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Abstract: Coherence change detection (CCD) is a remote sensing technique used to map phenomena
that, under certain conditions, can be directly related to changes in Interferometric SAR (InSAR)
coherence. Mapping the areas affected by sediment transport events in arid environments is one of
the most common applications of CCD. However, the reliability of these maps remains an unsolved
issue. This paper focuses on verifying that INSAR coherence is indeed able to detect all the fluvial
sediment transport events that have actually mobilised sediments in arid environments by building a
classification model and validating its results. The proposed methodology is tested in three study
areas in Salar de Atacama, Chile, using three years of Sentinel data plus a fourth year for validation,
and meteorological records of rainfall, the relative humidity of the air and snow cover. The results
prove that INSAR coherence can be used to remotely detect sediment transport events related to flash
floods in arid environments, that it might have a greater detection ability than meteorological records
and that the perpendicular baseline does have a relevant effect on the INSAR coherence that needs to
be considered. All these findings will increase the reliability of maps based on InNSAR coherence. In
addition, the proposed method will allow focusing the mapping tasks only on the relevant dates and,
once calibrated, the classification model will enable the automatised remote detection of new events.

Keywords: INSAR coherence; coherence change detection; sediment transport; flash floods; erosion;
sedimentation; arid environments; Salar de Atacama

1. Introduction

Interferometry with Synthetic Aperture Radar (InSAR) is a remote sensing technique
able to measure subcentimetric displacements of the observed surface (either the ground
or any structure on it). Its working principle consists of measuring the difference in
the wave phase between two radar images acquired at different times over the same
area. This phase is related to the distance between the radar and the observed surface,
in such a way that the change in the phase between two instants is directly related to
the displacement of the observed surface. The complexity encountered when processing
SAR data (i.e., raw radar data) is that deformation is not the only factor that may alter
the wave phase. Therefore, eventual displacements need to be isolated from noise and
other contributions to the phase shift, such as the topographic, atmospheric and thermal
expansion components. This operation can only be performed if the radar signal is stable
enough, which is measured with the so-called coherence. Thus, coherence is a parameter in
the SAR data processing that determines at which points of the observed scene INSAR can
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measure eventual displacements of the surface. More detailed and complete explanations
of InSAR fundamentals can be found in [1-3], for instance.

More specifically, INSAR coherence is a measure of the linear correlation between two
SAR images (once co-registered, i.e., geometrically matched):

E[sq-sy*]
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where v is the coherence of a pixel, E is the mathematical expectation, s is the complex
value of the pixel, s* is its conjugated value and Is! is its module. In each pixel, a raw
SAR image contains a complex number s that includes the amplitude and the phase of the
backscattered radar signal. In practice, the coherence of a pixel is calculated as the average
within a window around the pixel. For a window of size n X m pixels,
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Since InNSAR coherence is a variable linked to a pixel and its neighbours—not to the
entire radar image—a map of coherence represents the effect in space of the factors affecting
the coherence. Thus, if under certain conditions one factor prevails, a map of coherence
will be a map of that component and, furthermore, a time series of maps of coherence will
represent the evolution in time of that component. This way, coherence appears not only as
a quality parameter in the INSAR processing scheme but also as an InNSAR product by itself.
This is the basis of the so-called coherence change detection (CCD) methods.

CCD is a highly sensitive radar technique used to remotely detect and map changes
in the observed scene. Because coherence integrates information from both the amplitude
and phase, it is sensitive to slight changes in the dielectrical and geometrical characteristics
of the observed surface on the subpixel scale [4-7]. Thus, CCD is a promising complement
to field campaigns and optical remote sensing techniques: it is suitable to monitor large
and remote areas where field campaigns are costly and difficult, and it is more sensitive to
surface changes than optical techniques without being constrained by cloud cover [6-10].

In a general case, changes in INSAR coherence might be related to four causes: (i) the
perpendicular baseline, i.e., the distance between the position of the radar during the differ-
ent data acquisitions in the direction perpendicular to the radar line of sight; (ii) the tempo-
ral baseline, i.e., the time lapse between radar images; (iii) atmospheric changes, mainly in
the relative humidity of the air; and (iv) changes in the observed surface [9,11-13]. However,
according to the literature, with the performance of current satellite constellations—such as
Sentinel—the effects of the perpendicular baseline on the coherence [5,6,10,12]—except in
rugged terrain [11,12,14]—and the temporal baseline on the coherence between consecutive
SAR images [11,12] are negligible. In addition, humidity changes in arid environments
are limited to during and shortly after the rare rainfall events [6,15]. Therefore, changes
in the observed surface are the remaining factor that affects the coherence in arid environ-
ments, which are then suitable for CCD analysis [9]. In such environments, changes in the
surface are basically due to (i) ephemeral vegetation, which only lasts for a few months
after rainfall events [6,11,15]; (ii) anthropic activities, such as mining, which are easy to
locate and identify [12,16]; and (iii) sediment transport [5,6]. Consequently, one of the main
applications of CCD in the literature is the mapping of sediment transport phenomena in
arid environments.

An early example of CCD can be found in [9]. Three ERS-1 images acquired in
1992 and 1993 over the Algerian Sahara Desert were used to detect fluvial and aeolian
sediment transport events: erosion and deposition related to flash floods and the evolution
of ephemeral lakes and sediment transport over dunes. Focusing on the fluvial sediment
transport related to flash floods, Ref. [11] compared five pairs of Envisat SAR images from
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2004 to 2010 with Tropical Rainfall Measuring Mission (ITIRMM) precipitation estimates
and the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) to
identify areas of recent fluvial erosion in the south of the Anti-Atlas Range, Western
Sahara. Unfortunately, the comparison between interferograms covering a period without
rain—according to the meteorological data—indicated a substantial level of uncertainty and
suggested the existence of other phenomena affecting the InNSAR coherence, possibly aeolian
sediment transport. With better SAR data, Ref. [6] evaluated the suitability of CCD for
mapping ground modifications in an extensive area affected by erosion and sedimentation
triggered by an extreme hydro-meteorological event that occurred on 23-27 March 2015
over the Atacama Desert, Chile. The combination of 15-month-long time series of Sentinel-
1A InSAR coherence with optical, meteorological and field data allowed them to relate
the temporal loss of coherence to variations in soil moisture and the permanent loss of
coherence after 5 months to erosion and sedimentation. Some of their findings provided
new insights into sediment dynamics in arid environments, proving the potential of CCD
in this field.

Regarding aeolian sediment transport, the studies are often related to the management
of natural hazards. Thus, using 14 TerraSAR-X images together with rainfall and wind
records from a local meteorological station, Ref. [8] applied CCD to detect wind-driven
sediment transport in a field of dunes along the coast of Israel in 2012, as well as the
displacement of the dunes themselves. SAR data allowed the authors to describe and better
understand the behaviour of dunes under the action of the wind, track the individual
dynamics of each dune and produce maps of stability/instability. In another line of
research, Ref. [16] explored the utility of principal component analysis (PCA), enhanced
with field knowledge, to isolate aeolian erosion from other components of Sentinel-1A
InSAR coherence data from 2017 of the Gobi Desert, southern Mongolia. The results were
satisfactorily compared with a DEM and field observations, and they notably improved
the knowledge of the dust generation in the region, where dust storms represent a major
threat to public health and socio-economic activities. In another study of dunes” motion,
Ref. [7] explored the potential of INSAR coherence in supporting sand mitigation measures
and used Sentinel-1 SAR data from 2015 to 2018 to detect and track the motion of sand
accumulations in desert areas in the United Arab Emirates (UAE) and Egypt. Migrating
dunes were detected with the average coherence (“mean short-term coherence”, MSTC)
and a novel index called the Temporal Stability Index (TSI), conceived to characterise
the percentage of stability of a target over time. Offset tracking was also tested, but its
complexity limits its applicability.

However, the applications of CCD are not limited to the study of sediment dynamics.
From the very beginning, INSAR coherence has also been used to map other characteristics
and processes of the Earth’s surface. For instance, using three ERS-1 SAR images acquired
over the Death Valley salt pan, USA, in 1993 and a Landsat multispectral image, Ref. [17]
empirically related some ranges of INSAR coherence to different surface types (alluvial fans,
bushes, lakes, wet zones, rough dry salt, smooth wet salt, ... ) and found lineal regressions
between InSAR coherence and vegetated surfaces (in low-erosion-risk areas) and erosion
(in non-vegetated and high-erosion-risk areas). According to their findings, automatic
classification tools could be programmed to produce maps of the land cover based on
the degree of coherence, the backscattering coefficient and the backscatter ratio of SAR
data. In a similar line, Sentinel-1A and B SAR data from October 2014 to February 2018,
complemented with field campaigns, allowed [15] to analyse the ability of CDD to map
surface lithologies in the Atacama Desert, Chile, based on the evolution of soil moisture
over time. Bringing everything together, Ref. [5] also analysed Sentinel-1 INSAR coherence
over the Atacama Desert between March 2015 and December 2018 and compared it with
Sentinel-2 multispectral data, TanDEM-X World DEM and a detailed geographic information
system (GIS) database of the local hydrographic network to characterise the processes and
dynamics of arid environments. Local losses of coherence were associated with low-
coherence types of land cover (such as water bodies, vegetation or aeolian deposits) or
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with surface dynamics (mining activities, fluvial sediment transport or precipitation). For
instance, linear low-coherence anomalies perfectly matched the hydrographic network;
very different coherence patterns were observed before and after rain events; and stripe-like
patterns matched the prevailing wind direction.

Finally, some examples of the application of CCD in hydrogeology can also be found
in the literature. For example, Ref. [12] examined the evolution of Sentinel-1A InSAR
coherence in the Atacama Desert from January 2015 to December 2016, notably before and
after an extreme rain event on 24-26 March 2015, to better understand the water cycle in
this endorreic basin, especially regarding evaporation and infiltration. Lastly, Ref. [18]
used CCD for the detection of freshwater resources in desertic dunes fields. They used
two pairs of Sentinel-1 SAR images, two pairs of optical Sentinel-2 images, DEM data
and field observations to investigate the potential for the groundwater accumulation of
active wind-blown linear dunes in Egypt that have naturally dammed wadi courses and
formed lakes.

The literature review reveals some issues. First, most of the studies are based on
few SAR data, so their statistical basis is limited and the validity of their conclusions for
other study areas and other periods is uncertain. In fact, many of the published studies
focus on a single rainfall or sediment transport event, meaning that the event was known
beforehand. Thus, another issue is the ability of CCD to study unknown events, because
another common aspect is that the validation of the results is partially or completely
based on meteorological data, as rainfall and wind are the triggers for sediment transport
events. However, since arid environments are usually remote and very sparsely populated
areas, very few meteorological stations exist in these zones. Furthermore, barely any of
these stations are located in less accessible but highly relevant areas, such as high-altitude
summits, which often present different climate conditions compared to downstream lower-
altitude zones nearby. As an alternative, satellite meteorological data are often used, but,
since the models used to infer meteorological conditions are based on actual measurements
from meteorological stations, their reliability in areas not covered by meteorological stations
remains doubtful. On top of that, when using meteorological data for the validation of CCD
results, one must keep in mind that both rain and wind must exceed certain thresholds to
mobilise sediments, so a sediment transport event did not necessarily occur on every rainy
or windy day according to the meteorological records.

Therefore, although the goal of applying CCD in arid environments is to map the
areas affected by sediment transport events, verifying the ability to detect all the events
that actually mobilised sediments is a necessary prior step: first, because CCD-derived
erosion and sedimentation maps will be reliable only if CCD is able to distinguish these
events; second, because if the events are first identified, CCD mapping tasks can focus only
on the relevant dates, which represents a saving as significant as the study area’s extension;
and third, because if CCD is able to identify the sediment transport events it will overcome
the limitation related to the representativeness and completeness of meteorological data in
extensive and remote regions.

Thus, the goal of this paper is to remotely detect, by means of InNSAR coherence data,
erosion and sedimentation events related to flash floods in arid environments, taking
the Salar de Atacama, Chile, as an example to illustrate the proposed methodology. The
idea is to determine the optimal marker—if there is only one—and the threshold that
indicates the occurrence of events that significantly affected the INSAR coherence. These
events will probably be fluvial sediment transport events. The results will show that it
is indeed possible, with INSAR coherence data, to distinguish such events. Moreover, a
simple classification model will allow us to automatise the task and even improve the
detection capability of the meteorological data. Finally, the results will also prove that some
hypotheses in the literature cannot be taken for granted.

The remaining sections are organised as follows: the second section describes the
proposed methodology, presents the study area and details all the data used in this study;
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Building the model:

the third section describes and discusses the results; and the fourth section closes the paper
with the main conclusions and prospects.

2. Materials and Methods
2.1. Methodology

The proposed method to identify fluvial sediment transport events in arid environ-
ments consists of verifying whether the value of markers identified as the best indicators
exceeds a certain threshold or not. In other words, a classification model is built to predict
whether an event has occurred or not. This model consists of some markers and thresholds,
which will have to be determined for the study area. If the data used in the calibration
are sufficiently representative of the dynamics of the study area, both the markers and the
thresholds should already be valid for new data, i.e., new periods of time. Thus, given a
study area, the model requires one single calibration.

The methodology proposed to build the model (Section 2.1.1) was tested in three study
areas in order to verify that the conclusions reached in one area were also valid for the
other ones. Once verified, all three models were validated with data for a new time period.

In the following subsections, a complete description of the methodology is first pro-
vided; then, Section 2.1.2 offers a more detailed explanation of the applied techniques.
For the sake of clarity, from this point on, the text will refer to a classification model that
includes one single marker, but the same methodology would apply to build a model with
more than one marker if that is needed to improve the performance of the model.

2.1.1. Description

The proposed methodology to build the classification model is divided into six steps
(Figure 1):

1 2 3 4 5 6 Binary
Study area | = Rasters =—> | Histograms | — Potential — Optimal — | Threshold(s) | = | classification

markers marker(s) model

Delimitation Maps of Preliminary Time-series Number & Determination i

coherence classification identification of the !

between of the rasters: + threshold(s) i

consecutive events & Validation of the optimal !

SAR images non-events of histograms’ marker(s) 3

T classification !

|

|

|

|

|

|

i

Use of the model:

New data, same study area

1
Rasters

2
Classification

Maps of
coherence
between
consecutive
SAR images

Is(Are) the
threshold(s)
exceeded?

Yes —> event

No —> non-event

Figure 1. Flow chart of the methodology.

1.  Study area. Although the results will show that a precise delimitation of the study
area is not critical, the results will be clearer if the study area is limited to the area
potentially affected by the phenomena of interest and avoids areas affected by other
phenomena that also alter the coherence.

2. Rasters of InNSAR coherence. Calculation of the rasters (i.e., maps) of coherence
between consecutive SAR images. Working with rasters between consecutive images
allows one to (i) minimise the temporal baseline and, therefore, its effect on coherence;
(ii) reduce the task load, since it reduces the number of rasters to be built (other
methodologies proposed in the literature calculate the coherence for all the possible
pairs of SAR images); (iii) simplify the task, since only a series of rasters are built
and no previous analysis is needed to determine the pairs of images to calculate the
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coherence for; and (iv) automatise the task, making it more suitable for monitoring
systems. Note that a raster of INSAR coherence does not correspond to a date but to a
period, the time lapse between the involved SAR images.

3. Histograms. Construction of the histograms of the rasters of coherence between
consecutive SAR images. The results will show that most of the rasters will present
similar histograms, whereas some others will present a clearly different pattern. These
different histograms correspond to significant variations in coherence and, therefore,
potential fluvial sediment transport events. Thus, this step will provide a preliminary
visual classification of the rasters into two groups: events and non-events. Note that,
in addition, the sequence of “different” histograms will also show the duration of
the temporal effects of each event (such as the changes in the air humidity or the
ephemeral vegetation mentioned in the Introduction).

4.  Potential markers. The markers need to be parameters of the histograms that evolve in
time, i.e., along the series of rasters. Thus, in this step, the time series of the potential
markers are calculated. The following potential markers were considered here: the
average coherence, the median, the mode, the frequency of the mode, the standard
deviation and the difference between percentiles 90 and 10.

5. Optimal marker. Identification of the optimal marker, that with the greatest predictive
classification capacity. This step is based on two techniques: partial least squares
discriminant analysis (PLS-DA) and receiving operating characteristic (ROC) curves,
which are explained in Section 2.1.2. In addition, the PLS-DA also evaluates how
distinguishable the two groups of rasters in step 3 are (“events” and “non-events”),
i.e., the PLS-DA validates the visual classification of the histograms.

6.  Threshold. Determination of the threshold of the optimal marker that indicates the
occurrence of an event that has “significantly” affected the InSAR coherence. If the
basic hypotheses are fulfilled and the changes in coherence can be related to one single
phenomenon—fluvial sediment transport events, in this case—then an increase or
decrease in the value of the optimal marker above or below the threshold will indicate
the occurrence of this phenomenon.

Finally, as extra information, the ROC curves can also be used to easily estimate the
thresholds of the meteorological variables associated with fluvial sediment transport.

The described methodology might require some clarifications. First, the classification
of the histograms of the rasters of INSAR coherence is needed as an input for the PLS-DA
and the ROC curves. Such classification is performed visually. However, there are not
only two types of histograms, “events” and “non-events”, but also cases in between that
have to be classified into one group or the other. Therefore, there is a subjectivity in the
visual classification of the histograms linked to where the border between “events” and
“non-events” is set. Nevertheless, as stated, the PLS-DA verifies to what extent this initial
classification is correct, and, additionally, the correlation with meteorological data is a
second validation.

Still, the existence of rasters that are not clearly “events” or “non-events” may raise the
question of whether it would be convenient to leave such cases out of the process of building
the model. A sensitivity analysis was performed with the first study area and, since the
difference was minimal, all the rasters were included for the other two study areas.

Regarding the PLS-DA, the input data need to be normalised for the different markers
to be comparable. Thus, the time series of each marker was “autonormalised”, i.e., the
mean of the time series was subtracted from each value, which was then divided by the
standard deviation of the time series. For the determination of the effective threshold of
the meteorological variables, the time series of each variable was scaled, i.e., divided by its
maximum value.

Finally, as for the thresholds, determined with the ROC curves, different criteria can
be adopted. Here, the choice was to maximise the specificity, i.e., to minimise the “false
positives”. The non-detected events (false negatives, which will therefore be increased) are
the events with the least effect on the coherence or the beginning and the end of an event.
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2.1.2. Methods

PLS-DA is a multivariant classification technique based on partial least squares re-
gression (PLSR). PLSR is a regression technique that overcomes the problem of collinearity
between explanatory variables in linear regression by combining them into a smaller set of
uncorrelated variables, called “components” or “latent variables”. These components are
linear combinations of the explanatory variables. Collinearity is a linear correlation between
variables that inflates the standard errors and leads to unreliable coefficients or weights in a
linear regression. The weights are the coefficients of the linear combination of variables. In
PLSR, these weights are determined in such a way that the variance of both the components
and the dependent variable is maximised; i.e., the covariance between the dependent and
the (combined) explanatory variables is maximised, so the explanatory variables are as
explanatory of the dependent variable as possible. This technique is called “partial” least
squares regression because only the weights of the components are calculated through least
squares regression, not the weights of the explanatory variables of the components.

The optimal number of components to include in the model can be determined through
cross-validation, which, in addition, also estimates the performance of the model when
applied to “new data” (data not used in the construction of the model). Cross-validation
consists of a series of so-called subvalidation tests. Each test consists of, first, building
a model using only a subset of data (“calibration” or “training” set) and, then, testing
its performance with the data not used in its construction (“validation” or “test” set).
Thus, the dataset is split into several subsets or “samples” that, for a certain fixed number
of components, are used as the test sample only in one subvalidation test and for the
construction of the model in the rest of the tests. As a result of each subvalidation test,
we obtain an estimation of the performance of the model: accuracy, sensitivity, specificity,
etc. The ensemble of the tests provides a more robust estimation of the performance of a
model with the chosen number of components. Repeating the process for different numbers
of components, it is possible to determine the optimal number of components that most
improves the performance of the model. Several splitting methods exist. In this study,
the venetian blinds method was used: if s samples are to be built, one of every s data is
included in each sample, starting with datum 1 to s, respectively (i.e., samplei={i, s +1i,2s
+1,... }). Here, the number of samples s has been 10.

Since each component of the model includes all the explanatory variables, the question
may arise as to how relevant each explanatory variable is or, in other words, which variables
should be included in the model. One possibility is to observe the weights of each explana-
tory variable in each component. However, all this information is already summarised in
the variable importance in projection (VIP) scores [19]. VIP scores account for the amount
of variance of the dependent variable explained by each explanatory variable. Thus, the
higher the VIP, the more relevant an explanatory variable is. The VIP score for explanatory
variable j is as follows:

F ZU]‘ZUZ'SSYf~]
e\ P < SSY ar F ) ®
where f is the component index, F is the number of components, w_jf is the weight of
explanatory variable j in component f, SSY_f is the sum of squares of the explained variance
by component f and SSY_total is the total sum of squares of the explained variance of the
dependent variable. Since the average of the squared VIP scores equals 1, variables with a
VIP score greater than 1 are usually selected as relevant.

So far, the prediction of the dependent variable is numerical. However, what if the
dependent variable is not numerical but categorical? In PLS-DA, discriminant analysis
translates a numerical variable into a categorical variable through thresholds or cut-off
values that define ranges associated with each category of the (dependent) variable. These
cut-off values are usually determined by maximising the accuracy (i.e., minimising the
errors of classification). For binary variables, the cut-off value can also be determined with
the receiving operating characteristic (ROC) curve.
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An ROC curve is a graphical plot that illustrates the performance of a binary classifica-
tion model as its discrimination threshold or cut-off value is varied. It is usually represented
as a sensitivity against a 1-specificity curve, i.e., true positives over total positives against
false positives over total negatives (the specificity is true negatives over total negatives). If
sensitivity and specificity are considered equally important, then the cut-off value should
correspond to the point of the ROC curve the closest to the top-left corner of the plot,
i.e., the one with the highest sum of sensitivity and specificity.

ROC curves also allow one to compare different binary classification models through
the area under the curve (AUC), since this parameter is independent of the cut-off value.
Thus, ROC curves can be used to determine the best marker by comparing models with
different markers as a single explanatory variable. The AUC has a value between 0 and 1.
The larger the AUC, the better the model or marker. Below 0.7, a model is considered to
have a weak predictive capacity.

2.2. Case Study

Salar de Atacama is an endorreic basin in northern Chile, between latitudes 22.5°
and 23.5° south and longitudes 67.5° and 68.5° west, located in the Antofagasta region,
the municipality of San Pedro de Atacama, 215 km east of Antofagasta city. The Western
Central Andean Range, oriented N-S and reaching as high as 6000 m.a.s.l. (metres above
sea level), limits the basin to the east; the Domeyko Range, a secondary Andean range
that reaches 4000 m.a.s .1, is the western limit and is oriented NNE-SSW; to the north, the
Andean and Domeyko ranges merge and enclose the basin; to the south, there are the
3200 m.a.s.l. high mountains of Cordén de Lila. As an order of magnitude, the basin has an
extent of 17,000 km2, and the salt flat nucleus extends over some 3000 km? at an altitude of
2300 m.a.s.L.

The climate of Salar de Atacama is hyperarid because of the geographical barrier that
the Andean range represents to the humid air masses coming from Amazonia [20]. The
annual precipitation ranges from 20 mm/year in the nucleus to 160 mm/year in the eastern
summits and presents a clear seasonal cyclicity [20,21]. Most of the annual precipitation
(87%) occurs during the austral summer (December—March), when the more intense easterly
winds bring humid air masses coming from the Atlantic Ocean via Amazonia and the
Gran Chaco [21]. In addition to the altitudinal gradient, this precipitation also presents
a latitudinal gradient decreasing from north to south due to the shadow effect of the
Andes [22]. Minor, frontal and highly geographically irregular precipitation also occurs
during the austral winter (June-September), often as snowfalls caused by westerly humid
cold winds from the Pacific Ocean [21].

The hydrographical network of the Salar the Atacama is limited to two rivers (the San
Pedro and Vilama rivers) flowing from north to south that discharge in the north of the
nucleus and many ephemeral streams flowing from the eastern summits westward to the
nucleus that disappear through infiltration in the alluvial fans located all along the eastern
slopes of the basin [23].

Three study areas within the Salar de Atacama were considered in this study (Figure 2):

7. Camar. A gully where there was evidence of damages caused by flash floods was
selected to perform a first test. In order to avoid any interference related to the rugged
topography;, this study area was limited to the downstream edge of the gully and its
alluvial fan.

8.  Socaire. A second study area with different characteristics was selected for verification:
it includes the alluvial fan of three gullies that converge.

9.  Eastern slopes. Finally, in order to exploit the capacity of INSAR to cover large areas,
the study area was enlarged to include all the eastern slopes of Salar de Atacama,
from the summits to the alluvial fans.
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@® Humidity measuring stations
@ Rainfall gauges

; D Study area of Camar

| [ study area of Socaire

I:I Sub-basins

D Study area of the eastern slopes

T

{ Tt

N
: (eastern slopes extended) A

SAR coherence data

Figure 2. Study area: (a) Location of Salar de Atacama, in the northeast of Chile; (b) Salar de
Atacama. The nucleus is at 2300 m.a.s.1.,, and the eastern summits exceed 6000 m.a.s.1; (c) Study area
of the eastern slopes of Salar de Atacama (blue); (d) Study area of Camar (green); (e) Study area of
Socaire (purple).

2.3. Data
2.3.1. SAR Data

This study included two SAR datasets, one for the construction or calibration of the
classification models (Table A1, in Appendix A) and another one for the validation of the
results (Table A2). The first dataset comprised 75 SAR images from 2 April 2015 to 3 July
2018, and the second dataset spanned an extra year with 59 SAR images from 3 July 2018 to
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4 July 2019. In total, this study included 134 Sentinel-1A and B SAR images, downloaded
as Single Look Complex (SLC) images acquired in Interferometric Wide Swath (IWS) mode
in a descending trajectory along the orbit 156. The frequency of data acquisition—i.e., the
temporal baseline—ranged from 24 days in 2015 to 6 days from 2018, with some isolated
exceptions and a maximum of 48 days. The perpendicular baseline ranged from 1 to 119 m
with an average of 47 m for the calibration dataset, and from 1 to 156 m with an average of
62 m for the validation dataset. The INSAR coherence (Equation (2)) was calculated over a
2 x 10 pixel multilook window.

2.3.2. Meteorological Data

The results of the classification models were compared with meteorological data for
validation. Three meteorological variables were considered: rainfall, the relative humidity
of the air (RH) and snow cover. Daily accumulated rainfall and daily average RH records
were retrieved from meteorological stations of the Direccion General de Aguas (DGA) [24],
Ministry of Public Works (MOP) of Chile (Table A3). Since the records show a significant
geographical variability of rainfall (see the range in Figure 3), the considered stations were
located not only within the study area but also in the surroundings as complementary data
for an improved interpolation in their interpretation (Figure 2).

200 + 1 2 AR A 1 B AR R AT AR A2 20
180 18
160 — — 16
140 14 Z
€ 3
£ 120 12 g
= o
E 100 10 :
'% 80 y e 8 §
(o a ,‘\\ =t
60 H - 6 3
Y : <
40 - 4
20 A — 2
0 N A NERAG A
01/04/2015 01/04/2016 01/04/2017 01/04/2018 01/04/2019
Camar Talabre Socaire Peine
Minimum  ------- Maximum num. stations

Figure 3. Accumulated rainfall during the period between consecutive SAR images. Minimum and
maximum series refer to all the stations available (see Table A3). See location of the meteorological
stations in Figure 2. “num. stations” stands for the number of meteorological stations with records.
The horizontal axis at the top indicates the SAR images and the ID numbers of the rasters.

The snow cover was obtained from Moderate Resolution Imaging Spectroradiometer
(MODIS) snow cover product version 6. MODIS snow cover products offer a one-day
temporal resolution and an approximately 500 m spatial resolution for regional snow cover
mapping [25-28], with the visual obstruction caused by clouds [29,30], vegetation and
rugged relief in mountainous areas [31,32] being their main limitations. In the study area,
the MODIS data are affected only by the cloud cover. The snow cover products are produced
with the SNOMAP algorithm, which is essentially based on the normalised difference snow
index (NDSI). MODIS snow cover time series were created and downloaded with the
MODIS Time Series Preprocessing (MODIStsp) R-package [33] and included data acquired
by the Terra satellites (MOD10A1). The postprocessing of the data involved the removal
of errors due to salts and clouds mistaken for snow, the linear interpolation of missing
data during heavy snowfalls, the calculation of the extent of the snow cover in the study
area, and the search for and correction of outliers. Finally, the time series of the extent of
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the snow cover was translated into thaw;, i.e., decreases in the snow cover, negative daily
variations (Figure 4).

1 10 20 30 40 50 60 70 80 90 100110120130

0.000 ++ + Fhymgmn  H AR A -T++ A
-0.005
—~-0.010
-0.015 H
-0.020
-0.025

-0.030

Thaw (Akm?2 /d /km2

-0.035

-0.040

-0.045
01/04/2015 01/04/2016 01/04/2017 01/04/2018 01/04/2019

Talabre Socaire eastern slopes

Figure 4. Average daily rate of decrease in the snow cover during the period between consecutive
SAR images. Sub-basins of Talabre and Socaire and ensemble of eastern sub-basins (Rio Grande,
Toconao, Talabre, Socaire and Monturaqui). Ratios per km?. See sub-basins and their extents in
Figure 2. The horizontal axis at the top indicates the SAR images and the ID numbers of the rasters.

3. Results and Discussion
3.1. Construction of the Model

The changes in INSAR coherence are not uniform in space, so they do not affect all
three study areas in the same way (Figure 5). Thus, the results are not exactly the same from
one area to the other. However, they are consistent: in the classification of the histograms
(Figure 6), a general pattern consisting of unimodal distributions with low dispersion and
a mode shifted to high values is observed in all three zones. For example, for the eastern
slopes, the standard deviation is 24 + 4 and the mode ranges from 210 to 230 (the coherence
is normalised to the range [0, 254]). In the same way, this general pattern is altered on
specific dates that are coincident in all three zones, in which the dispersion increases and
the mode adopts lower values. These are the dates classified as potential events of fluvial
sediment transport (red-framed histograms in Figure 6). In this sense, PLS-DA corroborates
that, in all three study areas, there are two sets of histograms (“events” or “positives” and
“non-events” or “negatives”) that are clearly distinguishable (Figure 7).

In fact, the two sets are so distinguishable that all the potential markers are able to
classify the histograms well: both the VIP values (Figure 8 and Table 1) and the AUC
(Figure 9 and Table 2) are high, in general; the VIP values are very close to or higher than 1
(remember that a marker is considered relevant if it has a VIP equal to or higher than 1); and
the AUCs are always higher than 0.85 (above 0.7 is considered to have a predictive ability;
remember that the AUC can be 1 at most). Therefore, a classification model including only
one marker will already provide very good results, in this case.
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Pre-event: 012 22/12/2015 - 15/01/2016 Event: 013 15/01/2016 —03/03/2016

(c)
e
Coherence
254

Post-event: 014 03/03/2016 —27/03/2016

Figure 5. Examples of rasters of coherence between consecutive SAR images. Black is null coherence;
white is total coherence. Sequence of pre-event (a), during the event (b) and postevent (c): the
coherence diminishes during the event and recovers afterwards but not uniformly or everywhere.
For geographical reference, the study area of the eastern slopes is marked in blue.

Table 1. VIP scores of the potential markers for each study area (Figure 2). “p90-p10” stands for the
difference between percentiles 90 and 10.

Camar Socaire Eastern Slopes
Average 1.18 1.12 1.05
Median 1.15 1.17 0.96
Mode 0.26 1.12 0.94
Frequency of the mode 1.20 0.91 1.11
Standard deviation 1.23 0.79 0.95
p90-p10 0.52 0.82 0.97

Table 2. AUC of the ROC curves of each marker in each study area (Figure 2). It measures the
predictive capacity of the marker. Again, the average is the only marker that stays within the top 3 in
every study area.

Camar Socaire Eastern Slopes
Average 0.955 1.000 0.994
Median 0.945 1.000 0.987
Mode 0.917 0.998 0.947
Frequency of the mode 0.969 0.975 0.998
Standard deviation 0.957 0.866 0.943

p90-p10 0.951 0.892 0.977




Remote Sens. 2023, 15, 3034 13 of 26

100%
80%
60%
40%
20%
0%

w
o

bbb D
=

49 62

.
3

paieinwinday

L

63
o o 9 =]

~N
InSAR coherence

20
60

Frequency (x 10000)
OFRr NWRAOM
4
8l
1
1
(0]

240

-
.

[N

> b
L b b

12

N
[$))

L b

64

.

13 26 6

-
.

e
i
B

30 6!

-
©o

31 70

N
-

.
b
QN

32 71

QYN
b
L

i
1

72

=
o

TR
.
%

N
w
N

L
L
L

[o2]

73

74

>

Figure 6. Histograms of the rasters of coherence between consecutive SAR images in the study area
of the eastern slopes. The numbers of the histograms identify the rasters chronologically. See dates in
Table Al and the location and extent of the study area in Figure 2: (a) Camar; (b) Socaire; (c) eastern
slopes. Some histograms (framed in red) clearly differ from the general pattern, hypothetically due to
fluvial sediment transport events.
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Figure 7. PLS predictions for the rasters of coherence between consecutive SAR images, for each
study area (Figure 2). The numbers of the histograms identify the rasters chronologically. The graphs
show that positives (events) and negatives (non-events) are clearly distinguishable.
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Figure 8. Variable importance in projection (VIP) scores of the potential markers for each study area
(Figure 2): (a) Camar; (b) Socaire; (c) eastern slopes. “Freq. mode” stands for the frequency of the
mode; “std. dev.” stands for the standard deviation; “p90-p10” stands for the difference between
percentiles 90 and 10. Values above 1 are usually considered relevant. The average is the only marker
that stays within the top three in all three study areas.
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Figure 9. Receiving operating characteristic (ROC) curves of the average coherence between consecu-
tive SAR images for each study area (Figure 2): (a) Camar; (b) Socaire; (c) eastern slopes. AUC stands
for the area under the curve, which measures the predictive capacity of the marker (the average SAR
coherence, in this case). The red points are the thresholds that maximise the specificity. (d) ROC
curve for the eastern slopes with coherence data corrected with the perpendicular baseline (see later
in this section).

However, the variability from one study area to another in both the general pattern of
the spatial distribution of coherence (coherence rasters for non-events) and the variations
in coherence during events means that the results between the three zones are not always
exactly the same when identifying the optimal marker. Still, they are similar and, as already
observed, very good for all markers, in general. Among all of them, the average stands
out as the best marker: it has a VIP score above 1 and an AUC above 0.95 in all three study
areas, and it is the only marker that is always in the top three in both the VIP and the AUC
for all three study areas (Table 3).

Table 3. Top 3 markers according to the VIP scores of the PLS-DA and the AUCs of the ROC curves
for each study area (Figure 2). “Freq. mode” stands for the frequency of the mode; “p90-p10” stands
for the difference between percentiles 90 and 10. The average is the most repeated marker.

Camar Socaire Eastern Slopes

Standard deviation Median Freq. mode
PLS-DA VIPs Freq. mode Average Average
Average Mode p90-p10

Freq. A Freq.

ROC curves req moc.le . verage req. mode
AUC Standard deviation Median Average
S Average Mode Median

Regarding the classification threshold, based on the ROC curves and with the criterion
of maximizing specificity (i.e., minimizing “false positives”), if the average coherence
between consecutive SAR images drops below 162 in Camar, 163 in Socaire or 177 in
the eastern slopes, an event of fluvial sediment transport has probably occurred, with a
sensitivity of 63, 100 or 80%, respectively. Note that the thresholds in Camar and Socaire are
very similar, while the threshold is clearly different for the eastern slopes. This makes sense:
the Camar and Socaire study areas cover only one alluvium each, whereas the eastern
slopes include several gullies from top to bottom, not only the alluvium at the base.

3.2. Validation

The comparison of the results of the classification models with the meteorological
data from 2015 to 2018 is good in all three study areas: there are discrepancies between
the models and the meteorological data, but most of them are false negatives around
events confirmed by the meteorological data (Figure 10a,c until raster 74). These false
negatives could be interpreted as the model detecting the core of each event and just
missing the minor affectations at the beginning and at the end of the event. Moreover, all
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the discrepancies are false negatives, which is coherent with the criterion chosen when
determining the thresholds—minimising the false positives.
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Figure 10. Comparison between meteorological data (rainfall and thaw) and coherence between
consecutive SAR images in the eastern slopes: (a) Uncorrected model, classification model based
on coherence non-corrected with the perpendicular baseline; (b) Corrected model, model based
on corrected coherence. In the horizontal axis, both the time (below) and the SAR images and ID
numbers of the rasters (above) are indicated; (c) A visual classification of histograms is also included.
Coloured circles indicate discrepancies with meteorological data. Rainfall: average daily rainfall
(mm/24 h) during the period between consecutive SAR images in the meteorological station with the
largest amount of rainfall accumulated in the same period. Only stations considered relevant for the
eastern slopes have been included, i.e., all the stations except for Chaxa, Cordillera de la Sal, KCL,
LZA10-1, LZA12-3 and SOP (Figure 2 and Table A3). Thaw: average daily decrease in the snow cover
(100 km? /d) in the sub-basins of Talabre and Socaire combined (Figure 2), per unit of area (km?).

However, the comparison with the validation data (2018-2019) is not satisfactory:
there are several discrepancies that are not associated with any event (Figure 10a from
raster 74 onwards), and, more importantly, there is a change in the errors, from false
negatives to false positives, despite the criterion used in the determination of the threshold
(Figure 10c from raster 74 onwards). This change motivated a verification of the validation
data to check whether there is any difference with the calibration data (2015-2018), but no
difference is observed in the time series of the markers (see, for instance, the time series of
the average coherence in Figure 10a before and after raster 74; the same happens with all
the other markers).

Then, the main hypotheses were checked:
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Average coherence

® av. negatives

@ av. positives

e  Hypothesis: the relative humidity of the air only affects the INSAR coherence during
and shortly after rainfall events. Confirmed: no correlation is observed (Figure 11a).

e Hypothesis: with Sentinel, the temporal baseline does not significantly affect the
coherence between consecutive SAR images. Confirmed: no correlations are observed
between the temporal baseline and any of the markers (Figure 11b).

e  Hypothesis: with Sentinel, the perpendicular baseline does not significantly affect the
InSAR coherence either. Rejected: the highest values of the average coherence between
consecutive SAR images show a clear negative linear trend with the perpendicular
baseline (Figure 12a). This correlation is interpreted as the effect of the perpendicular
baseline on the INSAR coherence, while the dispersion of the data for lower values
is related to the events of fluvial sediment transport. Note that the validation data
have the largest perpendicular baselines of the period 2015-2019, i.e., larger than the
calibration data (Figure 12a,b).
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Figure 11. (a) Scatter plot of the average coherence between consecutive SAR images in the eastern
slopes against the minimal, average and maximal daily average relative humidity of the air during
the period between consecutive SAR images. Data from all the meteorological stations considered
relevant for the eastern slopes are included, i.e., all the stations except for Chaxa, Cordillera de la Sal,
KCL, LZA10-1, LZA12-3 and SOP (Figure 2 and Table A3). (b) Scatter plot of the average coherence
between consecutive SAR images in the eastern slopes against the temporal baseline (days). Each
circle is a raster. In both figures, red circles represent events, according to the visual classification of
the histograms; grey circles represent non-events. No correlations are observed in any case, nor for
the other markers.

3.3. Correction of the Model

According to this finding, the model is corrected to take into account the effect of the
perpendicular baseline. Due to its linear correlation with the average INSAR coherence, the
classification threshold is no longer a constant value of average coherence but a straight
line that relates both variables (as in Figure 12a) or, equivalently, a constant threshold for
coherence data corrected according to this line (as in Figure 10b). However, it is worth
noting that the correlation of the perpendicular baseline is not linear with all the markers:
it is linear with the average, the median and the mode but not with the frequency of the
mode, the standard deviation or the difference between percentiles 90 and 10. Therefore, in
the construction of the model, the correction will need to be adapted in each case according
to the optimal marker.
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Figure 12. (a) Scatter plot of the average coherence between consecutive SAR images in the eastern
slopes against the perpendicular baseline (orbit errors). Each circle is a raster: red circles are events,
according to the visual classification of the histograms, whereas grey circles are non-events. Filled
circles: calibration data (2015-2018); empty circles: validation data (2018-2019). The ID number of the
raster is shown for events, under the red circles. A linear correlation exists for the highest values of
coherence (dashed blue line). The corrected threshold to identify an event (continuous blue line) is
the transposition of the correlation line that minimises the classification error for calibration data.
(b) Time series of the perpendicular baseline. The horizontal axis at the top indicates the ID numbers
of the rasters.

Thus, in this case, with the average being the optimal marker and its correlation with
the perpendicular baseline being linear, in order to determine the corrected threshold,
first, the range of values of the perpendicular baseline is divided into ten intervals, each
containing 10% of the (calibration) data. Then, simple linear regression (dashed blue line
in Figure 12a) is performed with the maxima of these intervals (blue circles in Figure 12a).
Finally, the line is transposed so that the classification error is minimised (continuous blue
line in Figure 12a). Thus, in summary, the model can be expressed as follows:

if{coha™ = cohgy + [thres — (m-b, +n)|} < thres => event 4)
as represented in Figure 10b or, equivalently, it can be simplified to the following:
if {cohs™ = cohgy —m-by} < n = event (5)

where col, is the (non-corrected) average coherence between consecutive SAR images,
cohgy,™ is the corrected average coherence, thres is the threshold of the average coherence
determined with the ROC curves with the criterion of maximising the specificity, m is the
slope of the simple linear regression of the highest values of average coherence against
the perpendicular baseline, b, is the perpendicular baseline and 7 is the vertical intercept
determined by minimising the classification error. For instance, for the eastern slopes of
the Salar de Atacama, the model is as follows:

if{cohgy + [177.1 — (—0.3139-b, +201.85)] } < 177.1 = event )
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or, in a simpler way,
if{cohsy + 0.3139-b, } < 201.85 = event (7)

3.4. Validation of the Corrected Model

The corrected model fits the calibration meteorological data well: the discrepancies
that remain are all false negatives around confirmed events (Figure 10b,c until raster 74).
Moreover, the discrepancies are also between the visual classifications of the histograms
and the meteorological data, which could be interpreted not as errors of the model but
rather as problems of the meteorological or SAR data. In any case, the time series of the
corrected coherence is much cleaner and stable than the non-corrected one (Figure 10a
vs. Figure 10b), and its AUC is 1 (i.e., the predictive capacity is maximal) (Figure 9d).
Regarding the validation data, the agreement between the corrected classification model
and the meteorological data is total (Figure 10b,c from raster 74 onward).

3.5. Meteorological Variables

Finally, ROC curves can also determine the thresholds of rainfall and thaw that need
to be exceeded for an event of sediment transport triggered by a flash flood to occur
(i.e., somehow, effective runoff thresholds). For instance, in the eastern slopes of Salar de
Atacama, a rainfall event (consecutive days with non-null precipitation) greater than § mm
and a decrease in the snow cover greater than 13 km? in 24 h can be associated with fluvial
sediment transport events with a sensitivity of 60 and 75% and a specificity of 80 and 67%,
respectively (Figure 13 and Table 4).
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Figure 13. ROC curves of (a) the maximal rainfall and (b) thaw in the eastern slopes (Figure 2). The
red points are the thresholds that maximise specificity; blue points maximise sensitivity; green points
maximise the sum of specificity and sensitivity. Rainfall data correspond to the maximal rainfall
recorded at the stations considered relevant for the eastern slopes, i.e., all the stations except for
Chaxa, Cordillera de la Sal, KCL, LZA10-1, LZA12-3 and SOP (Figure 2 and Table A3). Thaw: average
daily decrease in the snow cover in the sub-basins of Talabre and Socaire (Figure 2).

Precisely, the AUCs of the meteorological variables (Figure 13), significantly lower than
the AUCs of the statistics of the histograms of the rasters of coherence between consecutive
SAR images and close to the standard threshold of predictive capacity (0.7), are a symptom
of the problem of the representativity of the meteorological data. In fact, the meteorological
variable with the largest AUC (0.882) is the combination of rainfall and thaw, not any
of these two variables alone. In other words, rainfall records complemented with thaw
data are more explanatory of the changes over time in the INSAR coherence than rainfall
data alone, which could be interpreted as the records of rainfall being “incomplete”, not
detecting all the precipitations or not detecting them well enough.

3.6. Sensitivity Analysis to the Study Area

The sensitivity analysis of the results to the study area closes the discussion. As stated
in the explanation of the methodology, if the study area is limited to the area potentially
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affected by the phenomena under analysis and avoids areas affected by other phenomena,
the results are clearer. However, the question remains as to how sensitive the results are to
the accurate delimitation of the study area. For this purpose, an extended perimeter of the
study area of the eastern slopes is analysed (Figure 2c). This extended area includes a part
of the eastern margin of the nucleus of Salar de Atacama and some of the eastern summits,
which are the zones that suffer the most significant changes in the INSAR coherence in the
region. Despite enlarging the study area by 29% and including these zones, the results are
essentially the same and, more importantly, the classification model remains the same as
well (Figure 14).

Table 4. Classification thresholds from ROC curves for rainfall (mm) and thaw (i.e., average daily
decrease in the snow cover (km?/d)), with the corresponding sensitivities and specificities. The
thresholds can be determined by maximising either the sensitivity, the specificity or the sum of
both. The thresholds are estimates of the minimal necessary rainfall and thaw for a fluvial sediment
transport event to occur in the eastern slopes of Salar de Atacama (sub-basins of Talabre and Socaire).
Rainfall data correspond to the maximal rainfall recorded by the stations considered relevant for the
eastern slopes, i.e., all the stations except for Chaxa, Cordillera de la Sal, KCL, LZA10-1, LZA12-3 and
SOP (Figure 2 and Table A3).

Sensitivity Sens. + Spec. Specificity
Threshold 1.10 8.23 33.84
Rainfall (mm) Sensitivity 0.75 0.60 0.25
Specificity 0.50 0.80 1.00
Threshold —0.7 —12.5 —58.7
Thaw (km?/d) Sensitivity 0.95 0.75 0.15
Specificity 0.11 0.67 1.00
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Figure 14. Sensitivity analysis of the study area. Eastern slopes: study area used in this paper, limited
to the area potentially affected by sediment transport events, versus extended tangential rectangular
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study area (see Figure 2c). (a) PLS predictions of the INSAR coherence maps or rasters. (b) VIP
scores of the potential markers. “Freq. mode” stands for the frequency of the mode; “std. dev.”
stands for the standard deviation; “p90-p10” stands for the difference between percentiles 90 and
10. (c) ROC curves of the average INSAR coherence. The coloured points are the thresholds that
maximise sensitivity (blue), specificity (red) or the sum of both (green). The results of the extended
study area are less clear—as expected—but remain similar, and, more importantly, the classification

model remains the same.

4. Conclusions

Classification models based on InNSAR coherence data have been proven to be able to
remotely detect sediment transport events related to flash floods in arid environments, as
illustrated in this paper with the case of Salar de Atacama (Chile).

One of the main findings of this study is that the perpendicular baseline does have
a relevant effect on the InNSAR coherence that needs to be taken into account when using
InSAR coherence to detect fluvial sediment transport events: only when including the
perpendicular baseline is the classification model developed in this work able to reproduce
the meteorological observations.

However, the representativity of the meteorological data for highly remote and inac-
cessible yet extremely relevant areas has been proven to be insufficient in this work. For
instance, the predictive capacity of the meteorological variables—measured with the AUC
of the ROC curves—is clearly lower than that of the INSAR coherence and, therefore, of the
classification model; rainfall and thaw combined have a greater predictive capacity than
rainfall records alone.

Finally, this research has also shown that the conclusions derived from one event in
one study area do not necessarily allow one to detect and characterise other events, either
in the same study area or in a different one. For instance, if considered alone each one of the
three study areas here analysed would have led to a classification model using a different
marker to detect fluvial sediment transport events. In the same way, the validation data
have led to the realisation that the model developed before verifying the hypotheses of
the literature was not valid for later events. Three study areas and four years of data have
allowed us to develop a more reliable classification model.

All these findings will increase the reliability of maps based on InNSAR coherence. In
addition, the method here proposed detects the occurrence of events that have significantly
affected the coherence and the duration of the temporal effects on the coherence related to
each event, which will allow focusing the mapping tasks only on the relevant dates. Finally,
once calibrated, the model here developed will enable the automatised remote detection of
new events.
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Appendix A
Table Al. Rasters of coherence between consecutive SAR images. Calibration dataset.
Coherence Perpendicular Temporal
Raster 1st Image 2nd Tmage BaI:eline (m) Baseli};e (d)
1 02/04/2015 26/04/2015 117 24
2 26/04/2015 20/05/2015 50 24
3 20/05/2015 13/06/2015 920 24
4 13/06/2015 07/07/2015 110 24
5 07/07/2015 31/07/2015 41 24
6 31/07/2015 24/08/2015 91 24
7 24/08/2015 17/09/2015 119 24
8 17/09/2015 11/10/2015 16 24
9 11/10/2015 04/11/2015 50 24
10 04/11/2015 28/11/2015 29 24
11 28/11/2015 22/12/2015 54 24
12 22/12/2015 15/01/2016 58 24
13 15/01/2016 03/03/2016 45 48
14 03/03/2016 27/03/2016 10 24
15 27/03/2016 20/04/2016 72 24
16 20/04/2016 14/05/2016 79 24
17 14/05/2016 07/06/2016 71 24
18 07/06/2016 25/07/2016 28 48
19 25/07/2016 18/08/2016 30 24
20 18/08/2016 11/09/2016 58 24
21 11/09/2016 29/09/2016 66 18
22 29/09/2016 11/10/2016 77 12
23 11/10/2016 04/11/2016 9 24
24 04/11/2016 28/11/2016 100 24
25 28/11/2016 22/12/2016 97 24
26 22/12/2016 15/01/2017 16 24
27 15/01/2017 08/02/2017 84 24
28 08/02/2017 04/03/2017 19 24
29 04/03/2017 16/03/2017 75 12
30 16/03/2017 28/03/2017 49 12
31 28/03/2017 09/04/2017 52 12
32 09/04/2017 21/04/2017 43 12
33 21/04/2017 03/05/2017 4 12
34 03/05/2017 15/05/2017 22 12
35 15/05/2017 27/05/2017 86 12
36 27/05/2017 08/06/2017 54 12
37 08/06/2017 20/06/2017 36 12
38 20/06/2017 02/07/2017 6 12
39 02/07/2017 14/07/2017 61 12
40 14/07/2017 26/07/2017 68 12
41 26/07/2017 07/08/2017 11 12
42 07/08/2017 19/08/2017 15 12
43 19/08/2017 31/08/2017 51 12
44 31/08/2017 12/09/2017 34 12
45 12/09/2017 24/09/2017 17 12
46 24/09/2017 06/10/2017 92 12
47 06/10/2017 18/10/2017 9 12
48 18/10/2017 30/10/2017 80 12
49 30/10/2017 11/11/2017 27 12
50 11/11/2017 23/11/2017 15 12
51 23/11/2017 05/12/2017 87 12
52 05/12/2017 17/12/2017 4 12
53 17/12/2017 29/12/2017 35 12
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Table Al. Cont.
Coherence Perpendicular Temporal
Raster Ist Image 2nd Tmage Bageline (m) BaseliI;e (d)
54 29/12/2017 10/01/2018 48 12
55 10/01/2018 22/01/2018 1 12
56 22/01/2018 03/02/2018 41 12
57 03/02/2018 15/02/2018 5 12
58 15/02/2018 27/02/2018 7 12
59 27/02/2018 11/03/2018 14 12
60 11/03/2018 23/03/2018 38 12
61 23/03/2018 04/04/2018 103 12
62 04/04/2018 16/04/2018 59 12
63 16/04/2018 22/04/2018 17 6
64 22/04/2018 28/04/2018 26 6
65 28/04/2018 04/05/2018 15 6
66 04/05/2018 10/05/2018 81 6
67 10/05/2018 22/05/2018 14 12
68 22/05/2018 28/05/2018 28 6
69 28/05/2018 03/06/2018 40 6
70 03/06/2018 09/06/2018 61 6
71 09/06/2018 15/06/2018 60 6
72 15/06/2018 21/06/2018 40 6
73 21/06/2018 27/06/2018 64 6
74 27/06/2018 03/07/2018 17 6
Table A2. Rasters of coherence between consecutive SAR images. Validation dataset.
Coherence Perpendicular Temporal
Raster 1st Image 2nd Image Baseline (m) BaseliI;e (d)
75 03/07/2018 09/07/2018 75 6
76 09/07/2018 15/07/2018 37 6
77 15/07/2018 21/07/2018 139 6
78 21/07/2018 27/07/2018 151 6
79 27/07/2018 02/08/2018 18 6
80 02/08/2018 08/08/2018 11 6
81 08/08/2018 14/08/2018 20 6
82 14/08/2018 20/08/2018 74 6
83 20/08/2018 26/08/2018 71 6
84 26/08/2018 01/09/2018 103 6
85 01/09/2018 07/09/2018 70 6
86 07/09/2018 13/09/2018 28 6
87 13/09/2018 19/09/2018 70 6
88 19/09/2018 25/09/2018 103 6
89 25/09/2018 01/10/2018 148 6
920 01/10/2018 07/10/2018 129 6
91 07/10/2018 13/10/2018 137 6
92 13/10/2018 19/10/2018 31 6
93 19/10/2018 31/10/2018 9 12
94 31/10/2018 06/11/2018 149 6
95 06/11/2018 12/11/2018 101 6
96 12/11/2018 18/11/2018 34 6
97 18/11/2018 24/11/2018 119 6
98 24/11/2018 30/11/2018 91 6
99 30/11/2018 06/12/2018 23 6
100 06/12/2018 12/12/2018 19 6
101 12/12/2018 18/12/2018 59 6
102 18/12/2018 24/12/2018 95 6
103 24/12/2018 30/12/2018 15 6
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Table A2. Cont.

Coherence Perpendicular Temporal
Raster Ist Image 2nd Image Bageline (m) BaseliI;e (d)
104 30/12/2018 05/01/2019 73 6
105 05/01/2019 11/01/2019 48 6
106 11/01/2019 17/01/2019 31 6
107 17/01/2019 23/01/2019 56 6
108 23/01/2019 29/01/2019 13 6
109 29/01/2019 04/02/2019 141 6
110 04/02/2019 10/02/2019 156 6
111 10/02/2019 16/02/2019 59 6
112 16/02/2019 22/02/2019 80 6
113 22/02/2019 28/02/2019 7 6
114 28/02/2019 06/03/2019 61 6
115 06/03/2019 12/03/2019 46 6
116 12/03/2019 18/03/2019 91 6
117 18/03/2019 24/03/2019 109 6
118 24/03/2019 30/03/2019 37 6
119 30/03/2019 05/04/2019 14 6
120 05/04/2019 11/04/2019 33 6
121 11/04/2019 17/04/2019 36 6
122 17/04/2019 23/04/2019 84 6
123 23/04/2019 29/04/2019 13 6
124 29/04/2019 05/05/2019 93 6
125 05/05/2019 17/05/2019 21 12
126 17/05/2019 23/05/2019 12 6
127 23/05/2019 29/05/2019 5 6
128 29/05/2019 04/06/2019 15 6
129 04/06/2019 10/06/2019 19 6
130 10/06/2019 16/06/2019 73 6
131 16/06/2019 22/06/2019 78 6
132 22/06/2019 28/06/2019 1 6
133 28/06/2019 04/07/2019 -8 6

Table A3. Meteorological records: stations and their coordinates and the time period covered by
the records of daily rainfall and relative humidity of the air (RH). See the location of the stations in

Figure 2.
Meteorological Rainfall Rainfall RH RH Latitude Longitude Altitude
Station from to from to WGS84 (°) WGS84 (°) (m.a.s.l.)
Camar 01/01/1986 30/04/2018 —23.410000 —67.960000 2700
Chaxa 01/08/1999 30/06/2018 01/01/2015 28/02/2019 —23.288920 —68.183490 2307
Cordillera_Sal 19/10/2017 31/03/2021 20/10/2017 21/02/2019 —23.641238 —68.562540 2363
Interna 10/07/2015 09/10/2017 —23.042575 —68.129584 2359
KCL 01/01/2015 31/07/2018 01/01/2015 30/04/2019 —23.542934 —68.398893 2307
LZA10-1 20/04/2015 21/02/2019 —23.741353 —68.241920 2309
LZA12-1 19/04/2015 11/02/2019 —23.348003 —68.099744 2316
LZA12-2 17/04/2015 11/02/2019 —23.553857 —68.086140 2317
LZA12-3 02/06/2015 27/02/2019 19/04/2015 20/02/2019 —23.042575 —68.129584 2359
LZA3-1 19/04/2015 22/02/2019 —23.474659 —68.107141 2306
LZA3-2 09/07/2015 31/12/2019 20/04/2015 11/02/2019 —23.430187 —68.115476 2306
LZA3-3 19/04/2015 21/02/2019 —23.360833 —68.113168 2318
LZA7-1 16/04/2015 11/02/2019 —23.561253 —68.101482 2312
LZA7-2 06/02/2015 11/02/2019 —23.610295 —68.079437 2311
LZA9-1 20/04/2015 11/02/2019 —23.693012 —68.174465 2310
Monturaqui 01/01/2015 30/06/2018 —24.345094 —68.437070 3430
Paso_Jama 18/08/2016 10/01/2022 18/08/2016 23/01/2019 —22.925545 —67.703100 4825
Paso_Sico 18/08/2016 08/01/2022 19/08/2016 30/09/2018 —23.825336 —67.441728 4323
Peine 01/01/1986 30/04/2018 —23.681879 —68.066942 2460
Rio_Grande 01/01/1986 30/04/2018 —22.651977 —68.167375 3217
SanPedrode  01/01/1986  31/12/2016 22910384  —68.200528 2450
Socaire 01/01/1986 31/12/2016 —23.587870 —67.891654 3251

SOP 01/01/2015 31/07/2018 01/01/2015 31/03/2019 —23.478960 —68.385836 2300
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Table A3. Cont.

Meteorological Rainfall Rainfall RH RH Latitude Longitude Altitude
Station from to from to WGS84 (°) WGS84 (°) (m.a.s.l.)
Talabre 01/08/1995 30/04/2018 —23.315846 —67.889638 3255
Tatio 01/01/1986 13/01/2022 —22.351323 —68.016396 4370
Toconao_DGAC 01/01/2015 25/08/2018 —23.207819 —68.026216 2495
Toconao_expe 01/01/1986 28/02/2009 —23.192581 —67.999524 2500
Toconao_P. 11/08/2016 09/01/2022 12/08/2016 31/12/2017 —23.185721 —68.005544 2492
Toconao_Q.1 19/08/2016  23/01/2019 —23.217932 —67.811939 3990
Toconao_Q.4 18/08/2016 31/12/2020 18/08/2016 01/01/2019 —23.156794 —67.900116 3437
Toconao_Retn 01/01/1986 31/01/1991 —23.197307 —68.011185 2460
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