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Abstract: Deep neural networks (DNNs) have been widely utilized in automatic visual navigation
and recognition on modern unmanned aerial vehicles (UAVs), achieving state-of-the-art performances.
However, DNN-based visual recognition systems on UAVs show serious vulnerability to adversarial
camouflage patterns on targets and well-designed imperceptible perturbations in real-time images,
which poses a threat to safety-related applications. Considering a scenario in which a UAV is suffering
from adversarial attack, in this paper, we investigate and construct two ensemble approaches with
CNN and transformer for both proactive (i.e., generate robust models) and reactive (i.e., adversarial
detection) adversarial defense. They are expected to be secure under attack and adapt to the resource-
limited environment on UAVs. Specifically, the probability distributions of output layers from base
DNN models in the ensemble are combined in the proactive defense, which mainly exploits the weak
adversarial transferability between the CNN and transformer. For the reactive defense, we integrate
the scoring functions of several adversarial detectors with the hidden features and average the output
confidence scores from ResNets and ViTs as a second integration. To verify their effectiveness in the
recognition task of remote sensing images, we conduct experiments on both optical and synthetic
aperture radar (SAR) datasets. We find that the ensemble model in proactive defense performs
as well as three popular counterparts, and both of the ensemble approaches can achieve much
more satisfactory results than a single base model/detector, which effectively alleviates adversarial
vulnerability without extra re-training. In addition, we establish a one-stop platform for conveniently
evaluating adversarial robustness and performing defense on recognition models called AREP-RSIs,
which is beneficial for the future research of the remote sensing field.

Keywords: deep neural network; adversarial defense; deep ensemble model; unmanned aerial
vehicle; remote sensing; image recognition

1. Introduction

Over the past several decades, an abundance of remote sensing images (RSIs) have
been continuously collected from UAVs with massive and detailed information that allows
researchers to observe the Earth more precisely. Nevertheless, the mode of image interpre-
tation, which relies only on expert knowledge and handcrafted features, can no longer meet
the requirements of higher accuracy and efficiency. Fortunately, the substantial progress of
DNNs [1] in computer vision has achieved the state-of-the-art performances in the various
tasks of remote sensing field and supported on-device inference for the real-time demands.
Well-trained DNNs can be deployed on UAVs for the tasks including image recognition,
object detection, image matching and so on, which enables quick feedback with useful
analysis for both military (e.g., target acquisition [2–5], battlefield reconnaissance [6], com-
munications [7–9]) and civilian (e.g., land surveys [10], delivery service [11,12], medical
rescue [13,14]) use.

However, hidden dangers lurk in the working process of UAV, and a great diversity of
counter-UAV attacks have been extensively developed that are targeted at its vulnerability,

Remote Sens. 2023, 15, 3007. https://doi.org/10.3390/rs15123007 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15123007
https://doi.org/10.3390/rs15123007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15123007
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15123007?type=check_update&version=2


Remote Sens. 2023, 15, 3007 2 of 22

which mainly exists in the cyber, sensing, and kinetic domains [15]. Distribution drifts [16–18]
and common corruptions such as blur, weather and noise [19] also interfere with the au-
tomatic interpretations of RSIs in the image domain. Meanwhile, a new kind of threat
has emerged due to the security and reliability issues with DNN models [20–22], which
is known as adversarial vulnerability and potentially has devastating effects on the UAVs
with autonomous visual navigation and recognition systems. For example, when such
a UAV carries out a target recognition task, particularly for the non-cooperative vehicles
on military missions, the suspicious vehicles with carefully designed camouflage patterns
(i.e., physical adversarial attacks) or a leakage of real-time images with malicious pertur-
bations (i.e., digital adversarial attacks) can mislead the DNNs on UAVs to make wrong
predictions and violate the integrity of the outputs. In this way, the enemy’s targets are
likely to evade the automatic recognition, causing a severe disadvantage to the battlefield
reconnaissance. Thus, the harmful effects of adversarial vulnerability in DNN models need
to be taken more seriously for modern UAVs. Moreover, compared with the natural images
such as ImageNet [23], not as many RSIs are labeled in a dataset. Therefore, the trained
DNNs in the remote sensing field tend to be sensitive to adversarial attacks [24], which
puts forward a higher requirement on the adversarial robustness.

Under threat from the adversarial attacks, researchers are motivated to propose ef-
fective defense methods mainly in the context of natural images. The defense strategies
can be divided into two categories. The first is proactive defense to generate robust DNNs
aimed at correctly classifying all the attacked images. Adversarial training (AT) [25] is a
commonly used approach belonging to this category, which minimizes the training loss
with online-generated adversarial examples. However, standard AT counts on prior knowl-
edge with no awareness of new attacks and can decrease the accuracy of benign data. So,
many improved versions such as TRADES [26], FAT [27], and LAS-AT [28] are developed.
In addition, an attack designed for one DNN model may not confuse another DNN, which
makes ensemble methods [29–32] an attractive defense strategy while bridging the gap
between benign and adversarial accuracy. Ensemble methods against adversarial attacks
often combine the output predictions or fuse the features extracted from the intermediate
layers of several DNNs.

However, given the fact that obtaining a sufficiently robust DNN against any kind of at-
tack is not realistic, some research efforts have been turned to reactive defense, namely detecting
the input image whether it has been attacked or not. The detection strategy can be classified
into three categories, including statistical [33–38], prediction inconsistency-based [39,40] and
auxiliary model [41–44] strategies. In reactive defense, we do not modify the original victim
models during the detection and train a detector with a certain strategy as a 3rd-party entity.
Moreover, the reactive defense is valuable when the output of a baseline DNN does not
agree with the one from a robust DNN strengthened by a proactive defense method [45].

In this article, we consider the case that the DNN-based visual navigation and recogni-
tion systems on UAVs are suffering from adversarial attacks when performing an important
task after take-off. Aimed at this intractable scenario and several analyzed motives, we
propose to investigate the ensemble strategy to address the problem for both proactive and
reactive defense only using base DNN models:

• In proactive defense, standard AT and its variants need re-training and model updates
if UAVs meet unknown attacks, which does not suit the environment of edge devices
with limited resources (e.g., latency, memory, energy); thus, an ensemble of base DNN
models can be an alternative strategy. Intuitively, an ensemble is expected to be more
robust than an individual model, as the adversary needs to fool the majority of the
sub-models. As the representative models of CNNs and transformers, ResNet [46] and
Vision Transformer (ViT) [47] have different network architectures and mechanisms in
extracting discriminative features. We also verify that the adversarial examples of RSIs
show weak transferability between CNNs and transformers. Therefore, we combine the
probability distributions of output layers from CNNs and transformers with standard
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supervised training for a better performance under adversarial attacks in the recognition
of RSIs.

• In terms of reactive defense, we consider a case study with the framework of ENsemble
Adversarial Detector (ENAD) [48], which combines scoring functions computed by
multiple adversarial detection algorithms with intermediate activation values in a well-
trained ResNet. Based on the original framework, we further integrate the scoring
functions from ViT with the ones from ResNet, forming a connection with the ensemble
method in proactive defense. Therefore, the ensemble has two levels of meaning: one is
combining layer-specific values from multiple adversarial detection algorithms, and
the other is integrating the results from CNNs and transformers. Different detection
algorithms with different network architectures can exploit distinct statistical features of
the images, so this ensemble strategy is highly suitable for RSIs with rich information.

Both of the defenses in the form of an ensemble will be activated when the controller
realizes that the outputs from the system on UAVs are obviously manipulated. The sup-
posed scenarios and the role of ensemble defense are illustrated as Figure 1. To verify their
effectiveness, we conduct a series of experiments with the datasets including optical and
SAR RSIs. For proactive defense, we compare the performances regarding the Attack Success
Rate of an ensemble of base ResNets and ViTs for different adversarial attack algorithms
with three other proactive defense to improve the robustness of base DNN models. In
terms of reactive defense, we compare the ensemble framework with three stand-alone
adversarial detectors, which are also the components in the ensemble framework. The
metrics of detection are the Area Under the Receiver Operating Curve (AUROC) and the
Area Under Precision Recall (AUPR).

Figure 1. The threat scenarios caused by adversarial vulnerability in modern UAVs and the role of
our adversarial ensemble defense (blue lines: general working mode of UAVs; red lines: confrontation
with adversarial attacks).

From the experimental results, we find that an ensemble of base ResNets and ViTs
demonstrates good defensive capability in most experimental configurations of proactive
defense. It does not need a re-training but can be on a par with the methods based on AT.
Moreover, an ensemble framework modified from ENAD can yield AUROC and AUPR of
over 90 in gradient-based attacks of optical datasets. The performances of the ensemble
method slightly decrease on Deepfool, C&W and adversarial examples of SAR RSIs, but it
is still generally better than the stand-alone adversarial detectors.

Based on the above work, we establish a one-stop integrated platform for evaluating
the adversarial robustness of DNNs trained with optical or SAR RSIs and conducting
adversarial defenses on the models called Adversarial Robustness Evaluation Platform for
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Remote Sensing Images (AREP-RSIs). Users can operate just on AREP-RSIs to perform a com-
plete robustness evaluation with all necessary procedures, including training, adversarial
attacks, tests for recognition accuracy, proactive defense and reactive defense. AREP-RSIs
can be deployed on the edge devices such as UAVs and connected with cameras for real-
time recognition as well. Equipped with various network architectures, several training
paradigms, and classical defense methods, to the best of our knowledge, AREP-RSIs is
the first platform for adversarial robustness improvements and evaluations in the remote
sensing field. More importantly, the framework of AREP-RSIs is flexibly extendable. Users
can add the model architecture files, load their own weight configurations, and register
new attack and defense methods for a customized DNN, which greatly facilities designing
robust DNN-based recognition models in the remote sensing field for the future research.
The AREP-RSIs can be available at Github (https://github.com/ZeoLuuuuuu/AREP-RSIs,
accessed on 26 April 2023).

In summary, the main contributions of this paper are as follows.

• We innovatively analyze the adversarial vulnerability from a scenario in which the
edge-deployed DNN-based system for visual navigation and recognition on a modern
UAV is suffering from adversarial attacks produced by the physical camouflage patterns
or digital imperceptible perturbations.

• To cope with the intractable condition, we investigate the ensemble of ResNets and
ViTs for both proactive and reactive defense for the first time in the remote sensing
field. We conduct experiments with optical and SAR remote sensing datasets to verify
that the ensemble strategies have good efficacy and show a favorable prospect against
adversarial vulnerability in the DNN-based visual recognition task.

• We finally integrate all the procedures of performing adversarial defenses and evaluat-
ing adversarial robustness into a platform called AREP-RSIs. Equipped with various
network architectures, several training paradigms, and defense methods, users can ver-
ify if a specific model has good adversarial robustness or not just through this one-stop
platform AREP-RSIs.

The rest of this paper is organized as follows. Section 2 introduces the background
knowledge, related works and threat model utilized in this article. Section 3 tells why we
use the ensemble strategy, specific methods and our developed platform in detail. Section 4
reports on the experimental results and provides an analysis. Finally, the conclusions are
given in Section 5.

2. Background and Related Works

This section briefly reviews the causes of adversarial vulnerability in image recognition
tasks and existing research of the adversarial vulnerability in the remote senisng field and
DNN-based UAVs. Finally, we provide a threat model including the potential approaches
of attacking the automatic recognition systems of UAVs with adversarial examples, some
possible goals and the access level of models for attackers.

2.1. Causes of Adversarial Vulnerability in Image Recognition

To better learn the adversarial vulnerability in an image recognition system, its possible
causes are discussed theoretically. Sun et al. [49] give a comprehensive analysis, and based
on their work, we briefly review the reasons why adversarial vulnerability is a common
problem for image recognition.

• Dependency on Training Data: The accuracy and robustness of an image recognition
model are highly dependent on the quantity and quality of training data. During the
training process, DNN models only learn the correlations from data, which tend to
vary with data distribution. In many security-sensitive fields, the severe scarcity of
large-scale high-quality training data and the problem of category imbalance in the
training datasets can exacerbate the risk of adversarial vulnerability of DNN models.

• High-Dimensionality of Input Space: The training dataset only covers a very small
part of the input space portion, and a large amount of potential input data are not
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utilized. Moreover, hundreds of parameters are optimized during the training process,
and the space formed by parameters is also huge. Therefore, the generalized decision
boundaries in the input space are just roughly approximated by DNNs, which can-
not completely overlap with the ground-truth decision boundaries. The adversarial
examples may exist in the gap between them.

• Black-box property of DNNs: Due to the complex network architectures and optimiza-
tion process, it is hard to directly translate the internal representation of a DNN into a
tool for understanding its wrong outputs under an adversarial attack. So, this black-box
property of DNNs makes it more difficult to design a universal defense technique
against adversarial perturbations from the perspective of the model itself.

2.2. Adversarial Vulnerability in DNN-based UAVs

In recent years, as DNNs are increasingly applied to the visual navigation and recog-
nition systems on UAVs, the security threat produced by adversarial attacks has been a
formidable problem, which can be utilized by the attackers with motives for maliciously
permeating into the working process of these DNN-based UAVs.

Previous research has indicated that this security problem exists in DNN models for
RSI recognition, which poses a threat to the modern UAVs. Most of them still focus on the
digital attacks, which directly manipulate the pixel values in RSIs and suppose full access to
the images for attackers. In terms of scene recognition, Li et al. [50] and Xu et al. [51] both
used various adversarial attacks to fool multiple high-accuracy models trained on different
scene datasets. In another article, Xu et al. also provided a black-box universal dataset with
adversarial examples called UAE-RS [52], which serve as a benchmark to design DNNs with
higher robustness. Even further, Li et al. [53] proposed a soft threshold defense for scene
recognition to judge whether an input RSI is adversarial or not. Focused on SAR target
recognition, Li et al. [54] mounted white-box attacks on SAR images and proposed a new
metric to successfully explain the phenomenon of attack selectivity. Du et al. [55] proposed
a fast C&W algorithm for DNN-based SAR classifiers, using a deep coded network to
replace the search process in the original C&W algorithm. Zhou et al. [56] focused on the
sparsity of SAR images and applied the sparse attack methods on the MSTAR dataset to
verify their effectiveness in SAR target recognition.

In addition, there are also explorations into physical adversarial attacks applied to
RSIs. Czaja et al. [57] conducted attacks through adversarial patches to confuse the victim
DNN among four scene classes, and den Hollander et al. [58] generated the patches for
the task of object detection. However, they only restricted their patches to the digital
domain and did not print them. The most relevant to our assumed scenario is the work
of Du et al. [59], in which they optimized, fabricated and installed their designed patches
on or around a car to significantly reduce the efficacy of a DNN-based detector on a UAV.
They also experimented under different atmospheric factors (lighting, weathers, seasons)
and distance between the camera and target. Their results indicated the realistic threat of
adversarial vulnerability on DNN-based intelligent systems on UAVs.

Moreover, some research has discussed the adversarial vulnerability in the context
of UAVs. Doyle et al. [15] considered two common operations for a navigation system of
UAVs: follow and waypoint missions to develop a threat model from the perspective of
attackers. They sketched state diagrams and analyzed the potential attacks for each state
transition. Torens et al. [60] give a comprehensive review for the verification and safety
of machine learning in UAVs. Tian et al. [61] proposed two adversarial attacks for the
regression problems of predicting steering angles and collision probabilities from real-time
images in UAVs. They also investigated standard AT and defensive distillation against the
two designed attacks.

2.3. Threat Model

We denote a real-time image captured and processed by the sensors as x ∈ Rh×w×c

with h, w, c representing height, width and channel (c = 3 for optical images and c = 1
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for SAR images), which is also the input of a DNN-based visual recognition system
M(·) deployed on UAVs. In addition, each image has a potential groundtruth label
y ∈ Y = {0, 1, . . . , K− 1} where K is the number of recognizable categories for the system.
A well-trained system M(·) can correctly recognize the scene or targets for most of x,
namelyM(x) = y.

We suppose two possible approaches that attackers can exploit to attack the DNN-
based visual recognition system on UAVs.

(1) The first approach is to illegally access the Wi-Fi communication between the
sensors (i.e., cameras) and the controller for UAVs. The attackers can spoof impercepti-
ble perturbations ρ to the images provided by the sensors to craft adversarial examples
x̂ = x + ρ through the communication link. The wrong predictions y′ =M(x̂) 6= y for most
of x̂ can influence the next commands and actions for UAVs.

(2) The second approach is physically realizing the perturbations as “ground camou-
flage” based on adversarial patches [62], especially for the task of target recognition. An
adversarial patch is generally optimized in the form of sub-images by modifying the pixel
values within a confined area, and the attacker then prints the patch as a sticker or poster.
Ref. [59] gives a real-world experiment for this approach by pasting designed patches on
top of or around vehicles to highly reduce the probabilities of detection and recognition
rates. Even if the patterns are noticeable to our human eyes, they can effectively confuse
the recognition system.

There are several reasons why attackers hope to do harm to the visual navigation
and recognition system on a UAV. For scene recognition, attackers can mislead UAVs to
incorrect situational awareness for military use. In addition, the misclassification of the
scene may make the navigation system confuse the current environment, become lost, and
hover in the air. For target recognition, once non-cooperative targets of high military value
are camouflaged, UAVs will not be able to accurately detect and recognize them, which
aims at evading aerial reconnaissance or targeted strikes in the battlefield.

The access level of the victim DNN models for attackers is an important factor. White-
box attackers are the strongest in all conditions. They can obtain the network structures,
weights and even the training data. In contrast, black-box attackers only query the outputs
at each attempt, craft adversarial examples against a substitute model or search randomly.
Moreover, whether they mislead DNNs to a specified class distinguishes an attack as a
targeted or untargeted one. In our threat model, we consider both white-box and black-box
settings during our experiments with the more general untargeted condition.

3. Methodology

This section will briefly analyze the motives of exploiting the ensemble strategy in
Section 3.1. Then, it will present the proactive–reactive defensive ensemble framework
in detail in Section 3.2 and finally introduce our edge-deployed platform AREP-RSIs for
adversarial robustness improvements and evaluations in Section 3.3.

3.1. Motives of Ensemble

As the most representative models of CNNs and transformers, ResNet and ViT are
mainly discussed within the defensive ensemble framework. Before a detailed description
of the defense method, we start with the reasons why the ensemble strategy should be
selected and attempted in the supposed scenario of this article.

3.1.1. Different Mechanisms for Feature Representations

Recently, ViTs have drawn great attention as a fundamentally new model structure
offering impressive performances in image recognition and robustness benefits as well [63].
Compared with CNNs, ViTs have striking differences in their feature representations [64].

Specifically, CNNs share kernels in each convolution layer (Conv) that locally perceive
a small part of the input image (i.e., receptive field) to extract features. The powerful
inductive bias of translation equivariance and locality correlation within the convolutional
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layers make CNNs excellent in learning general-purpose visual representations. However,
the receptive fields are limited with a fixed size, which is not conducive to obtaining global
information. In contrast, ViT processes an image as a sequence of image patches, and
each patch is linearly projected into a representation vector with a positional embedding.
Moreover, a learnable class token is also attached for the image. As the main component in
ViT, multi-head self-attention modules (MSAs) are then connected for an aggregation of
the information from all patches to have an entire view of the image.

More importantly, [65] revealed that the MSAs in ViT exhibit opposite behaviors with
the Convs in ResNet by performing the Fourier analysis of feature maps from both models.
The Convs act like a low-pass filter that tends to reduce low-frequency signals, while MSAs
are high-pass filters that are robust against high-frequency noise in images. In addition, [64]
found that ViT incorporates more global information and has more uniform representations
with greater similarity throughout the layers. There have been many hybrid architectures
that combine CNNs and transformers to inherit both of their advantages [66–69]. Therefore,
to some extent, ViT can be complementary to ResNet, which intuitively enlightens us about
the selection of network architectures in the ensemble.

3.1.2. Weak Adversarial Transferability

Reducing the adversarial transferability among base models in an ensemble can
achieve good robustness without sacrificing benign accuracy [70–72]. To further verify the
differences between ResNet and ViT in the context of remote sensing, we found empirical
evidence that the adversarial examples of RSIs tend to have weak transferability between
CNNs and ViTs, which facilities constructing ensemble classifiers to generate a more
robust model. For the details of transferability experiments, we trained a set of various
CNNs (including ResNet-18, ResNet-50, DenseNet-121, DenseNet-201, MobileNet-V2
and ShuffleNet-V2) and two ViT variants (ViT-Base/16 and ViT-Large/16) with the same
training setting on the MSTAR dataset. A white-box attack, PGD-ł∞ [25], is applied on the
test set of MSTAR with a different attack radius against the victim models of ResNet-18 and
ViT-Base/16, respectively. Then, both sets of generated adversarial examples are recognized
under each well-trained DNN model. Similarly, we conducted the experiments on the UC
Merced LandUse, which is an optical scene RSI dataset again. The results are illustrated
in Figures 2 and 3. From the results, for both datasets, we observe that the adversarial
examples crafted against ResNet-18 generally have much better performance of recognition
accuracy in ViTs and vice versa.

3.1.3. Defects in AT and Our solution for Edge Environment

One of the most commonly used methods for improving adversarial robustness is
still AT, which trained DNNs with both natural data and its corresponding adversarial
variants. Even though previous research indicated that AT can force DNNs to learn
robust features and gained better performance on adversarial robustness, the absence of
non-robust features can lead to a drop in generalization and the accuracy on the benign
data [73]. This trade-off between adversarial robustness and natural accuracy still needs
to be considered when using AT. Moreover, AT sometimes heavily counts on such prior
knowledge and cannot achieve a sufficient robustness against an unknown attack.

Generally, modern UAVs are equipped with different base DNN models instead of the
DNN models trained with AT for standard automatic visual recognition. When the UAVs
suffer from adversarial attacks in performing a recognition task, it is time-consuming to
make an extra re-training to obtain a new robust model and replace the base models on
the ground. Training on edge devices is also impractical because of the resource-limited
environment. Therefore, our proposed solution for this problem is attempting an ensemble
of base DNN models, especially DNNs with different network architectures and feature
extraction mechanisms. Based on the analysis of CNNs and transformers above, we decide
to use ResNet and ViT, which are two standard popular DNN architectures in the ensemble.
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They will be trained solely with benign data to improve adversarial robustness while
guaranteeing natural accuracy in our supposed scenario.

Figure 2. The transferability test of PGD on MSTAR against ResNet-18 (left) and ViT-Base/16 (right).

Figure 3. The transferability test of PGD on UC Merced LandUse against ResNet-18 (left) and
ViT-Base/16 (right).

In addition, we report the computation and memory footprints of base DNN models
used in our ensemble as shown in Table 1, including the number of parameters within
network architecture (Params), floating point operations (FLOPs) and parameter memory
footprint (Param. Mem). The specific network architectures consist of ResNet-18, ResNet-50,
and ResNet-101 for CNN and ViT-Base/16, ViT-Large/16, and ViT-Base/32 for transformer.

Table 1. The computation and memory footprints of base DNN models used in our ensemble.

Params (M) FLOPs (GFLOPs) Param. Mem (MB)

ResNet-18 11.69 2 45
ResNet-50 25.56 4 98
ResNet-101 44.55 8 170
ViT-Base/16 86.86 17.6 327
ViT-Base/32 88.30 8.56 336

ViT-Large/16 304.72 61.6 1053

As shown in Table 1, several of the network architectures we used such as ResNet-101
and ViT-Large/16 seem to be less suitable for the edge environment; however, our intention
of this attempt is to first verify that the ensemble of CNNs and transformers can resist
adversarial data of RSIs in both proactive and reactive defense. So, the two most commonly
used DNNs are selected for the paradigm in our article. In practice, we can replace them
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with more light-weight DNNs such as MobileNet, ShuffleNet, and Inception-V3 for CNN
and ViT-Tiny/16, EfficientFormer for transformer.

3.2. Proactive–Reactive Defensive Ensemble Method
3.2.1. Proactive Defense

In the non-ensemble schemes, a single base model is provided to attackers, which
can be attacked with the worst perturbations. However, based on the analyzed motives
above, an ensemble of CNNs and transformers suits our supposed scenario better. Our
defensive ensemble model includes both proactive and reactive defense. For proactive
defense, an ensemble model is a weighted average of N random base ResNets with dif-
ferent depths denoted as Ω1 = {R1,R2, ...,RN} and N base ViT variants denoted as
Ω2 = {RN+1,RN+2, ...,R2N}. To confuse the whole ensemble model, an attacker has to
design an attack against both types of DNN with more difficulty [74].

Specifically, we can train two sets of base DNNs including ResNets and ViTs with
N = 3 (i.e., Ω1 = {ResNet-18, ResNet-50, ResNet-101}, Ω2 = {ViT-Base/16, ViT-Large/16,
ViT-Base/32}). Ω1 and Ω2 form the overall set of base models Ω. We denote {Dj}2N

j=1 as

a large set including the probability distributions {djk}K
k=1 predicted by each base DNN

model, where djk is the confidence score of category k predicted by the jth base model and
K denotes the number of recognizable categories. Therefore, the probability distribution
for each base model can be expressed as (1).

Dj = {dj1, dj2, . . . djK}, j = 1, 2, . . . , 2N (1)

Then, we can weight the 2N models with non-negative values (ω1, ω2, ..., ω2N) that
add up to 1. Let a vectorW denote these weights, and we can obtain a new probability
distribution D′ of the deep ensemble model with new confidence scores {d′k}

K
k=1 by taking

a linearly weighted summation as (2).

D′ =W · (D1,D2, . . . ,D2N)
T = (d′1, d′2, . . . , d′K) (2)

In fact, the new probability distribution D′ is a fusion on the decision level, integrating
the opinions from CNNs and transformers. In addition, from the perspective of base
models, we can also express the DNN-based ensemble modelM(x,W) as (3).

M(x,W) =W ·Ω =
2N

∑
j=1

ωj · Rj (3)

The framework of this ensemble model for proactive defense is illustrated as Figure 4.
As shown in Figure 4, if a modern UAV captures real-time RSIs with BMP2 vehicles but
suffers from adversarial perturbations crafted for CNN architecture, these RSIs can be sent
to the proposed deep ensemble model and inferred by all of the base models simultaneously.
Even though the adversarial RSIs can mislead the predictions from CNNs, the outputs from
transformers are still correct. The model will fuse the opinions of CNNs and transformers
on the decision level, namely making a linear weighted summation as mentioned above, to
obtain the final correct prediction.

In terms of the weights of base models (ω1, ω2, . . . , ω2N) in the ensemble, one solution
is to weight them with fixed values, and we can search for the better set of values manually.
The other solution of deciding the models’ weights is to make them learnable, so the weights
can be adjusted automatically during the training time. In our following experiments, we
choose the former for simplicity.

This deep ensemble model for proactive defense only exploits standard base models
and does not need to require extra re-training such as AT, which constitutes a practical
attempt for improving the adversarial robustness of automatic recognition systems on edge
devices such as UAVs. It is also the first DNN-based ensemble model against adversarial
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attacks in the remote sensing field. In this way, more adversarial examples are expected
to be correctly recognized when confronting adversarial attacks. We will compare the
ensemble of ResNets and ViTs with a victim model without any defense and trained with
standard AT [25], Trades [26] and GAL [75] against malicious RSIs crafted by different
adversarial attack methods. The experimental results will be collected in the next section.
The Attack Success Rate (ASR) (i.e., the number of wrongly recognized RSIs divided by the
number of RSIs in the whole test set) will be the metric for the proactive defense.

Figure 4. The process of proactive ensemble method with MSTAR dataset and victim model ResNet-18.

3.2.2. Reactive Defense

Considering the fact that it is not possible for proactive defense to classify all types
of adversarial examples, detection-based methods (i.e., reactive defense) also deserve an
exploration to indirectly enhance the adversarial robustness. To pursue better performance
than individual adversarial detectors, we selected and modified an excellent deep ensem-
ble framework called ENAD [48], which integrates the scoring functions from different
adversarial detection algorithms on the hidden features of intermediate layers of CNNs.
Our modified version repeats these procedures on ViTs with the features extracted from a
transformer encoder and averages the detection outputs from both types of DNN at the
end of the framework as the second integration. The structure of an ensemble including
CNNs and transformers also matches our proposed model in the proactive defense.

The specific procedures of the ensemble model in reactive defense are illustrated
in detail in Figure 5. A real-time RSI captured by UAVs, which can be either benign or
maliciously attacked, is input to a well-trained ResNet and ViT. For ResNet, the activation
values from several selected hidden layers are then extracted. Next, the model will compute
layer-specific scores through three commonly used adversarial detection algorithms: Local
Intrinsic Dimensionality (LID) [34], Kernel Density Estimation (KDE) [35] and Mahalanobis
Distance (MD) [36]. Each detection algorithm measures the “distance” as the score based
on each activation value of the real-time RSI with respect to training examples and the
paradigm learned during the training time. The layer-specific scores for each detection
algorithm are fused to obtain the detector-specific scores, namely three final scores, which
are input to a logistic regression to compute a probability c1 of classifying the test RSI
as benign or adversarial. In the meantime, the above procedures are also performed in
parallel on ViT with the activation values extracted from multi-head self-attention in several
transformer encoders. The predicted probability from ViT is denoted as c2. c1 and c2 from
ResNet and ViT are averaged to obtain a final result p. The ensemble model will decide an
RSI image as the adversarial one if c is greater than 0.5, and it is benign otherwise.

In terms of the individual detectors (i.e., LID, KDE and MD) in the ensemble model
for reactive defense, there is one trick that needs to be considered. Apart from benign and
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adversarial examples, we also craft noisy examples with Gaussian noise that are treated as
benign examples during the training time for better generalization.

Figure 5. The procedures of reactive defense ensemble model modified from ENAD [48] (assuming
the number of layers in ResNet is n and the number of transformer encoders in ViT is k).

The extracted activation values are high-dimensional in both types of DNN model,
so different detection algorithms can use distinct statistical features of input images. The
ensemble idea integrates the features and is expected to be perfectly suited for the adver-
sarial detection of RSIs, because RSIs have rich information such as color, texture, spatial
and spectral features. Moreover, the first integration of multiple adversarial detectors can
better alleviate the problems of overfitting and generalization than just using one detector.
The second integration benefits from different feature representations in ResNet and ViT.
To evaluate the performances of detection, we take two standard metrics, Area Under the
Receiver Operating Characteristic (AUROC) and Area Under Precision Recall (AUPR). The
correctly detected adversarial and benign RSIs are true positives (TP) and true negatives
(TN), respectively. On the contrary, the wrongly detected adversarial and benign RSIs are
false negatives (FN) and false positives (FP), respectively.

3.3. Adversarial Robustness Evaluation Platform for Remote Sensing Images (AREP-RSIs)

Based on the above work, we further developed a one-stop platform for conducting
adversarial defense and conveniently evaluating the adversarial robustness of a DNN-
based visual recognition system on UAVs called Adversarial Robustness Evaluation Platform
for Remote Sensing Images (AREP-RSIs). AREP-RSIs are multi-functional, and users can
readily operate on this platform to evaluate the defensive performance for a DNN model
trained with RSIs. In addition, if we load a well-trained DNN model, AREP-RSIs connected
with cameras can predict the category of a scene or target for a real-time image and output
the confidence scores in the main interface.

As shown in Figure 6, AREP-RSIs is built as a modular framework with 6 sub-modules
including datasets, models, training, adversarial attack, test for recognition accuracy and
adversarial defense. For example, the module of a test for recognition accuracy has two
sub-models: single image test and batch images test. In the single image test, users can
load an RSI and an arbitrary DNN model file to obtain the predicted category and the
maximum confidence scores. If the selected RSI is detected as an adversarial example, the
activated feature maps of this adversarial image and its corresponding original image are
displayed. In the batch images test, a batch of RSIs is input to the selected DNN model,
and the interface will show a confusion matrix to visualize the recognition performance.
We can also know the recognition accuracy of this batch of RSIs.
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Figure 6. The overall framework of AREP-RSIs with 6 modules.

The graphic interface of this platform is designed with PyQt [76] and built upon
necessary libraries such as Pytorch [77], Adversarial Robustness Toolbox (ART) [78],
OpenCV [79] and Scikit-learn [80].AREP-RSIs includes several popular optical and SAR
RSI datasets for scene/target recognition. We show the screenshots of a graphic interface
of two modules in use, recognition test (single image test) and performing the proactive
defense as shown in Figures 7 and 8.

Figure 7. The interface of a recognition test of a single RSI in AREP-RSIs.

Moreover, all of these modules are highly extendable, which greatly facilities designing
robust DNN-based recognition models in the remote sensing field for future research. For
instance, we can include other adversarial defense methods for RSI recognition, such as
TRADES, GAL [75], and DVERGE [81] in proactive defense and FS [40] and DNR [42] in
reactive defense into AREP-RSIs. New DNN model architecture, training paradigms and
adversarial attacks can also be flexibly registered in AREP-RSIs for users to compare the
adversarial robustness before and after performing a specific adversarial defense scheme to
a base DNN model. In the current AREP-RSIs, we have embedded more than 20 types of
DNNs with different training schemes and various mainstream adversarial attacks. We will
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make the AREP-RSIs open source at Github (https://github.com/ZeoLuuuuuu/AREP-
RSIs, accessed on 26 April 2023).

Figure 8. The interface of performing proactive defense to generate robust models in AREP-RSIs.

4. Experiments
4.1. Datasets

(1) Scene Recognition: Two high-quality datasets for scene classification, UCM [82] and
AID [83], are selected for our experiments. Both of them include optical RSIs with scene
only. The RSI examples for each dataset are illustrated in Figures 9 and 10.

Figure 9. RSI examples randomly selected for each class from UCM.

UCM: The UC Merced LandUse Dataset contains 2100 RSIs from 21 different land-use
classes, each of which contains 100 256 × 256 images with a spatial resolution of 0.3 m
per pixel in the RGB color space. The dataset is derived from the National Map Urban
Area Imagery collection, which captures the scenes of nationwide towns across the United
States.

AID: AID is a large RSI dataset that collects scene images from Google Earth. The
dataset comprises 10,000 labeled RSIs containing 30 categories of scenes, approximately
200–420 images per category with an image size of 600 × 600 pixels. Even if the Google
Earth images are post-processed using RGB renderings of the original aerial images, this
does not affect its use in evaluating scene classification algorithms.

(2) Target Recognition: Two benchmark datasets for target recognition, MSTAR [84] and
FUSAR-Ship [85], are also utilized in the experiments. The RSI examples for each dataset
are illustrated in Figures 11 and 12.

https://github.com/ZeoLuuuuuu/AREP-RSIs
https://github.com/ZeoLuuuuuu/AREP-RSIs
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Figure 10. RSI examples randomly selected for each class from AID.

Figure 11. RSI examples randomly selected for each class from MSTAR.

Figure 12. RSI examples randomly selected for each class from FUSAR-Ship.

MSTAR: MSTAR is from the publicly available Moving and Stationary Target Acquisi-
tion and Recognition (MSTAR) dataset produced by the US Defense Advanced Research
Projects Agency. This dataset contains 5172 SAR sliced images of stationary vehicles with
10 categories acquired at various azimuths. The sensor is a high-resolution cluster SAR
with a resolution of 0.3 m × 0.3 m, operating in the X-band.
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FUSAR-Ship: FUSAR-Ship is a high-resolution SAR dataset obtained from GF-3 for
ship detection and recognition. The maritime targets are divided into two branches, ship
and non-ship. Here, we selected four sub-classes, bulk carrier, cargo ship, fishing and
tanker from ship targets, collecting 420 images in total.

4.2. Experimental Setup and Results

We designed our experiment in a systematic manner to verify the adversarial robust-
ness improvement of DNNs for RSI recognition after performing an ensemble strategy. In
fact, our experiments include four procedures, which are training and testing base DNNs
for recognition in RSIs, performing adversarial attacks with RSIs against the base models,
improving adversarial robustness with the proactive ensemble model and detecting adver-
sarial examples with the reactive ensemble model. All the experiments are implemented
on a server equipped with an Intel Core i9-12900KF 3.19 GHz CPU, 32 GB of RAM and one
NVIDIA GeForce RTX 3090 Ti GPU (24 GB Video RAM). The deep learning framework
is Pytorch 1.8. All of the above experiments can be performed on the one-stop integrated
platform AREP-RSIs, which makes it greatly convenient for users to evaluate the defensive
effectiveness and adversarial robustness.

In this part, we collected all the quantitative results presented in the form of a graph or
table, and in the following part, we analyzed the results adequately to verify if the ensemble
models for both proactive and reactive defense are effective for the RSI recognition task.

In the first part, the training sets are randomly selected with 80% labeled images in
each dataset, and the remaining images make up the test set. The trained base models
are also the components in the following proactive ensemble model including ResNet-18,
ResNet-50, ResNet-101, ViT-Base/16, ViT-Base/32 and ViT-Large/16. We train all models
for 100 epochs with batch size = 32, and the optimizer as Adam [86]. We collected the
recognition accuracy of the test set for these base models, as shown in Table 2.

Table 2. Recognition accuracy of base DNN models for test set of RSI datasets (the values below are
averaged from 10 repeated experiments).

UCM AID MSTAR FUSAR-Ship

ResNet-18 96.19% 95.65% 94.80% 81.40%
ResNet-50 96.67% 96.05% 97.73% 80.95%
ResNet-101 92.38% 97.90% 93.32% 77.91%
ViT-Base/16 94.80% 92.70% 88.21% 79.76%
ViT-Base/32 91.80% 91.20% 82.64% 76.19%

ViT-Large/16 87.38% 93.34% 88.08% 78.57%

In terms of adversarial attacks, both white-box and black-box conditions are consid-
ered. Specifically, we choose 4 white-box and 2 black-box attack algorithms including
the Fast Gradient Sign Method (FGSM) [25], Basic Iterative Method (BIM) [87], Carlini
and Warger Attack (C&W Attack) [88], Deepfool [89], Square Attack (SA) [90] and Hop-
SkipJump Attack (HSJA) [91]. The settings for attacks in our experiment are shown in
Table 3. The victim model is ResNet-18 and ViT-Base/16.

Table 3. Important parameters of attack algorithms utilized in the experiments.

Batch Size Norm of
Perturbation

Maximum
Perturbation

Number of
Iterations

FGSM 32 L2 0.25 –
BIM 32 L2 0.125 25

C&W 32 L∞ – 20
Deepfool 8 – – 50

SA 16 L2 0.3 50
HSJA 16 L2 – 50
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In the part of proactive defense, we will recognize the generated adversarial data with
the victim base models (i.e., ResNet-18 and ViT-Base/16). We set the weight of each base
model in the ensemble as the same value, namely 1/2N. The results of ASR from the victim
model will be viewed as the performances before the defense. To evaluate the effectiveness
of the ensemble model, we also conduct three counterparts in proactive defense of PGD-AT
(adversarial training with PGD-perturbed RSIs), TRADES and GAL on the victim base
models. The results for proactive defense are graphed as shown in Figures 13 and 14, and
the victim model is labeled as Without Defense in both graphs.

Figure 13. Comparisons in ASR of ensemble model in proactive defense with that of base model
ResNet-18 and its three counterparts (the results are averaged from 10 repeated experiments).

Figure 14. Comparisons in ASR of ensemble model in proactive defense with that of base model
ViT-Base/16 and its three counterparts (the results are averaged from 10 repeated experiments).

In the last part of reactive defense, we compare the performances of the ensemble
model with stand-alone detectors (i.e., KDE, LID and MD) in the ensemble framework. All
four detectors exploit layer-specific scores from several intermediate layers of ResNet-18
and transformer encoders of ViT-Base/16 through logistic regression, and they detect if the
input RSI is adversarial or benign. We only selected white-box attacks on UCM, AID and
MSTAR for the experiments of this part because the RSIs in the test set of FUSAR-Ship are
too inadequate to obtain stable data and analyze meaningful conclusions. The results of
reactive defense are shown in Tables 4–6.
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Table 4. Performances of ensemble method on UCM with three individual detection algorithms (the
results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

UCM

LID 88.89 90.30 88.52 89.53 57.91 65.22 64.27 72.35
MD 92.95 88.51 90.24 84.83 67.45 74.28 76.44 83.42
KDE 88.67 89.56 83.13 84.63 66.26 75.21 61.75 75.27

Ensemble 93.26 94.15 91.35 94.10 75.73 82.29 80.26 85.18

Table 5. Performances of ensemble method on AID with three individual detection algorithms (the
results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

AID

LID 89.38 90.25 89.47 84.35 60.12 74.39 73.72 71.43
MD 92.67 93.33 89.46 92.23 71.15 77.23 77.41 85.63
KDE 87.59 83.84 80.93 83.30 68.18 78.32 61.51 73.77

Ensemble 95.73 95.93 93.37 95.10 74.05 81.08 80.40 84.15

Table 6. Performances of ensemble method on MSTAR with three individual detection algorithms
(the results below are averaged from 10 repeated experiments).

Dataset
FGSM BIM DeepFool C & W

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

MSTAR

LID 81.58 83.17 81.13 82.79 71.80 74.83 68.47 71.61
MD 83.45 84.85 85.73 77.67 67.25 72.23 75.41 78.24
KDE 74.51 73.84 77.93 82.17 73.60 78.74 69.54 68.50

Ensemble 82.43 86.91 86.57 87.04 72.13 77.37 75.67 78.59

4.3. Discussion
4.3.1. Recognition Performance of Base Models

First, for the base models in an ensemble of proactive defense, we trained them with
the same setting and reported the recognition accuracy on the test sets. It can be observed
that most of the 24 models yield very good performances with an accuracy of more than 85%
except for the models on FUSAR-Ship. The reason for a drop in FUSAR-Ship is probably
that the number of RSIs in FUSAR-Ship is scarce (only 420 RSIs in total) and the appearances
of targets in four categories are similar, which makes it hard for the DNN model to learn
the discriminative features to correctly distinguish them. The highest accuracy comes from
ResNet-101 on AID, which can reach 97.86%. Models with deeper layers and more complex
architectures perform a little bit worse such as ResNet-101 and ViT-Large/16 on UCM,
which may be caused by a slight overfitting problem as the train data are not that sufficient.
Nevertheless, all of these base models are well-trained and will be utilized in the later
experiments of ensemble strategy for adversarial defense.

4.3.2. Analysis on Proactive Defense

We crafted adversarial examples against the ResNet-18 and ViT-Base/16, respectively,
for each dataset with adversarial attack methods. The adversarial data are then recognized
by the corresponding victim base model, our proposed ensemble model, and the victim base
model is strengthened by three popular proactive defense methods. It can be noticed that
in Figures 11 and 12, the height of all pink columns indicates that the ASR of these attacks
reaches a very high level for the victim base model, which exhibits serious adversarial
vulnerability and needs to be reduced urgently.
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For adversarial examples generated against ResNet-18, we find that the ensemble of
ResNets and ViTs performs well in optical datasets, especially with FGSM, BIM, Deepfool
and HSJA attacks. In an optical setting, the ensemble can perform more consistently
than other proactive defense methods. For example, ResNet-18 with Trades can correctly
recognize more adversarial examples in BIM, but it has unsatisfactory performance in
Deepfool. For the ensemble model, the best result is from the FGSM of UCM, with only
9.52% ASR. For SAR configurations, the ensemble of base models obtains better results in
MSTAR than FUSAR-Ship, while it is worse than those from UCM and AID. In general, if we
say an ASR below 30% is qualified, the ensemble has a good result in 15 out of 24 scenarios.

For adversarial examples generated against ViT-Base/16, the ensemble of ResNets and
ViTs also maintains relatively low ASRs for most adversarial attack methods in optical RSI
datasets. It is interesting to find that the ensemble model performs even worse than the
base model without defense in Deepfool of MSTAR, but in C&W, another attack with very
imperceptible noise, it yields decent values for MSTAR. Still, if we say an ASR below 30%
is qualified, the ensemble has an acceptable result in 14 out of 24 scenarios.

Overall, compared with the models without defense under an adversarial attack, the
ensemble strategy effectively improves the adversarial robustness and can rival or even
perform better than the three other popular adversarial proactive defense methods.

4.3.3. Analysis on Reactive Defense

Last but not least, for reactive defense, we first discuss the results in optical RSI
datasets. It can be observed that the ensemble method obtains the best AUPR or AUROC
in 15 out of 16 scenarios. For gradient-based attacks of FGSM and BIM, the ensemble
model can yield AUPR and AUROC values of more than 90%, which are obviously better
than those from Deepfool and C&W. That is because Deepfool finds the shortest path
to guide original RSIs across a decision boundary to generate adversarial examples, and
C&W is an optimized-based attack with very small perturbations added to the original
RSIs. The best result comes from the ensemble model in detecting FGSM on AID, with
AUPR and AUROC values of 95.73 and 95.93, respectively. In addition, the results of FGSM
are slightly better than those of the BIM attack, which is probably because the maximum
perturbation in FGSM-perturbed RSIs is a little larger; thus, it leads to more obvious
changes in feature representation. With respect to two harder situations, Deepfool and
C&W, the ensemble model still shows better ability than stand-alone adversarial detection
algorithms, especially with obvious improvements in Deepfool and C&W on UCM. MD
only yields AUPR and AUROC values of Deepfool on UCM as 67.25 and 74.28, while our
modified ENAD framework improve the metrics to 75.73 and 82.29. The results are not as
good as those in gradient-based attacks, but compared with stand-alone detectors, these
improvements show that the ensemble of detection algorithms and base DNN models
has brought substantial benefits. In general, the ensemble framework has the potential to
perform very well in RSI recognition for optical configuration.

In terms of results in MSTAR, the SAR dataset of target recognition, the values of
output are generally lower than those of UCM and AID. The performances of the ensemble
model are decreasing with the five best out of eight results. One possible reason for this
phenomenon may lie in that the channel of SAR RSIs is 1 and most of an RSI in MSTAR
is background without useful information, which inhibits the detector from extracting
representative features except the target itself. Nevertheless, the detection of gradient-
based attacks remains at a high level, with the AUPR and AUROC at around 85. The
highest value comes from the BIM attack with 87.04 and the lowest is from the Deepfool
attack with 73.60. The Deepfool and C&W attacks are still challenging situations with more
imperceptible perturbations. In Deepfool, the results from the ensemble model are even
lower than the stand-alone detector KDE, and in C&W, it performs at almost the same
level as MD. Therefore, in such a case, an ensemble framework is not recommended, and
it is worthwhile to further modify the ensemble model for a better detection in the SAR
recognition dataset, especially for very imperceptible noise in the digital domain.
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5. Conclusions

Stability and reliability are significant factors in the working process of modern UAVs
with DNN-based visual navigation and recognition systems. However, there exists severe
adversarial vulnerability when performing scene and target recognition tasks. We build a
threat model when attackers maliciously access the communication link or place physical
adversarial camouflage on targets. In the scenario, considering that AT is not adaptive
for the resource-limited edge environment like UAVs and single adversarial detectors
not performing well in reactive defense, we exploit the different mechanisms of feature
extractions and weak adversarial transferability between the two mainstrean DNN models,
CNN and transformer, to build deep ensemble models for both proactive and reactive
adversarial defense only with base DNN models for the RSI recognition task. In addition, a
one-stop platform for conducting adversarial defenses and evaluating adversarial robust-
ness for DNN-based RSI recognition models called AREP-RSIs is developed, which can
be edge-deployed to achieve real-time recognition and greatly facilitate designing more
robust defense strategies in the remote sensing field for future research.

To evaluate the effectiveness of the two ensemble strategies, a series of experiments
are conducted with both optical and SAR RSI datasets. We find that an ensemble of
ResNets and ViTs can yield very satisfactory results in recognizing and detecting adversarial
examples generated by gradient-based attacks such as FGSM and BIM. In proactive defense,
compared with the three other popular defense methods, the ensemble can be more stable
in different configurations. In reactive defense, our ensemble model integrates the scoring
values from multiple detection algorithms and confidence scores from different base models,
performing much better than stand-alone detectors in most experimental settings. Even
though the proposed model does not perform as well on some attacks of SAR datasets, this
ensemble strategy has shown the favorable potential to improve detection rates with the
DNN models trained for RSI recognition.

In our future work, we will further optimize both of the deep ensemble frameworks,
including exploring the defensive effectiveness against other types of adversarial attack
in the RSI recognition task, replacing the current DNNs in the ensemble with more light-
weight network architectures to suit the edge environment better and making the models’
weights learnable during the training time to find the best combination. Therefore, as the
first exploration of a deep ensemble method against adversarial RSIs in resource-limited
environments, we need to conduct more experiments and report them in our next article.
Finally, we will deploy the two deep ensemble models and AREP-RSIs on the edge devices
to truly achieve a practical application.
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