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Abstract: In recent years, geological disasters have frequently occurred on basarlt highway slopes.
Studying the stability of highway slopes in this type of area is of great significance for traffic safety.
However, due to the high cost and low efficiency of traditional monitoring and experimental methods
for slope engineering, these methods are not conducive to the quick and comprehensive identification
of regional slope stability. Due to the high iron content of basalt, iron staining anomalies in the ore
prospecting field are reinterpreted from an engineering perspective in this study. Taking the S3K
section of a highway in Changbai County, China, as an example, Landsat8 remote sensing (RS) images
from 2014, 2016, 2018, 2020, and 2021 are selected, and principal component analysis is used to extract
iron staining anomalies in the region. Combined with field investigation and evidence collection, the
corresponding rock mass fragmentation is distinguished via iron staining anomalies. Then, according
to previous research results, eight indexes including annual rainfall, slope, topographic relief, surface
roughness, vegetation index, leaf area index (LAI), root depth of vegetation, and human activity
intensity are selected for investigation. The artificial neural network–cellular automata (ANN-CA)
model is established, and the rock fragmentation classification data obtained based on iron staining
anomalies are used to simulate the area. Next, the calculation formula of slope stability is determined
based on the simulation results, and the stability of a high and steep slope in the area is calculated
and analyzed. Finally, a comparison with an actual field investigation shows that the effect of the
proposed method is good. The research findings reveal that it is feasible to judge the stability of
a high and steep slope in a basalt area via the use of iron staining anomalies as an indicator. The
findings are tantamount to expanding the application scope of RS in practical engineering.

Keywords: Landsat8; iron staining anomalies; ANN-CA; slope stability; spatiotemporal evolution

1. Introduction

With the development of society in recent years, humans have faced many natural
disasters in their living environments, among which geological disasters are common.
Geological disasters in basalt platforms have been frequent [1–7] under the combined action
of control and inducing factors, so it is particularly necessary to study these characteristic
areas. However, the analysis of slope stability has been a challenge for researchers and
engineers beginning with Hooke [8] in the 17th century.

Slope stability analysis methods include both qualitative and quantitative approaches.
In 2010, Shen [9] summarized slope stability research methods and achievements in detail
and studied the stability of highway slopes in southeast Jilin Province, China, through
combining mathematical and physical methods. In recent years, research on the stability of
basalt slopes has mainly focused on the use of quantitative analysis methods. For example,
Zhou [10] and Li [11] studied the slope stability in a Guizhou basalt area via a field survey
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and the finite element method and analyzed the process of the influence of water infiltration
on slope stability. In 2015, Kainthola [12] studied the stability of the Mahabaleshwar basalt
slope in India through combining experimentation and a numerical model. In 2018, He [13]
used Midas GTS numerical analysis software to study the slope stability of the new village
of the Baihetan Hydropower Station. In 2021, Liu et al. [14] proposed a simplified dual-
strength finite element method and used the ABAQUS software platform for secondary
development to obtain a method consistent with the stability analysis of weathered basalt
soil mass in heavy rainfall areas. In the same year, Zhang [15] obtained the change rule of
rock mass strength under different water contents via triaxial test analysis and investigated
the safety and stability of basalt slopes with ABAQUS finite element software. In addition,
some new technologies have been continuously applied in practical applications and good
results have been achieved. For example, helicopter remote sensing (RS) technology has
been used to identify rock mass strength [16], and high-resolution three-dimensional point
clouds have been collected to analyze slope stability [17,18].

The previously mentioned schemes, geotechnical investigation, and multiple models
can be selected for the calculation and analysis of slope stability in basalt areas. [19,20].
However, although these methods are feasible, if regional slope stability research is con-
ducted, the workload will be increased dramatically, and personnel with high theoretical
and technical skills will be required. The implementation would be not only difficult and
time-consuming, but also very uneconomical. In fact, studies show that the mechanical
properties of a rock mass are closely related to its structural plane, structural body, and
occurrence environment [21]. Therefore, various geological interfaces in a rock mass, such
as folds, faults, beddings, joints, and schistosity, can lead to a change in the mechanical
properties of the complex natural environment; thus, the rock mass can be gradually broken,
which renders it vulnerable to water infiltration. When water acts on the rock mass, the
small material particles existing in the fracture can migrate through the hydraulic force via
the actions of corrosion, abrasion, and erosion, which will increase the porosity of the rock
mass [22]. With the passage of time, this is likely to cause instability in rock masses of high
and steep slopes, and even disaster.

Rock mass alteration generally occurs under a peculiar geological structural back-
ground [23]. Some studies have demonstrated that rock mass alteration will lead to a
decrease in mechanical properties [24,25]. The differences caused by alteration can easily
cause the heterogeneity of the rock mass properties and can form a weak zone of the
engineering rock mass in the local area [26]. Rock mass alteration has a definite causal
relationship with the weathering, crushing, and mechanical properties of the rock [27]. In
other words, rock mass alteration will cause slope instability. Iron staining anomalies are
a type of alteration that reacts to environmental changes and is more noticeable in basalt
areas with high iron content. In other words, when the detritus on the surface of a basalt
slope rock mass with high iron content migrates spatially in the natural environment, the
iron film cannot develop in time, which will lead to different spectral information at the
same spatial location. This relationship can be used for identification based on RS images.

As Qian Xuesen stated, “the best way to study things on the ground is in the sky. It is
very time-saving and the results are accurate” [28]. In view of this, the use of RS technology
for iron staining anomaly recognition is mature [29]. The S3K section of the Yalu River
Highway in Changbai Korean Autonomous County of Jilin Province, China, was chosen
as the research object of the present study. The area is located on a volcanic platform,
which is mainly basalt with high iron content [30,31], and the rock fracture development
of the highway slope is characterized by strong water action [32]. This has resulted in
a corresponding fracture surface with a high degree of thin iron film development, and
it is easy to identify abnormal changes in iron staining from RS images. Moreover, the
geological disaster points of the S3K highway section are concentrated, and the highway
is the artery of the local economy; thus, it has an important strategic position and affects
national geopolitical security [33,34]. Finally, this area is a typical volcanic platform, and
has a certain representative status.
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During the research process, principal component analysis (PCA) is used to extract
iron staining anomalies, and the degree of rock fragmentation is categorized according to
the field survey data. Referring to previous research results [29,33–37] and on the basis of
water–rock reaction theory, the index factors affecting slope instability (see Section 4.4) are
selected. Considering that the cellular automata (CA) model has the ability to simulate
the spatiotemporal evolution process of complex systems, it is easier to implement than
other models [38]. The combination of the artificial neural network (ANN) and CA models
can achieve the dual advantages of accuracy and speed. Thus, the ANN-CA model is
established to simulate the study area. Finally, Equation (11) is proposed to evaluate the
stability of a regional basalt slope with iron staining anomalies as an indicator (see Section 5).
After field verification, this method is determined to be suitable for this characteristic area.

2. Study Area

Changbai County is located in the southeast region of Jilin Province, China, at the
southern foot of Changbai Mountain and the right bank of the upper reaches of the
Yalu River. Its geographical coordinates are 127◦12′20′ ′–128◦18′10′ ′ east longitude and
41◦21′41′ ′–41◦58′02′ ′ north latitude. It is the most important Quaternary volcanic rock
distribution area in China, with a total area of 2497.6 km2. The territory is characterized by
dense mountains with peaks and valleys. Moreover, the traffic is relatively closed and is
mainly highway traffic.

The topography of the area is complex, with high terrain in the northeast and low
terrain in the southwest. The highest altitude is about 2457.4 m, the lowest altitude is about
450 m, and the average altitude is about 1570 m. The S3K section is located on the northern
side of the Yalu River, which is a slope zone in the front of the basalt platform. The slope is
steep with a relative height difference of about 300 m. There are 10 mountains in the area
where high-risk collapse geological disasters occur frequently. The general situation of the
area is illustrated in Figure 1.
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3. Theory and Methods
3.1. CA and ANN

The CA model is a grid dynamics model with discrete time, space, and state char-
acteristics, as well as local spatial interaction and temporal causality. It has the ability to
simulate the spatiotemporal evolution process of complex systems [39]. It is an idealized
model of a physical system whose physical parameters only include a finite number of sets.
The standard CA model is expressed in mathematical terms as follows:

A = (Zn, S, N, f ) (1)

where A represents a CA system, Zn represents n-dimensional Euclidean space, n is the di-
mension of the cellular space, and S is the finite discrete state set. S = {S1, S2, S3, . . . Si . . . Sk,},
among which Si denotes state I of the CA. Moreover, N is the neighborhood of the central
cell, which is a finite sequence subset of Si, N = (x1, x2, . . . , xi, . . . xn). Finally, xi is the
position of adjacent cells relative to the central cell, and f is the evolution rule of S from
time t to time t + 1. The structure of the CA is shown in Figure 2.
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The ANN is a nonlinear mathematical model that imitates the structure and function
of biological neural networks. It is composed of a large number of nodes and connections
between nodes. These nodes are called neurons, which are also cells in the human brain.
The construction of neural networks is the creation of machines that can simulate the
brain to realize artificial intelligence. As shown in Figure 3, each neuron contains one or
more dendrites. Dendrites are the input nerves of neurons that receive information from
other neurons. Each neuron also contains an axon, which is the output nerve of a neuron
that is used to transmit information to other neurons. Neurons have two working states,
namely, excitation and inhibition. Usually, neurons are in the state of inhibition. When
the input signal of the dendrite reaches a certain level, neurons change from inhibition to
excitation, and axons send signals to other neurons. Based on this principle, a neuron can
be regarded as a computing unit of the brain, and a neural network composed of neurons
can be regarded as a model simulating the brain. Neurons are divided into an input layer,
a hidden layer, and an output layer. The neural network receives the original feature
information through the input layer, then processes and extracts the feature information
through the hidden layer, and outputs the results through the output layer. The application
model was constructed in combination with the CA model, as detailed in Section 3.3.
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3.2. Theoretical Basis

The formation and evolution of the slope surface morphology have both spatial and
temporal characteristics [41]. Rock mass alteration influences the change of the rock mass
strength, which leads to rock mass fragmentation. According to the erosion cycle theory
put forward by Davis [42], the broken surface debris of a high and steep slope will migrate
in space under the action of gravity and many other factors, and will then re-expose the
original rock surface.

According to the pertinent results of RS research [29,43], a rock mass exists in one of
four states, namely, complete, relatively broken, broken, and extremely broken, which are
represented by 0, 1, 2, and 3, respectively. Under the action of gravity and other factors, the
surface debris of a sloping rock mass changes in the following ways: 3→ 2, 3→ 1, 3→ 0,
3→ 1, 2→ 0, and 1→ 0. The overall evolutionary process of the slope occurs based on the
cycle of instability–stability–instability–stability, which repeatedly affects the change of the
alteration information in both time and space.

In this study, each cell represents the fragmented situation of the slope where it is
located. According to previous research [30–33,37,43–46], RS technology [29,47] is used
to extract the iron staining anomaly value of the slope, and, in combination with field
verification, the cell structure is simplified and expressed by 0, 1, 2, or 3, respectively (see
Section 4). The cell radius of different rock masses may be different, and it is difficult
to determine. The Moore model has eight neighbors, i.e., the life and death of a cell are
determined by its own state at a certain moment and the state of its eight neighbors, which
is consistent with the law of rock mass evolution. Thus, the Moore type is selected as the
neighbor type of the CA, and the neighborhood is invoked as the scope of the evolution rule.
Furthermore, the advantages of the ANN, namely, that it can effectively deal with noise
and redundant or incomplete data, are considered [38]. The ANN is especially suitable for
dealing with nonlinear or complex geological systems that cannot be characterized using
mathematics. Thus, it is combined with the CA model to establish the ANN-CA model.
The research process is presented in Figure 4.
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3.3. Model Implementation Process

First, according to relevant studies [48–51], the neurons in the hidden layer are called
current neurons, which receive the signals of the neurons in the input layer. The selected
indexes affecting the slope stability (see Table 3) were normalized via ArcGIS10.4 software.
The sequence is X = [X1, X2, X3, . . . , Xi], and it was assumed that their corresponding
weights are W = [w1, w2, w3, . . . , wi]. They were connected with the current neurons to
achieve the purpose of transmitting information.

Then, the expression of the set formed by the cell K at the simulation time t can be
expressed as Equation (2), where T represents the transpose operation.

X(K, t) = [x1(k, t), x2(k, t), x3(k, t), . . . xi(k, t)]T (2)

Second, the hidden layer multiplies the received X(k, t) sequence by the corresponding
weight W and sums the results. Thus, the signal received by the current J-th neuron can be
recorded as netj(k, t) (Equation (3)).

netj(k, t) = ∑j wj,iX(k, t) (3)
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Third, the input signal is activated by the hidden layer, and the output of the neuron
is finally obtained. The conversion probability of the output layer value is shown in
Equation (4).

P(k, t, l) = (1 + (− ln γ)α)×∑j wj,l
1

1 + e−netj(k,t)
(4)

In this equation, 1+ (− ln γ)α represents the random disturbance factor, γ is a random
value within the range of [0, 1], and α controls random disturbance and expresses the
uncertainty caused by random factors in the process of rock mass evolution; in this study,
its value was set within the interval [1, 10]. Finally, 1

1+e−netj(k,t) is the response value of the

hidden layer.
Because error correction is not carried out in these three steps, it is difficult to meet

expectations. Thus, it is necessary to train the model. In this process, the neural network
compares the output with the actual output to clear the error, which implies the direction
and amplitude of the prediction results to be adjusted later. This information is backprop-
agated by the neural network, and the weight is adjusted for multiple training, which
continues until the weight value can fit the simulation prediction (see Figure 5).
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To better understand the implementation process of ANN-CA, the computer program
must be supplemented. First, the data layer of each factor affecting the change of the rock
mass structure type (see Table 2) and the current rock mass structure grid layer were used
as input data (see Section 4.2 for the explanation of the acquisition of this data). Then,
the sampling ratio of the data and the Moore neighborhood were set. The sampling ratio
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must be repeatedly adjusted according to the simulation results. Next, after completing
the first two steps, the ANN parameter settings were entered, including the learning rate,
the proportions of training and verification data, the number of cells in the hidden layer,
the number of iterations, etc. Then, the settings of simulation data were entered, and the
change of the rock mass structure from the beginning to the end was considered the total
simulation amount. When the total amount was reached, the program was terminated.
In the program, the quotient of the total conversion amount and the number of iterations
was taken as the number of cells for each iteration, and the cells for each iteration were
randomly selected by the program. If it could be converted, the number of conversions
was increased by 1. When the number of iterations was reached, the next iteration was
executed. Finally, the accuracy was checked, and if the accuracy was not satisfied, the
training parameters were adjusted until the requirements were met. Next, the conversion
matrix (see Section 3.2 for the rules), disturbance coefficient, conversion threshold, etc. (see
Section 4.4.2), were determined. Finally, the relevant model parameters were repeatedly
adjusted according to the accuracy of the simulation results until the research was satisfied.

4. Data Processing and Simulation
4.1. Image Acquisition and Preprocessing

Because the Operational Land Imager (OLI) sensor has a narrow band range as com-
pared with the Thematic Mapping (TM+) sensor, it can better extract alteration informa-
tion [47]. In combination with historical meteorological data, Landsat8 RS images with
a cloud volume of less than 2% and dated 30 May 2014, 19 May 2016, 18 October 2018,
29 May 2019, 30 May 2020, and 18 June 2021, respectively, were downloaded from the
Geospatial Data Cloud (https://www.gscloud.cn, accessed on 5 June 2023). The 1:10,000
Digital Elevation Model (DEM) data were sourced from the surveying and mapping de-
partment, domestic rainfall data were collected from the meteorological department, and
land-use data were obtained from the local natural resources bureau.

4.2. Extraction of Iron Staining Abnormalities

First, geometric correction, radiometric calibration, and FLAASH atmospheric cor-
rection of the RS images were performed with ENVI5.2 software. The RS images were
then masked with the vector data of the S3K segment after coordinate registration. Ac-
cording to the existing literature [29], the main information of iron oxides is concentrated
in bands 2, 4, 5, and 6, and the seventh band is omitted to avoid the influence of hydroxyl
and carbonate minerals. Thus, the combination of bands 2, 4, 5, and 6 was selected for the
PCA of iron staining anomalies. For the convenience of illustration, only the PCA tables for
19 May 2016 and 30 May 2020, are reported, as shown in Table 1. The other time-image
data processing methods were similar.

Table 1. The statistical analysis of the principal components of iron staining anomalies.

Date PC Band 2 Band 4 Band 5 Band 6 Contribution Rate (%)

19 May 2016

PC1 0.094610 −0.098194 0.989432 0.049301 76.49
PC2 −0.617834 −0.773717 −0.010745 −0.139745 22.33
PC3 −0.646450 0.398389 0.069112 0.647002 0.94
PC4 0.437531 −0.482707 −0.127011 0.747950 0.24

30 May 2020

PC1 0.195103 −0.033706 0.978984 0.048875 77.42
PC2 0.674310 0.720196 −0.115350 0.115408 21.45
PC3 0.646498 −0.540702 −0.121278 −0.524379 0.86
PC4 0.298801 −0.433386 −0.116516 0.842211 0.27

Based on the PCA results (see Table 1), and considering the spectral characteristics of
iron-stain-altered minerals [29], component PC1 was selected for analysis. According to
the histogram curve statistics provided via ENVI software, the digital number (DN) value
of the principal component layer in each year was calculated.

https://www.gscloud.cn
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4.3. Fragmentation Classification of the Slope

The distribution layer of iron staining anomalies obtained via PCA was correlated
with the spatial position of the survey data, and the DN value range corresponding to the
slope breakage was obtained, as shown in Table 2.

Table 2. The comparison between the measured data and abnormal DN values of iron
staining anomalies.

No. Longitude and Latitude of the Center
of the Survey Area Investigation of the Slope Rock Mass DN Value Range

1 127◦55′45′ ′, 41◦27′27′ ′ Broken to extremely broken 224~255

2 127◦50′46′ ′, 41◦25′11′ ′ Strongly weathered to weakly weathered,
and relatively broken 202~255

3 127◦48′05′ ′, 41◦25′18′ ′ Strongly weathered to weakly weathered,
and relatively broken 190~255

4 127◦46′53′ ′, 41◦25′23′ ′ Completely weathered to strongly
weathered, and broken to extremely broken 196~255

5 127◦40′33′ ′, 41◦25′12′ ′ Strongly weathered to weakly weathered,
and relatively broken 200~255

6 ---- Weakly weathered, and relatively complete 88~255
7 ---- Relatively broken 187~255
8 ---- Relatively complete 90~255
9 ---- Extremely broken 242~255
10 ---- Broken 197~255

Table notes: 1© Please refer to the extant literature [31] for details on the slope data sources for Nos. 1–5. 2© The
slope data for Nos. 6–10 were obtained from field surveys. 3© The longitude and latitude coordinate data are
classified and not listed in the table.

According to Table 2, the other 70 slope rock mass structures in the region were
investigated and verified (as shown in Table A1), and repeated numerical experiments were
carried out. Finally, DN values of less than 40 were set as “other types”, values of 40–130
were set as “complete”, values of 130–220 were set as “broken”, values of 220–245 were
set as “relatively broken”, and values greater than 245 were set as “extremely broken”.
Corresponding to Table 2 and Schedule 1 are integral block, block structure, fragmentation
structure, and granular structure. The reclassification tools in ArcGIS10.4 software were
respectively set to 0, 1, 2, and 3. The classification results from 2014 to 2021 are plotted
in Figure 6.

From Figure 6, it is evident that there were noticeable changes in the distribution
of iron staining anomalies in the slope from 2014 to 2021, thus reflecting spatiotemporal
variation. The most direct reason for the change was extremely heavy rainfall. Therefore,
the iron staining anomaly map obtained from RS analysis on 18 June 2021, after extreme
weather, was greatly changed as compared to that from 18 October 2018. For example, in
May and July 2018, continuous heavy rainfall in the region led to the instability and collapse
of multiple slopes, and rainy weather in July 2020, as well as extreme rainstorm weather
(https://m.thepaper.cn/newsDetail_forward_8985114, accessed on 8 June 2023) caused by
typhoons Bawei and Meissack in September of that year, led to the large-scale erosion of
highway slopes. Further research was therefore carried out, as subsequently presented.

https://m.thepaper.cn/newsDetail_forward_8985114
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4.4. Simulation of Slope Instability Evolution
4.4.1. Indicator Selection and Acquisition

The First Law of Geography holds that geographical objects or attributes are interrelated
in terms of spatial distribution, which includes clustering, random, and regular distributions.
As mentioned in Sections 1 and 3.2, the instability of the slope is closely related to rock
fragmentation, and this can be reflected in the change of iron staining anomalies.

Referring to the research results of Bell [52] on the relationship between geological dis-
asters and rainfall, as well as the literature on geological disasters in the region [27,28,30,41],
it is agreed that topography and geomorphology have important impacts on slope stability;
thus, slope, topographic relief, and surface roughness were selected for analysis. Second,
the leaf area index (LAI) can reflect the balance of the surface energy and interact with
many factors of precipitation [53]. Rock and soil systems are complex open systems char-
acterized by the exchange of energy and matter [54,55]. Thus, the instability of the slope
is manifested as an exchange of energy. Third, the root depth of slope vegetation affects
not only the absorption of soil moisture, but also the soil holding capacity, and a larger
root depth decreases soil erosion and instability. Finally, human engineering activities lead
to a decrease in the mechanical properties of slope rock mass, resulting in instability. The
control factors of the ANN-CA model were determined as the rainfall, slope, topographic
relief, surface roughness, vegetation index, LAI, root depth of vegetation, and human
activity intensity.

First, the Inverse Distance Weighted (IDW) tool module in ArcGIS10.4 software was
used to interpolate the rainfall space to obtain the rainfall layer data.

Then, the slope was obtained using the slope tool in ArcGIS10.4 software, and the
topographic relief was extracted from the slope data layer based on the 1:10,000 topo-
graphic data of the region. Moreover, the surface roughness was calculated according to
Equation (5). The topographic relief was calculated using the Range module in ArcGIS10.4
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software to calculate the maximum and minimum values of pixels in the neighborhood,
and the difference between them was obtained.

R =
1

cos(slope× 3.14159
180 )

(5)

Third, while there are many calculation methods for the LAI, the cubic polynomial
regression equation was used in this study, as given by Equation (6):

LAI = 14.544× NDVI3 + 1.935× NDVI2 − 3.877× NDVI + 1.798 (6)

where NDVI is the normalized difference vegetation index, the calculation of which is
obtained using

NDVI =
rNIR − rR
rNIR + rR

(7)

where rNIR is the near-infrared band and rR is the infrared band.
Fourth, based on the collection of field vegetation data for section S3K and the compar-

ison of LAI data obtained in the third step, it was found that the LAI value corresponding to
vegetation with a root depth over 60 cm exceeded seven. For the sake of research precision,
Yang [56] suggested that the maximum LAI values of woodland, grassland, and sparse
vegetation are 3, 2.6, and 1.0, respectively, which is due to the different geographical and
spatial environments and vegetation types in the studied area. The root depth data layer
can be calculated according to Equation (8).

Rdi = Rdmax
LAIi

LAImax
(8)

Finally, the human activity intensity index was calculated using Equation (9) [57]:

DT =
N

∑
i=1

AiPi
TA

(9)

where DT is the intensity of human activities, N is the number of landscape types, Ai is
the total area of landscape component i, Pi is the artificial influence intensity parameter
reflected by landscape component i, and TA is the total area of the landscape.

The control factor layer was normalized using the Fuzzy Membership module in
ArcGIS10.4 software, and the normalized raster layer was obtained. The datum was used
as the influencing factor of the CA model (see Table 3).

Table 3. The slope stability control factor used in the ANN-CA model.

No. Control Factor Acquisition Method Original Data Value Range Standardization Scope

1 Annual rainfall IDW 622–699 mm 0~1
2 Monthly extreme rainfall IDW >200 mm 0–1

3 Slope Slope tool in ArcGIS10.4
software 0~81.28◦ 0~1

4 Topographic relief Max-min 0~80 0~1
5 Surface roughness Equation (5) 1–6.15 0–1
6 LAI Equation (6) −6.9–14.4 0–1
7 NDVI Equation (7) −1–1 0–1
8 Rd Equation (8) 0–70 0–1
9 DT Equation (9) 0.83~0.9 0~1
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4.4.2. Model Training and Simulation

First, if the conversion probability p of slope fracture type L at time t is a random
factor, then the product of the ANN calculation probability, the neighborhood development
density, and the conversion suitability can be expressed as follows [51]:

P(k, t, l) = (1 + (− ln γ)α)× pANN(k, t, l)×Ωt
k × con(st

k)) (10)

where 1 + (− ln γ)α is a random factor, pANN(k, t, l) is the conversion probability of the
slope fragmentation type calculated using the trained ANN, and Ωt

k is the neighborhood
development density of the defined neighborhood window. Finally, con(st

k) is the conver-
sion suitability between the two types, the values of which are 0 and 1, which respectively
represent convertible and non-convertible.

In the simulation of normal climate years, the control index factor (Table 3) was set,
and the classification results of rock mass fragmentation on 30 May 2014, and 19 May 2016
(see Section 4.2) were used as the data to extract the conversion rules. The sampling ratio
was 10% and the neighborhood was 15 m × 15 m. In the model, the integrity of the rock
mass was used as a condition for terminating the computer program cycle.

According to geological law, we assume that the rock mass rules were set based on the
non-jump principle, e.g., a rock mass with integrity can be converted to a block rock mass,
and a non-jump rock mass can be converted to a fragmentary or granular rock mass. In
this process, the conversion can be set to 1 and the non-conversion can be set to 0. After
setting the rules, 19 May 2016 was set as the starting time, 2020 was set as the end year,
and the control index is provided in Table 3. The parameters were repeatedly run and
adjusted throughout the simulation experiment. Finally, the disturbance coefficient was 2,
the number of iterations was 200, the number of hidden layer cells was 18, the machine
learning rate was 0.06, and the conversion threshold was 0.6. The accuracy of the training
data set was 90.294%, and the accuracy of the verification data set was 89.324%. The
simulation data of a normal year were obtained using this set of parameters to simulate the
future (Figure 7a).

Similarly, for extreme years, the classification results of rock fragmentation on
19 May 2016 and 18 October 2018 were used as the extraction and conversion rule data.
The model was repeatedly run and the parameters were adjusted. Finally, the disturbance
coefficient was 8, the number of iterations was 300, the number of hidden layer cells was 22,
the machine learning rate was 0.05, and the conversion threshold was 0.8. The accuracy of
the training data set was 82.232%, and the accuracy of the verification data set was 79.648%.
The simulation data of abnormal weather years were obtained using this set of parameters
to simulate the future (Figure 7b).

Because future environmental change is unknown, the research process was divided
into two situations for simulation, namely, normal and extreme weather. The abnormal
iron staining value of the slope was found to remain stable under normal conditions, and
iron staining anomalies were found to undergo very strong changes in extreme ecological
conditions. When the environment tended to be stable, the iron staining anomalies in the
same spatial location were found to recover in about two years.

According to the real iron anomaly value in 2021 (an environmentally abnormal year),
assuming that 2022 is a normal year, via repeated computer experiments, the disturbance
coefficient of the model was determined to be 2, and the conversion threshold was set
to 0.6. Assuming that 2022 is an extreme weather year, the disturbance value of the model
was 8 and the conversion threshold was set to 0.8. The iron staining anomalies under
the two environmental conditions in 2022 were simulated. Similarly, based on the data
obtained from considering 2022 as an extreme year, it was assumed that 2023 will be a
normal year, and a simulation was carried out. To save space and facilitate discussion, only
two simulation results for 2022 are reported (Figure 7). The simulations for 2023, 2024 and
2025 were similar to those for 2022, and are therefore not described.
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5. Analysis and Discussion

Deming proposed that the greater the slope, the more serious the erosion, and the cor-
responding RS spectral characteristics of ground objects will also change significantly [58].
Yanjun posited that the rock mass structure is not static, and that it will change with envi-
ronmental impacts [59]. It is precisely because of this change that high and steep rock mass
slopes are unstable, so further analysis and discussion are needed to determine the stability
and evolution law of this type of slope.

5.1. Analysis Process

Referring to previous research results [60–64], the concept of an RS-based dynamic
index of the instability of highway slopes with iron staining anomalies as the indicator
is proposed (e.g., Equation (11)). In other words, the change area of the iron staining
anomalies of the slope in the grid serves as the basis for the evaluation of slope instability.

ITRYC = ∑
j−i

∣∣∣∣Kj − Ki

A

∣∣∣∣× 1
T
× 100%,(j ≤ 3, i ≤ 3, j > i, j, i ∈ N) (11)

where ITRYC denotes the intensity index of unstable variation in the unit, and Kj and Ki
respectively denote the areas of iron staining anomalies in the spatial unit at the end
and early stages. Moreover, A denotes the grid area, which is a 500 m × 500 m grid
established in ArcGIS10.4 software and clipped by the vector layer of the S3K section area,
and T represents the time interval between the end and the beginning of the study. The
absolute value symbol indicates that whether the calculated value is positive or negative is
not considered, and the value is unified as the change intensity.
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According to Equation (11), to save space, only the operation process of 2014 and 2016
is described, and the simulation data of 2016 and 2018, 2018 and 2020, 2020 and 2021, and
2021 and subsequent years are successively analyzed.

First, two RS images of iron staining anomalies were classified according to the gray
value, namely 0, 1, 2, and 3, which respectively correspond to complete, relatively broken,
broken, and extremely broken, for different calculations. Then, they were combined with
the Combine tool in ArcGIS10.4 software, and the corresponding image spots of 3→ 2,
3→ 1, 3→ 0, 2→ 1, 2→ 0, and 1→ 0 were extracted. The area was counted and saved as
the corresponding layer file using the Geometry Attributes module in the software, and
these layers were fused into a layer with the Merge tool. Finally, the grid data were loaded,
and the Join tool was selected. The area of the grid occupied by the patches was counted
according to the spatial location.

According to the Chebyshev inequality theory and with reference to the standard soil
erosion intensity classification table (SL190-96), the statistical data of the slope stability
classification in this area were obtained according to the grid ratio of abnormal iron staining
changes in normal and abnormal years, as shown in Table 4.

Table 4. The statistics of the abnormal change area of iron staining anomalies and the dynamic degree
of slope stability.

Time

Abnormal
Change Area of

Iron Staining
Anomalies (km2)

Ratio of Iron
Staining

Abnormalities
Indicating Change

to the Grid Area

Corresponding
Historical Disaster
Points (Number of

Places)

Stability
Assessment

Spatial
Location

Normal year change
information (From

2014 to 2021)

0.4600 <10% 38 Stable
See Figure 8a1.2100 10–30% 29 Unstable

1.9500 >30% 4 Instability

Abnormal year change
information (From

2014 to 2021)

0.0700 <10% 0 Stable
See Figure 8b

0.9500 10–30% 8 Unstable
8.9100 >30% 63 Instability

Simulation of normal
year change

information (From
2022 to 2025)

0.0046 <10% -- Stable
See Figure 9a

0.0107 10–30% -- Unstable
0.0045 >30% -- Instability

Simulation of
abnormal year change

information (From
2022 to 2025)

0.0360 <10% -- Stable
See Figure 9b

1.3080 10–30% -- Unstable
3.5230 >30% -- Instability

According to the relevant standards of gravity erosion classification, the spatial distri-
butions of the slope stability under the two environmental conditions from 2014 to 2021
were plotted (Figure 8a,b). Similarly, the simulation results for the next five years were
mapped (Figure 9a,b).
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5.2. Field Investigation

In combination with the simulated RS results, a field survey was carried out on
71 highway slopes in the study area, 9 of which were found to be inconsistent with the
actual situation. The simulation results showed that the area of iron staining abnormalities
was small, but in the actual survey, it was found that there were rockfills on the slopes. The
survey indicated that this was due to accumulation at the foot of the slope caused by the
fall of small local gravel, and the slope surface was relatively complete as a whole. Under
the influence of heavy rainfall and other factors, local rockfall occurred, which failed to
produce a large range of iron film peeling in the grid area. In addition, a large rockfill
(field investigation no. 68) with a volume of 11.88 m3 was identified. This was caused by a
previous rock mass collapse, which was not in the time series of this analysis. Based on the
field investigation, the accuracy rate was determined to be 87.32%, as shown in Table 5.

Table 5. The comparison of the changes of field-measured and indoor iron staining anomalies.

Field
Investigation

No.

Zone
ID

Field-Measured Data of Slope Rock and Soil Mass (Unit: m)

Volume of
Slope Toe

Deposits (m3)
ITRYCSlope Top

Elevation
(m)

Footing
Elevation

(m)

Slope
Length

(m)

Slope
Width

Slope
Height

(m)

Depth of
Completely
Weathered
Zone (m)

Unloading
Crack
Depth

(m)

1 1 582.60 561.60 31.00 130.00 22.00 1.20 0.00 2.60 0.887
2

2

555.60 530.60 33.00 249.00 25.00 1.10 0.60 10.00 0.951
3 558.50 541.00 17.50 44.00 11.00 0.00 0.00 12.00 0.951
4 579.40 545.40 36.00 283.00 34.00 1.80 0.00 2.00 0.774
5 560.20 534.20 30.00 191.00 26.00 0.80 0.60 1.50 0.737
6 577.30 539.30 38.00 254.00 22.00 1.20 0.00 1.40 0.737
7 568.80 548.30 24.00 89.00 20.50 1.60 0.00 2.34 0.991
8 565.30 554.30 13.00 79.00 11.00 1.50 0.80 1.50 0.991
9 564.20 547.20 20.00 79.00 17.00 1.20 0.00 4.50 0.903
10 550.40 543.40 6.00 252.00 7.00 0.00 0.00 5.10 0.903
11

3

574.90 573.10 3.00 177.00 1.80 1.60 0.00 3.75 0.490
12 600.30 589.30 19.00 169.00 11.00 0.00 0.00 7.00 0.921
13 581.60 567.60 9.00 160.00 6.50 0.00 0.00 3.00 0.551
14 582.00 574.00 10.00 351.00 8.00 1.60 0.00 3.15 0.551
15 585.60 552.60 43.00 12.00 33.00 0.00 0.00 2.20 0.374
16 557.20 551.20 7.00 65.00 6.00 0.00 0.00 18.75 0.909
17 587.50 571.50 25.00 235.00 16.00 1.20 0.00 3.63 0.372
18 578.90 568.90 14.00 212.00 10.00 0.80 0.00 1.20 0.372
19 592.10 573.10 31.00 203.00 19.00 1.20 0.00 3.60 0.372
20 563.40 556.00 10.00 40.00 7.40 1.80 0.00 3.00 0.281
21 570.30 553.20 26.00 133.00 17.00 1.10 0.80 3.75 0.541
22 556.00 548.00 11.00 77.00 8.00 1.00 0.70 3.15 0.541
23 570.80 546.80 24.00 64.00 24.00 1.10 0.70 1.20 0.541
24 569.10 543.10 28.00 50.00 26.00 0.80 0.00 8.00 0.569
25 558.00 542.00 19.00 127.00 16.00 0.80 0.00 2.64 0.569
26 567.40 548.40 22.00 30.00 19.00 2.00 0.70 3.00 0.569
27 563.40 545.40 26.00 56.00 18.00 1.80 0.00 9.00 0.383
28 568.70 546.70 22.00 74.00 19.00 0.80 0.00 3.00 0.383
29 567.00 561.00 8.00 169.00 6.00 0.80 0.00 9.00 0.884
30 575.40 560.40 17.00 17.00 15.00 0.80 0.00 1.00 0.884
31 595.10 560.10 40.00 258.00 35.00 0.80 0.00 2.00 0.884
32 594.90 651.90 38.00 99.00 33.00 0.80 0.00 1.20 0.581
33 606.00 562.00 50.00 151.00 44.00 1.50 1.10 1.88 0.581
34 569.90 561.90 14.00 94.00 8.00 1.50 0.80 3.00 0.696
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Table 5. Cont.

Field
Investigation

No.

Zone
ID

Field-Measured Data of Slope Rock and Soil Mass (Unit: m)

Volume of
Slope Toe

Deposits (m3)
ITRYCSlope Top

Elevation
(m)

Footing
Elevation

(m)

Slope
Length

(m)

Slope
Width

Slope
Height

(m)

Depth of
Completely
Weathered
Zone (m)

Unloading
Crack
Depth

(m)

35

4

581.60 567.60 17.00 171.00 14.00 0.60 0.30 5.25 0.797
36 597.70 583.70 21.00 108.00 14.00 1.10 0.70 1.12 0.400
37 587.10 568.10 29.00 256.00 19.00 1.00 0.80 6.00 0.800
38 588.00 576.00 14.00 21.00 12.00 1.00 0.80 2.66 0.800
39 587.10 583.10 6.00 40.00 4.00 1.00 0.70 15.00 0.800
40 592.60 580.60 18.00 151.00 12.00 1.50 0.80 5.25 0.800
41 612.40 597.40 21.00 97.00 15.00 1.00 0.80 9.00 0.800
42 617.60 595.60 30.00 11.00 22.00 1.50 1.10 0.45 0.800
43 649.70 634.70 21.00 162.00 15.00 0.00 0.00 9.75 0.800
44 660.90 635.90 32.00 167.00 25.00 0.80 0.00 1.08 0.800
45 669.50 644.50 33.00 90.00 25.00 0.80 0.00 2.25 0.800
46 589.60 577.60 17.00 212.00 12.00 0.80 0.00 12.00 0.758
47 633.50 627.00 8.00 102.00 6.50 1.20 0.80 3.63 0.450
48 616.00 610.00 10.00 305.00 6.00 0.80 0.60 3.00 0.450
49 626.50 620.00 7.00 94.00 6.50 1.20 0.80 1.20 0.544
50 641.00 634.00 10.00 245.00 7.00 1.10 0.70 3.60 0.544
51 665.00 630.00 42.00 115.00 35.00 0.00 0.00 1.88 0.709
52 478.40 460.40 22.00 402.00 18.00 1.20 0.00 3.00 0.673
53

5

643.60 627.60 22.00 185.00 16.00 0.80 0.00 15.00 0.122
54 695.70 665.70 37.00 107.00 30.00 0.00 0.00 1.10 0.855
55 780.10 660.10 177.00 270.00 120.00 1.20 0.00 5.25 0.579
56 651.00 626.00 30.00 205.00 25.00 0.20 0.30 0.90 0.579
57 640.20 626.70 15.00 179.00 13.50 1.20 0.00 1.50 0.579
58

6

649.50 645.00 7.00 151.00 4.50 1.20 0.00 1.12 0.800
59 648.90 623.00 35.00 52.00 27.00 1.20 0.00 6.00 0.800
60 624.50 619.00 7.00 10.00 5.50 1.20 0.00 2.66 0.800
61 639.00 619.00 44.00 227.00 20.00 0.00 0.00 1.50 0.800
62 643.20 639.20 5.00 172.00 4.00 1.60 0.00 10.00 0.800
63

--

562.80 544.80 22.00 151.00 18.00 0.00 0.00 0.60 0.200
64 664.60 640.60 31.00 100.00 24.00 0.00 0.00 0.85 0.200
65 573.00 557.00 22.00 52.00 16.00 0.00 0.00 0.40 0.383
66 568.70 554.70 23.00 233.00 14.00 0.00 0.00 0.48 0.581
67 609.70 605.70 5.00 73.00 4.00 1.20 0.00 5.25 0.419
68 608.80 591.80 23.00 129.00 17.00 0.00 0.00 11.88 0.127
69 632.20 619.20 19.00 27.00 13.00 1.20 0.00 0.45 0.217
70 634.00 620.00 18.00 161.00 12.00 0.00 0.00 0.45 0.217
71 637.60 631.10 11.00 176.00 6.50 1.20 0.00 9.00 0.217

Table notes: 1© The Zone ID corresponds to Figure 8b. 2© The volume of deposits at the foot of the slope is an
important indicator of slope stability in gravity-based geological disasters such as collapse or rockfall. In general,
the more deposits at the toe of the slope, the more unstable the slope. 3© See Equation (11) for the calculation
method of ITRYC.

5.3. Discussion

(1) The S3K highway slope collapse disaster point is very concentrated, which, from
the field survey perspective, was mainly due to the rock weathering of the high and steep
slope in the natural environment, resulting in a reduction in the strength of the potential
structural plane of the rock mass. This caused rock damage, which, under the action of
environmental forces, ultimately gradually formed the current collapse point. It was also
found that the slope deposits are mainly located at the toe of the rockfall disaster points.
Via the experimental simulation and historical extreme weather (heavy rainfall) data, it can
be determined that the stability of the slope in this area is closely related to the change in
the meteorological conditions, and there exists periodicity (see Figure 8).

(2) According to the survey data (see Table 5), the statistical analysis indicates that the
degree of correlation between the iron staining anomaly value (YTRYC) and the slope
top elevation (X1), the slope toe elevation (X2), the fully weathered depth (X3), and
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the unloading crack depth (X4) is 0.93; the R2 value is 0.87; and the relationship is
YTRYC = 0.000905X1 + 0.000062X2 + 0.0251X3 + 0.0873X4. Table 4 reveals that the abnor-
mal change area of iron staining anomalies was found to be positively correlated with the
amount of slope deposits. The instability of the slope in the area was found to be the most
intense in the central region (Figure 8(a2)), and there were obvious differences between the
western and eastern areas of the central region. Through field investigation, it was found
that the weathering of the sloping rock mass in the central section is extremely serious, and
the maximum thickness reaches 7.4 m. A trenching project was carried out in a typical
small area, and the intact rock mass was not seen at 3.5 m. Moreover, the bottom of the
slope was in a fully differentiated state. The debris at the slope toe accounted for 40%, and
the soil accounted for more than 50%.

To the east of the central section, the rock mass is moderately to strongly weathered,
and the deposits at the slope toe are mainly gravels. To the west of the central section, the
rock is mainly moderately weathered, and it is hard and brittle. The overall massive rock
mass is found at about 50 to 200 cm below the bottom of the slope in this area, and the
accumulation at the foot of the slope is reduced. Some of the main data obtained from the
survey are reported in Table 6.

Table 6. The field investigation characteristics of the section S3K highway slope.

S3K Partition Longitude and
Latitude Coordinates

Slope Geometry Volume Interval of
Deposits at the
Slope Toe (m3)

Rock Mass
Structure

Length (m) Width (m) Height (m)

Central section
127◦50′26.8′ ′,41◦25′16.4′ ′

---127◦51′44.1′ ′,
41◦26′10′ ′

71–114 11–28 49–83 2.2–18.75
The rock mass
of the slope is
broken overall,
and the bottom
of the slope is

weathered
completely.

East of the
central section

127◦55′26.70′ ′,
41◦27′4.50′ ′---
127◦55′39.5′ ′,
41◦27′27.0′ ′

20–64 17–25 10–40 0.4–9.0

West of the
central section

127◦45′46′ ′, 41◦25′23′ ′---
127◦46′16.80′ ′,
41◦25′29.10′ ′

10–44 6–30 10–50 0.2–3.7

The rock mass
structure of the
slope is mainly
expressed as a
whole block.

(3) Based on the field investigation, the accumulation of the slope toe in the central
area is 122.21 m3, accounting for 42.27% of the total accumulation. The slope toe accu-
mulation of area 3 (Figure 8a) is 18.23 m3, accounting for 6.31% of the total accumulation.
Based on the statistics of abnormal iron staining data under abnormal historical natural
environmental conditions (Figure 8b), the extremely unstable areas of the slope are concen-
trated in areas 3 and 5, and the measured accumulation at the foot of the slope is 89.7 m3,
accounting for 31.14% of the total accumulation in the whole area. The unstable state is
predominantly distributed in areas 1, 2, and 4, and the accumulation at the slope toe is
190.6 m3, accounting for 66.08% of the total area. The slope stability under an extreme
environment in the future was simulated, and the results reveal many unstable slopes (as
shown in Figure 9(b1,b2,b4,b6,b7)). For normal years in the future, it was found that the
overall slope is stable except for the unstable focal region (as shown in Figure 9(a1,a2)).

In summary, the focus of disaster prevention in this area should be on the inner section.
Under the influence of rainfall, the debris on the surface of the slope will migrate with
the scouring of rainwater. The instability of a high and steep slope in a basalt area can be
sufficiently analyzed via iron staining anomalies. Moreover, the results are consistent with
previous research results [33].
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6. Conclusions

First, it was considered that the more developed the fractures in a high and steep
highway slope rock mass, the stronger the water action. Moreover, the higher degree of
development of a thin iron film on the corresponding fracture surface in basalt areas with
high iron content leads to the varying occurrence of iron staining anomalies in the rock
mass. Iron staining anomalies are a type of rock mass alteration that have a close causal
relationship with the weathering, crushing, and mechanical properties of a rock mass, and
the material migration of the surface debris attached to the rock mass occurs under the
joint action of gravity, rainfall, and other factors. This affects the change in iron staining
anomalies, which is easy to analyze from RS images.

The slope of section S3K of a highway in Changbai County, China, a typical volcanic
rock region, was taken as an example, and the relationship between the iron staining anoma-
lies and rock mass fragmentation was determined via field investigation (see Table A1).
Then, the ANN-CA model was established, and the control factors suitable for this area
were selected. The future slope instability in normal and extreme years was then simulated.
It is important to note that iron staining anomalies can effectively reflect the migration of
weathered debris on the surface of the slope in this area.

Finally, a useful conclusion was drawn; namely, that it is feasible to reinterpret the al-
teration information in the prospecting field from the perspective of geological engineering,
and iron staining anomalies can be used as an indicator to study the stability of slopes in
basalt areas. Iron staining anomalies have a definite expansion effect on the application
of geoscience RS. This study is valuable and can provide a reliable reference for relevant
research by other scholars.
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Appendix A

Table A1. The field investigation and interpretation comparison.

No. Microtopography Slope Height
(m)

Slope Width
(m)

Slope Length
(m)

Field
Investigation of
the Rock Mass

Structure

Remote Sensing
Analysis Results

0 Steep slope 20 227 44 Integral block Bulk

1 Steep cliffs 17 129 23 Block structure Block structure

2 Steep cliffs 14 179 15 Block structure Block structure

3 Steep cliffs 25 205 30 Integral block Integral block
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Table A1. Cont.

No. Microtopography Slope Height
(m)

Slope Width
(m)

Slope Length
(m)

Field
Investigation of
the Rock Mass

Structure

Remote Sensing
Analysis Results

4 Steep slope 120 270 177 Block structure Block structure

5 Steep cliffs 30 107 37 Block structure Block structure

6 Steep cliffs 35 115 42 Integral block granular structure

7 Gentle slope 7 245 10 Integral block granular structure

8 Steep slope 15 97 21 Block structure Block structure

9 Steep slope 12 151 18 Block structure Block structure

10 Steep slope 12 21 14 Fragmentation
structure

Fragmentation
structure

11 Steep cliffs 19 256 29 Block structure Block structure

12 Steep slope 12 212 17 granular structure granular structure

13 Steep cliffs 14 171 17 Block structure Block structure

14 Steep slope 16 235 25 Block structure Block structure

15 Steep slope 8 94 14 Block structure Block structure

16 Steep cliffs 44 151 50 Block structure Block structure

17 Steep slope 15 17 17 Integral block granular structure

18 Steep slope 6 169 8 Block structure Block structure

19 Steep slope 8 351 10 Block structure Block structure

20 Steep slope 18 56 26 Block structure Block structure

21 Steep slope 7 40 10 granular structure granular structure

22 Steep cliffs 17 79 20 Integral block Integral block

23 Steep slope 24 100 31 Block structure Block structure

24 Steep slope 18 151 22 Block structure Block structure

25 Steep slope 22 130 31 Block structure Block structure

26 Steep slope 33 99 38 Block structure Block structure

27 Steep slope 14 233 23 Fragmentation
structure

Fragmentation
structure

28 Steep slope 35 258 40 Integral block granular structure

29 Steep slope 11 169 19 Block structure Block structure

30 Steep slope 19 74 22 Block structure Block structure

31 Steep slope 16 52 22 Block structure Block structure

32 Steep cliffs 7 252 6 Integral block granular structure

33 Steep cliffs 11 79 13 Block structure Block structure

34 Steep cliffs 21 89 24 Block structure Block structure

35 Steep cliffs 19 203 31 Block structure Block structure

36 Steep slope 27 52 35 granular structure granular structure

37 Steep slope 6 10 7 Integral block Integral block

38 Steep slope 4 172 5 Integral block Integral block

39 Steep slope 5 151 7 Fragmentation
structure

Fragmentation
structure

40 Steep slope 4 73 5 Block structure Block structure
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Table A1. Cont.

No. Microtopography Slope Height
(m)

Slope Width
(m)

Slope Length
(m)

Field
Investigation of
the Rock Mass

Structure

Remote Sensing
Analysis Results

41 Steep slope 7 176 11 Block structure Block structure

42 Gentle slope 12 161 18 Block structure Block structure

43 Steep slope 13 27 19 Block structure Block structure

44 Steep slope 16 185 22 Block structure Block structure

45 Steep slope 18 402 22 Block structure granular structure

46 Steep cliffs 7 94 7 Block structure Block structure

47 Steep slope 5 30 8 granular structure granular structure

48 Steep slope 6 305 10 Fragmentation
structure

Fragmentation
structure

49 Steep slope 15 162 21 Block structure Block structure

50 Steep slope 25 167 32 Block structure Block structure

51 Steep slope 25 90 33 Block structure Block structure

52 Steep slope 22 11 30 Block structure Block structure

53 Steep slope 4 40 6 Integral block granular structure

54 Steep slope 14 108 21 Fragmentation
structure

Fragmentation
structure

55 Steep slope 10 212 14 Integral block Integral block

56 Steep cliffs 6 65 7 Block structure Block structure

57 Steep slope 7 160 9 Integral block Integral block

58 Steep slope 2 177 3 Fragmentation
structure

Fragmentation
structure

59 Steep slope 33 12 43 Block structure Block structure

60 Steep slope 19 30 22 Integral block Integral block

61 Steep slope 26 50 28 Integral block Integral block

62 Steep slope 16 127 19 Integral block Integral block

63 Steep slope 24 64 24 Integral block Integral block

64 Steep slope 8 77 11 Integral block Integral block

65 Steep slope 17 133 26 granular structure granular structure

66 Steep slope 22 254 38 Integral block Integral block

67 Steep slope 26 191 30 Block structure Block structure

68 Steep slope 34 283 36 Block structure Block structure

69 Steep cliffs 25 249 33 Integral block Integral block

70 Steep cliffs 11 44 18 Block structure Block structure

Table notes: 1© The longitude and latitude coordinate data are classified and not listed in the table. 2© The
accuracy rate is 88.57%, and there are eight inaccuracies. This is mainly because the slope was in a stable state
for a long period of time, which increased the iron film on the slope surface in the natural environment. This
displayed a strong result in the RS images.
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