =
∑n

i=1 Xij

N
(13)

Kappa =
N·∑n

i=1 Xij −∑n
i=1 (Xi+ + X+i)

N2 −∑n
i=1 (Xi+ + X+i)

(14)

where n is the number of rows, Xij is the number of elements in row i and column j, X+i is
the sum of columns, X+i is the sum of rows, and N is the sum of all elements.

The hierarchy-based classifier has four layers, and each layer will have the accuracy of
PA, UA, OA, and Kappa coefficient of three classifiers. The result with the best performance
in each layer is selected as the parent node of the lower layer to improve classification
accuracy. Each layer also had its error; thus, the accuracy of extracting evergreen broad-
leaved forest using the hierarchy-based classifier was determined by multiplying the best
accuracy selected by the forest layer, evergreen forest layer, and evergreen broad-leaved
forest layer. Consequently, the resulting accuracy of the HEBF and SEBF classification



Remote Sens. 2023, 15, 3053 14 of 32

obtained using the hierarchy-based classifier was the accuracy of extracting evergreen
broad-leaved forest multiplied by the accuracy of Layer 4.

3. Results
3.1. Extraction Results of the Evergreen Broad-Leaved Forest

We evaluated the accuracy of the three classifiers in each layer and selected the best-
performing classifier for the subsequent classification experiment. The final classification
accuracy was obtained by multiplying the best classification accuracies of each layer. Table 4
below shows the classification accuracy for each layer.

Table 4. The extraction accuracy of the evergreen broad-leaved forest.

Layers Classifier Optimal Parameters PA UA OA Kappa

Layer 1

Forest
RF

Ntree = 85
Kfold = 3

97.92% 97.92%
97.98% 0.96Non-forest 98.04% 98.04%

Forest
SVM Kfold = 3

99.98% 90.57%
94.95% 0.89Non-forest 90.20% 99.98%

Forest
GTB Ntree = 10

Kfold = 6
95.83% 97.87%

96.97% 0.94Non-forest 96.15% 96.15%

Layer 2

Evergreen forest
RF

Ntree = 30
Kfold = 3

93.48% 95.56%
93.51% 0.87Non-evergreen forest 93.55% 90.63%

Evergreen forest
SVM Kfold = 9

62.16% 82.14%
75.32% 0.50Non-evergreen forest 87.50% 71.43%

Evergreen forest
GTB Ntree = 60

Kfold = 10
91.38% 96.36%

91.25% 0.79Non-evergreen forest 90.91% 80.00%

Layer 3

Evergreen broad-leaved forest
RF

Ntree = 30
Kfold = 7

98.55% 97.14%
97.60% 0.95Evergreen non-broad-leaved forest 98.18% 96.43%

Evergreen broad-leaved forest
SVM Kfold = 3

98.04% 90.91%
94.92% 0.90Evergreen non-broad-leaved forest 92.54% 98.41%

Evergreen broad-leaved forest
GTB Ntree = 50

Kfold = 7
98.15% 94.64%

96.61% 0.93Evergreen non-broad-leaved forest 95.31% 98.39%
Extraction accuracy of the evergreen broad-leaved forest using

a hierarchy-based classifier 90.21% 90.90% 89.42% 0.79

Based on the table above, it is evident that RF achieves the highest performance in
each layer, whereas SVM exhibits the lowest performance. Consequently, we selected
the classification results of RF from each layer to be employed in the subsequent layer’s
classification experiment. The classification accuracy of the hierarchy-based classifier is
ultimately determined by multiplying the highest classification accuracies from each layer.
The overall accuracy (OA) and Kappa accuracy of the final classification results are 89.42%
and 0.79, respectively.

Figure 6 illustrates the results of the three classifiers employed in the initial layer for
forest classification.

Based on Figure 6 above, it is evident that the classification results of RF and GTB
exhibit similarity with a small accuracy difference, while SVM demonstrates a significantly
higher number of misclassifications. Furthermore, from the table, it can be observed that
the user’s accuracy (UA) of SVM is lower than the producer’s accuracy (PA), indicating a
significant misclassification issue.

Figure 7 depicts the results of the three classifiers employed in the second layer for
classifying evergreen forests.
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Based on Figure 7 above, it can be observed that while the UA of GTB is slightly higher
than that of RF, RF demonstrates the highest PA, OA, and Kappa accuracy. Consequently, we
have chosen RF’s classification results as the parent node for the lower-level classification.
Additionally, the figure highlights significant omissions in SVM, leading to a lower PA
compared to other methods.

The results of the three classifiers utilized in the third layer for evergreen broad-leaved
forest classification are illustrated in Figure 8:
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Figure 8. The results of the evergreen broad-leaved forest map.(a1–a4). Results of Random Forest
classification for evergreen broad-leaved forest in four regions. (b1–b4). Results of Support Vector
Machine classification for evergreen broad-leaved forest in four regions. (c1–c4). Results of Gradient
Tree Boosting classification for evergreen broad-leaved forest in four regions.Based on the above
results, RF exhibits the highest precision regarding PA, UA, OA, and Kappa, making it the preferred
classification result for the lower-level HEBF and SEBF classifications. As shown in Figure 8, SVM has
a significant under-classification issue, and although GTB’s classification accuracy is considerable, it
is still inferior to that of RF. Ultimately, we obtained the accuracy of extracting evergreen broad-leaved
forest by multiplying the RF accuracy of each layer, which are PA at 90.23%, UA at 89.87%, OA at
89.42%, and Kappa at 0.79.

3.2. Filtering of Environmental Variables

As Geodetector requires categorical input variables, continuous variables need to be
discretized. Using the natural interruption point grading method proposed by Jinfeng
Wang et al. [66,67], the 24 environmental variables were graded based on data discretization
and a priori knowledge. The classes are presented in Table 5.
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Table 5. Numbers of ratings for environmental variables.

Environmental Variables Classes Environmental Variables Classes

Wpre-min 5 Wssd-min 10
Wpre 5 Wssd 10

Wpre-max 5 Wssd-max 10
Dpre-min 5 Dssd-min 8

Dpre 5 Dssd 8
Dpre-max 5 Dssd-max 8

WDpre-min 6 WDssd-min 10
WDpre 8 WDssd 10

WDpre-max 6 WDssd-max 10
Elevation 8 Wlst 8

Slope 8 Dlst 8
Aspect 9 WDlst 8

The q-value of the Geodetector’s Factor detector (Figure 9) shows the driving effect of
each factor on the spatial differentiation of the HEBF and SEBF. The maximum q statistic
was for Dssd-min (0.938), while Dssd and Dssd-max were 0.899 and 0.891, respectively,
indicating that sunshine duration in the dry season contributes the most to the spatial dif-
ferentiation of the HEBF and SEBF; topographically, the contribution of elevation (0.851) is
also significantly more extensive than that of slope (0.053) and aspect (0.0343); additionally,
the q statistic of dry season’s precipitation is 0.748, 0.720, and 0.619, respectively, indicating
their strong contribution.
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The contribution of environmental variables to the spatial differentiation of HEBF
and SEBF in the dry season is significantly greater than that in the wet season, especially
the contribution of sunshine duration and precipitation in the dry season, which are both
above 0.6. The contributions of LST were low. In summary, dry season sunshine duration
and precipitation and elevation are the main driving factors of spatial differentiation in the
HEBF and the SEBF. Therefore, we selected the environmental variables with a contribution
rate greater than 50% and added them to the classification of HEBF and SEBF. These
variables include Dssd-min, Dssd, Dssd-max, elevation, Dpre, WNssd-max, Dpre-min,
Dpre-max, and WDssd.

In addition, interactions between environmental variables and the effects were non-
linearly enhanced. The most substantial explanatory power of the interactions (>85%)
was in the synergistic effect of elevation and dry season sunshine duration with other
drivers; this was followed by the interaction of non-growing season precipitation with the
remaining factors, with the explanation power above 62%.

3.3. Classification Results of the HEBF and SEBF

Finally, we obtained the classification accuracy of HEBF and SEBF using the hierarchy-
based classifier in combination with environmental variables, as shown in Table 6 below:

Table 6. Classification accuracy of the HEBF and SEBF.

Classifier Optimal
Parameters PA UA OA Kappa

Layer 4’s
accuracy

HEBF Ntree = 55 97.22% 99.98%

SEBF
RF

Kfold = 5 99.99% 95.83%
98.31% 0.96

HEBF
SVM Kfold = 7

99.98% 94.87%
96.72% 0.93

SEBF 91.67% 99.98%

HEBF Ntree = 50 99.97% 92.50%

SEBF
GTB

Kfold = 1 87.50% 99.98%
95.09% 0.89

Hierarchy-based
classifier’s accuracy

HEBF 87.70% 90.88%

SEBF 90.20% 87.11%
87.91% 0.76

In the fourth layer, RF still demonstrated the best accuracy, so we multiplied the
accuracy obtained in the fourth layer with the accuracy of extracting evergreen broad-
leaved forest obtained in Section 3.1 to obtain the classification accuracy of HEBF and
SEBF based on the hierarchy-based classifier as OA 87.91% and Kappa 0.76. The following
Figure 10 shows the final result of classifying HEBF and SEBF.

The evergreen broad-leaved forests are widely distributed in Sichuan, particularly
in the southeastern region of the northern Daba Mountains, Micang Mountains, Pingwu,
Beichuan, Maowen, Wenchuan, Luding, Jiulong, and Muli lines. The HEBF is primarily
found in the mountainous areas on the southern edge of the Sichuan Basin, the bottom of
the mountainous basins in the western part of the basin (square hills and parallel valleys),
and the low-elevation areas on the southern slopes of the Daba Mountains and Micang
Mountains, the central mountain areas on the eastern edge of the Sichuan Basin, or the
tops of the ridges of low mountains. In contrast, the SHEB is mainly distributed in the
southwestern mountains and, to a lesser extent, in the western Sichuan Plateau.
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for HEBF and SEBF in four regions. (b1–b4). Results of Support Vector Machine classification for Figure 10. The results of the HEBF and SEBF map. (a1–a4). Results of Random Forest classification
for HEBF and SEBF in four regions. (b1–b4). Results of Support Vector Machine classification for
HEBF and SEBF in four regions. (c1–c4). Results of Gradient Tree Boosting classification for HEBF
and SEBF in four regions.Figure 10 clearly shows that all three classifiers can clearly distinguish a
noticeable boundary between HEBF and SEBF. However, there are still differences on either side
of the boundary. RF still performs the best in classifying HEBF and SEBF, particularly with greater
accuracy in SEBF classification. In contrast, SVM and GTB tend to misclassify SEBF as HEBF at the
same location.

4. Discussion
4.1. Sensitivity Analysis of Classification Accuracy

Despite the incorporation of DEM for terrain correction in Landsat 8 Collection 2 data,
it is important to distinguish between terrain correction and topographic correction. Terrain
correction primarily addresses the non-uniformity of brightness and radiance in the image,
whereas topographic correction specifically aims to mitigate the impact of terrain on illumi-
nation and reflectance. Hence, terrain correction alone does not account for the same factors
as topographic correction [50]. In mountainous environments, the pronounced influence of
terrain on reflectance, attributed to illumination effects and cast shadows, introduces errors
in land cover classification. Recent studies have emphasized the necessity of applying
topographic correction when analyzing Landsat satellite imagery in mountainous regions,
particularly for accurate vegetation classification. Despite its exclusion from the standard
data preprocessing chain, such as Landsat Analysis Ready data, the implementation of
topographic correction is recommended to ensure robust and reliable results [52,54,78].
In this study, SCS + C was used to perform topographic correction on remote sensing
images of large areas to improve the accuracy of vegetation classification. To assess the
effectiveness of topographic correction on classification accuracy, the same samples and
a hierarchy-based classifier were employed to compare the classification results before
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and after topographic correction. The classification accuracy without SCS + C topographic
correction is shown in Table 7:

Table 7. The Classification accuracy without SCS + C topographic correction.

Layer Classifier Optimal
Parameters PA UA OA Kappa

Layer 1 Forest
RF

Ntree = 50 94.83% 90.16%
90.91% 0.81Non-forest Kfold = 2 85.37% 92.11%

Layer 2 Evergreen forest
RF

Ntree = 30 90.91% 90.91%
87.80% 0.72Non-evergreen forest Kfold = 10 81.48% 81.48%

Layer 3
Evergreen broad-

leaved forest RF
Ntree = 55 87.01% 95.71%

89.60% 0.78
Evergreen non-broad-

leaved forest Kfold = 9 93.7% 81.82%

Layer 4 HEBF
RF

Ntree = 60 97.22% 92.11%
93.44% 0.86SEBF Kfold = 8 88.00% 95.65%

Hierarchical
accuracy

HEBF 72.93% 72.26%
66.83% 0.40SEBF 66.01% 75.04%

The results in Table 7 indicate that topographic correction improved the accuracy
of mountain vegetation classification, particularly in the forest layer. The topographic
correction image exhibited a 7.74% higher PA value and a 3.09% higher UA value than
the original image. This implies that the topographic correction effectively avoided mis-
classification and omission of forest types. The accuracy of each subsequent layer with
topographic correction was better than that without topographic correction, likely due to
the lower accuracy of the forest layer, which affected the subsequent classification results
and caused a larger error accumulation in the final pass through the hierarchical classifier.
The implementation of topographic correction in this study area yielded improved clas-
sification results of the two vegetation subtypes, consistent with the findings of previous
studies [53].

This study employs the Single-Window Method (SWM) to retrieve land surface tem-
perature, taking into account the influence of forest microclimate. In general, near-surface
temperature data for environmental variables are commonly derived from meteorological
station observations. However, it is essential to consider the impact of forest microclimates
on temperature measurements [79]. Spatial interpolation techniques are often employed to
estimate temperature values in a continuous raster format based on discrete meteorological
station data. Nevertheless, it is crucial to acknowledge the influence of vegetation on
temperature and humidity dynamics, which are regulated by processes such as photosyn-
thesis, transpiration, and evapotranspiration. These biological processes lead to significant
temperature variations between vegetated and non-vegetated areas [80]. Additionally, it
is important to note that weather stations are typically situated in open and flat regions,
which may not accurately represent the canopy temperature of forested areas. Precipitation
and solar radiation intensity are less susceptible to forest microclimates and can be reliably
obtained from meteorological data sources. These variables are often measured at weather
stations and provide valuable information on local climatic conditions. Therefore, when an-
alyzing precipitation and solar radiation intensity, utilizing meteorological data is a suitable
approach to capture the spatial and temporal variations in these parameters. In summary,
while meteorological station observations are commonly used for near-surface temperature
data, the influence of vegetation and the limitations of weather station locations should
be considered. Conversely, precipitation and solar radiation intensity can be effectively
derived from meteorological data sources due to their relatively lower sensitivity to forest
microclimates. These considerations ensure the accurate representation of environmental
variables in studies focused on forest ecosystems and their interactions with climate.
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Conversely, a hierarchy-based classifier was proposed to extract the evergreen broad-
leaved forest and classify its vegetation subtypes, namely HEBF and SEBF. To evaluate
the performance of the proposed method, Random Forest (RF) was employed to directly
classify the HEBF and SEBF vegetation subtypes from images of the entire study area
after SCS + C topographic correction. The experiment maintained consistent settings,
feature variables, and samples. Table 8 presents the classification accuracy achieved using
Random Forest.

Table 8. The classification accuracy using random forest.

Layer Training
Parameters PA UA OA Kappa

HEBF Ntree = 50
Kfold = 7

78.57% 89.19%
84.88% 0.70SEBF 90.91% 81.63%

Compared to the direct use of RF for HEBF and SEBF classification, the use of hierarchy-
based classifiers improved the OA and Kappa by 3.02% and 6.57%, respectively. The results
in the table show that the accuracy of the hierarchy-based classifier was superior to that
of the direct use of the classifier in extracting broadleaf evergreen forest in a complex
background, resulting in more precise classification results for HEBF and SEBF. Therefore,
the proposed method effectively extracts vegetation types in a larger and more complex
background based on the vegetation characteristics, despite the hierarchy-based classifier
accumulating the error of each layer, which makes the vegetation classification of com-
plex mountainous areas more accurate. After all, in previous global or national remote
sensing classification products, such as GLC_FCS30, MCD12Q1, and UMD Land Cover,
the distribution range of its evergreen broad-leaved forests in Sichuan Province varies
relatively widely.

4.2. Analysis of Spatial Patterns of Evergreen Broad-Leaved Forest in Sichuan Province

The evergreen broad-leaved forests in Sichuan Province are an important part of the
subtropical evergreen broad-leaved forest in China. In this study, we quickly obtained
the spatial distribution range of the evergreen broad-leaved forest in Sichuan Province by
remote sensing technology and quantitatively classified the HEBF and SEBF. This result
was verified with accuracy using field survey data and coincided with the ecological
niche predictions of HEBF and SEBF by Liu Ying et al. [81] using MaxEnt. We found that
the distribution limits of the HEBF and the SEBF vary greatly not only horizontally but
also vertically, with the upper elevation limit of the SEBF distribution at 3000 m and the
HEBF distribution’s upper elevation limit approximately below 2000 m. The distribution
boundaries between the HEBF and the SEBF are influenced by the respective landscape
types and moisture and heat in the dry season.

The HEBF has a higher species richness and a rich understory populated by heat
and humidity-loving plants. In contrast, the SEBF has a lower species richness, mainly
Cyclobalanopsis gracilis, Castanopsis delavayi, Lithocarpus cleis-tocarpus, and is almost a single.
The understory is dominated by drought-tolerant grasses and seedlings. This evergreen
broadleaf forest has similar distribution differences to Yunnan Province, while Yunnan
and Sichuan Province have similar vegetation distribution and environment in general.
According to the vegetation geography of evergreen broadleaf forest in Yunnan Province
by researcher Zhu Hua [82], the subtype of semi-humid evergreen broad-leaved forest
vegetation in Yunnan Province is mainly distributed in the subtropical plateau of central
Yunnan and its northern mountains and its distribution elevation is 1500–2900 m, while
HEBF is distributed in southern Yunnan and the low mountains in southwestern Yunnan,
and its distribution elevation is 900–2000 m, which is similar to the evergreen broad-
leaved forests division in Sichuan Province derived in this study. Additionally, this is now
consistent with the so-called elevation effect [83], i.e., the vegetation zone will be elevated
in large mountains and depressed in small isolated mountains.
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The climate variations in the study area, characterized by warm and humid conditions
in the eastern HEBF region and distinct wet and dry seasons in the southwest Sichuan SEBF
region, significantly influence the distribution of these vegetation types. Elevation and
topography further contribute to their spatial patterns. The HEBF thrives in a warm and
humid climate with abundant rainfall, while the SEBF adapts to drier conditions during
the dry season. Considering the influence of elevation and topography in the classification
process can enhance the accuracy of identifying and mapping the HEBF and SEBF. Elevation
influences temperature variations, moisture availability, and solar radiation exposure,
which directly impact the distribution of vegetation types. Topographic factors, such as
slope and aspect, further modify local microclimates, creating ecological niches for specific
vegetation communities [71,84,85]. Incorporating elevation and topographic information
allows for a better understanding of the spatial patterns and ecological dynamics of HEBF
and SEBF, ultimately improving the precision of vegetation classification in the study area.

5. Conclusions

Evergreen broad-leaved forests are essential for maintaining ecological balance and
providing important ecological services. Thus, accurate mapping and classification of these
forests are necessary to understand their spatial distribution, structure, and composition,
as well as to assess their ecological functions and services. However, quantitative and
accurate vegetation classification maps for the two subtypes of evergreen broad-leaved
forest (HEBF and SEBF) with different vegetation productivity and species composition
are still lacking. This study successfully achieved accurate extraction and classification
of evergreen broad-leaved forests in Sichuan Province by employing a hierarchy-based
classifier. The integration of environmental variables and image features enabled effective
and quantitative differentiation of HEBF and SEBF, providing a feasible approach for fine-
scale classification of evergreen broad-leaved forests. Topographic correction played a
crucial role in mountainous vegetation classification, improving classification accuracy
and reliability by mitigating the effects of terrain. This study can provide an effective
and more detailed approach to the vegetation classification in mountain areas, as well as
to the ecological construction of vegetation, the development of agriculture and animal
husbandry, and the construction of ecological zones in Sichuan Province.
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Appendix A

Table A1. The number of Landsat 8 OLI serial.

The Number of Landsat 8
OLI Serial Dry Seasons Images Wet Seasons Images

1 LC08_127037_20191203 LC08_127038_20200831
2 LC08_127038_20200120 LC08_127037_20200714
3 LC08_127039_20200324 LC08_127039_20200714
4 LC08_127040_20191101 LC08_127040_20200714
5 LC08_127041_20191101 LC08_127041_20200831
6 LC08_128037_20191226 LC08_128038_20200907
7 LC08_128038_20200111 LC08_128037_20200603
8 LC08_128039_20191210 LC08_128039_20200907
9 LC08_128040_20200111 LC08_128040_20200907
10 LC08_128041_20200212 LC08_128041_20200603
11 LC08_129037_20200219 LC08_129038_20200712
12 LC08_129038_20200219 LC08_129037_20200813
13 LC08_129039_20200219 LC08_129039_20200728
14 LC08_129040_20200219 LC08_129040_20200728
15 LC08_129041_20200219 LC08_129041_20200728
16 LC08_129042_20191217 LC08_129042_20200728
17 LC08_130037_20191122 LC08_130038_20200719
18 LC08_130038_20191208 LC08_130037_20200719
19 LC08_130039_20200210 LC08_130039_20200703
20 LC08_130040_20200226 LC08_130040_20200703
21 LC08_130041_20200226 LC08_130041_20200601
22 LC08_130042_20200313 LC08_130042_20200601
23 LC08_130036_20200313 LC08_130036_20200719
24 LC08_131037_20191231 LC08_131038_20200624
25 LC08_131038_20200116 LC08_131037_20200624
26 LC08_131039_20191215 LC08_131039_20200827
27 LC08_131040_20191215 LC08_131040_20200827
28 LC08_131041_20191129 LC08_131041_20200827
29 LC08_131042_20191129 LC08_131042_20200827
30 LC08_131036_20191231 LC08_131036_20200624
31 LC08_132037_20191206 LC08_132038_20200903
32 LC08_132038_20191206 LC08_132037_20200903
33 LC08_132039_20191206 LC08_132039_20200903
34 LC08_132040_20191206 LC08_132040_20200903
35 LC08_132041_20191206 LC08_132041_20200701
36 LC08_132036_20200107 LC08_132036_20200802
37 LC08_133037_20191229 LC08_133038_20200825
38 LC08_133038_20191229 LC08_133037_20200825
39 LC08_133039_20200114 LC08_133039_20200825
40 LC08_133040_20200114 LC08_133040_20200825
41 LC08_134037_20200325 LC08_134038_20200901
42 LC08_134038_20200325 LC08_134037_20200917
43 LC08_134036_20191102 LC08_134036_20200917
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Table A2. The number of Sentinel-1 serial.

The Number of Sentinel-1
Serial Dry Seasons Images Wet Seasons Images

1 LC08_127037_20191203 LC08_127038_20200831
2 LC08_127038_20200120 LC08_127037_20200714
3 LC08_127039_20200324 LC08_127039_20200714
4 LC08_127040_20191101 LC08_127040_20200714
5 LC08_127041_20191101 LC08_127041_20200831
6 LC08_128037_20191226 LC08_128038_20200907
7 LC08_128038_20200111 LC08_128037_20200603
8 LC08_128039_20191210 LC08_128039_20200907
9 LC08_128040_20200111 LC08_128040_20200907
10 LC08_128041_20200212 LC08_128041_20200603
11 LC08_129037_20200219 LC08_129038_20200712
12 LC08_129038_20200219 LC08_129037_20200813
13 LC08_129039_20200219 LC08_129039_20200728
14 LC08_129040_20200219 LC08_129040_20200728
15 LC08_129041_20200219 LC08_129041_20200728
16 LC08_129042_20191217 LC08_129042_20200728
17 LC08_130037_20191122 LC08_130038_20200719
18 LC08_130038_20191208 LC08_130037_20200719
19 LC08_130039_20200210 LC08_130039_20200703
20 LC08_130040_20200226 LC08_130040_20200703
21 LC08_130041_20200226 LC08_130041_20200601
22 LC08_130042_20200313 LC08_130042_20200601
23 LC08_130036_20200313 LC08_130036_20200719
24 LC08_131037_20191231 LC08_131038_20200624
25 LC08_131038_20200116 LC08_131037_20200624
26 LC08_131039_20191215 LC08_131039_20200827
27 LC08_131040_20191215 LC08_131040_20200827
28 LC08_131041_20191129 LC08_131041_20200827
29 LC08_131042_20191129 LC08_131042_20200827
30 LC08_131036_20191231 LC08_131036_20200624
31 LC08_132037_20191206 LC08_132038_20200903
32 LC08_132038_20191206 LC08_132037_20200903
33 LC08_132039_20191206 LC08_132039_20200903
34 LC08_132040_20191206 LC08_132040_20200903
35 LC08_132041_20191206 LC08_132041_20200701
36 LC08_132036_20200107 LC08_132036_20200802
37 LC08_133037_20191229 LC08_133038_20200825
38 LC08_133038_20191229 LC08_133037_20200825
39 LC08_133039_20200114 LC08_133039_20200825
40 LC08_133040_20200114 LC08_133040_20200825
41 LC08_134037_20200325 LC08_134038_20200901
42 LC08_134038_20200325 LC08_134037_20200917
43 LC08_134036_20191102 LC08_134036_20200917
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Figure A1. Interpolation results of precipitation.(a). Mean precipitation during the wet season.
(b). Minimum precipitation during the wet season. (c). Maximum precipitation during the wet
season. (d). Mean precipitation during the dry season. (e). Minimum precipitation during the dry
season. (f). Maximum precipitation during the dry season. (g). Mean difference in precipitation
between dry and wet seasons. (h). Minimum difference in precipitation between dry and wet seasons.
(i). Maximum difference in precipitation between dry and wet seasons.
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Figure A2. Interpolated results of sunshine duration. (a). Mean sunshine duration during the wet
season. (b). Minimum sunshine duration during the wet season. (c). Maximum sunshine duration
during the wet season. (d). Mean sunshine duration during the dry season. (e). Minimum sunshine
duration during the dry season. (f). Maximum sunshine duration during the dry season. (g). Mean
difference in sunshine duration between dry and wet seasons. (h). Minimum difference in sunshine
duration between dry and wet seasons. (i). Maximum difference in sunshine duration between dry
and wet seasons.
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Figure A3. Inversion results from land surface temperature. (a). Land surface temperature during
the wet season. (b). Land surface temperature during the wet season. (c). Difference in land surface
temperature between dry and wet seasons.
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Figure A4. Terrain environment variables. (a). Elevation in the study area. (b). Slope in the study
area. (c). Aspect in the study area.

Table A3. The number of image serial.

The Number of Landsat 8
OLI Serial Dry Seasons Images Wet Seasons Images

1 LC08_127037_20191203 LC08_127038_20200831
2 LC08_127038_20200120 LC08_127037_20200714
3 LC08_127039_20200324 LC08_127039_20200714
4 LC08_127040_20191101 LC08_127040_20200714
5 LC08_127041_20191101 LC08_127041_20200831
6 LC08_128037_20191226 LC08_128038_20200907
7 LC08_128038_20200111 LC08_128037_20200603
8 LC08_128039_20191210 LC08_128039_20200907
9 LC08_128040_20200111 LC08_128040_20200907
10 LC08_128041_20200212 LC08_128041_20200603
11 LC08_129037_20200219 LC08_129038_20200712
12 LC08_129038_20200219 LC08_129037_20200813
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Table A3. Cont.

The Number of Landsat 8
OLI Serial Dry Seasons Images Wet Seasons Images

13 LC08_129039_20200219 LC08_129039_20200728
14 LC08_129040_20200219 LC08_129040_20200728
15 LC08_129041_20200219 LC08_129041_20200728
16 LC08_129042_20191217 LC08_129042_20200728
17 LC08_130037_20191122 LC08_130038_20200719
18 LC08_130038_20191208 LC08_130037_20200719
19 LC08_130039_20200210 LC08_130039_20200703
20 LC08_130040_20200226 LC08_130040_20200703
21 LC08_130041_20200226 LC08_130041_20200601
22 LC08_130042_20200313 LC08_130042_20200601
23 LC08_130036_20200313 LC08_130036_20200719
24 LC08_131037_20191231 LC08_131038_20200624
25 LC08_131038_20200116 LC08_131037_20200624
26 LC08_131039_20191215 LC08_131039_20200827
27 LC08_131040_20191215 LC08_131040_20200827
28 LC08_131041_20191129 LC08_131041_20200827
29 LC08_131042_20191129 LC08_131042_20200827
30 LC08_131036_20191231 LC08_131036_20200624
31 LC08_132037_20191206 LC08_132038_20200903
32 LC08_132038_20191206 LC08_132037_20200903
33 LC08_132039_20191206 LC08_132039_20200903
34 LC08_132040_20191206 LC08_132040_20200903
35 LC08_132041_20191206 LC08_132041_20200701
36 LC08_132036_20200107 LC08_132036_20200802
37 LC08_133037_20191229 LC08_133038_20200825
38 LC08_133038_20191229 LC08_133037_20200825
39 LC08_133039_20200114 LC08_133039_20200825
40 LC08_133040_20200114 LC08_133040_20200825
41 LC08_134037_20200325 LC08_134038_20200901
42 LC08_134038_20200325 LC08_134037_20200917
43 LC08_134036_20191102 LC08_134036_20200917

Table A4. Dry and wet seasons images of Sentinel-1 serial number.

The Number of Sentinel-1
Serial Dry Seasons Images Wet Seasons Images

1 LC08_127037_20191203 LC08_127038_20200831
2 LC08_127038_20200120 LC08_127037_20200714
3 LC08_127039_20200324 LC08_127039_20200714
4 LC08_127040_20191101 LC08_127040_20200714
5 LC08_127041_20191101 LC08_127041_20200831
6 LC08_128037_20191226 LC08_128038_20200907
7 LC08_128038_20200111 LC08_128037_20200603
8 LC08_128039_20191210 LC08_128039_20200907
9 LC08_128040_20200111 LC08_128040_20200907
10 LC08_128041_20200212 LC08_128041_20200603
11 LC08_129037_20200219 LC08_129038_20200712
12 LC08_129038_20200219 LC08_129037_20200813
13 LC08_129039_20200219 LC08_129039_20200728
14 LC08_129040_20200219 LC08_129040_20200728
15 LC08_129041_20200219 LC08_129041_20200728
16 LC08_129042_20191217 LC08_129042_20200728
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Table A4. Cont.

The Number of Sentinel-1
Serial Dry Seasons Images Wet Seasons Images

17 LC08_130037_20191122 LC08_130038_20200719
18 LC08_130038_20191208 LC08_130037_20200719
19 LC08_130039_20200210 LC08_130039_20200703
20 LC08_130040_20200226 LC08_130040_20200703
21 LC08_130041_20200226 LC08_130041_20200601
22 LC08_130042_20200313 LC08_130042_20200601
23 LC08_130036_20200313 LC08_130036_20200719
24 LC08_131037_20191231 LC08_131038_20200624
25 LC08_131038_20200116 LC08_131037_20200624
26 LC08_131039_20191215 LC08_131039_20200827
27 LC08_131040_20191215 LC08_131040_20200827
28 LC08_131041_20191129 LC08_131041_20200827
29 LC08_131042_20191129 LC08_131042_20200827
30 LC08_131036_20191231 LC08_131036_20200624
31 LC08_132037_20191206 LC08_132038_20200903
32 LC08_132038_20191206 LC08_132037_20200903
33 LC08_132039_20191206 LC08_132039_20200903
34 LC08_132040_20191206 LC08_132040_20200903
35 LC08_132041_20191206 LC08_132041_20200701
36 LC08_132036_20200107 LC08_132036_20200802
37 LC08_133037_20191229 LC08_133038_20200825
38 LC08_133038_20191229 LC08_133037_20200825
39 LC08_133039_20200114 LC08_133039_20200825
40 LC08_133040_20200114 LC08_133040_20200825
41 LC08_134037_20200325 LC08_134038_20200901
42 LC08_134038_20200325 LC08_134037_20200917
43 LC08_134036_20191102 LC08_134036_20200917
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