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Abstract: Spaceborne GNSS-R technology is a new remote sensing method for soil moisture monitor-
ing. Focusing on the significant influence of water on the surface reflectivity of CYGNSS, this paper
improved the removal method of water influence according to the spatial resolution of CYGNSS
data. Due to the disturbance effect of the incident angle, microwave frequency and soil type on
the Fresnel reflection coefficient in surface reflectivity, a normalization method of Fresnel reflection
coefficient was proposed after analyzing the data characteristics of variables in the Fresnel reflection
coefficient. Finally, combined with the soil moisture retrieval method of linear equation, the accuracy
was compared and verified by using measured data, SMAP products and official CYGNSS prod-
ucts. The results indicate that the normalization method of the Fresnel reflection coefficient could
effectively reduce the influence of relevant parameters on the Fresnel reflection coefficient, but the
normalization effect became worse at large incident angles (greater than 65◦). Compared with the
official CYGNSS product, the retrieval accuracy of optimized soil moisture was improved by 10%.
The method proposed in this paper will play an important reference role in the study of soil moisture
retrieval using spaceborne GNSS-R data.

Keywords: soil moisture; CYGNSS; normalization method; water removal

1. Introduction

Soil moisture is of great value in understanding plant physiological activities, hy-
drometeorological processes, global energy exchange and agricultural production [1–3].
The distribution information of accurate soil moisture is not only of great significance
for scientific research, but can also serve a number of practical applications. Spaceborne
GNSS Reflectometry (GNSS-R) is an emerging remote sensing technology for reflecting
soil moisture over a large area due to its advantages of a wide signal source, large data
volume, short revisit time, low cost and low power consumption, etc. Its frequency band
and high spatial-temporal resolution can effectively compensate for the shortcomings of
optical remote sensing, which is easily obscured by clouds, and the low spatial resolution
of microwave remote sensing products [4–10].

Since the UK TechDemoSat-1 (TDS-1) and Cyclone Global Navigation Satellite System
(CYGNSS) satellites provide spaceborne GNSS-R data for free, the retrieval of soil moisture
for spaceborne GNSS-R has gradually become a research hotspot. In order to effectively
characterize the relationship between the surface reflectivity of CYGNSS and soil moisture,
and thus obtain high accuracy retrieval results for soil moisture, a large number of modeling
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algorithms have been applied, such as linear models [11–14], machine learning [15–17] and
deep learning [18], etc.

The reflection signal carrying water body information will weaken the sensitivity
of the surface reflectivity of CYGNSS to soil moisture, and thus reduce the accuracy of
soil moisture retrieval. Related studies have shown that a 25 m wide body of water can
significantly affect the surface reflectivity of CYGNSS [11]. Therefore, Chew et al. [19],
Wan et al. [20] and Zhu et al. [21] performed the removal of the water body effect on
CYGNSS observations by means of external data sources such as the Global Surface Water
Explorer (GSWE) and the water data of SMAP. The Fresnel reflection coefficient is one
of the major component variables of CYGNSS surface reflectivity, and is directly related
to the angle of incidence and the soil dielectric constant. The influence of the correlation
parameters in the Fresnel reflection coefficient on CYGNSS surface reflectivity can be
effectively weakened, which can improve the accuracy of soil moisture retrieval [22]. Al-
Khaldi et al. [23] proposed the normalization method of the incident angle to correct the
surface reflectivity of CYGNSS, and the results proved that the method could attenuate the
effect of the incident angle in the Fresnel reflection coefficient. In addition, this method
was also applied to the soil moisture product algorithm of CYGNSS developed by Chew
et al. [11,23].

As the sampling frequency of CYGNSS increases, its spatial resolution changes and
thus the original method for removing the influence of water bodies will mistakenly pick
data carrying valid information. The Fresnel reflection coefficient is composed of the in-
cident angle and the soil dielectric constant, which is directly related to the microwave
frequency, soil temperature, soil type composition and soil moisture [24]. Current research
has focused on attenuating the effects of incident angle and soil moisture on the Fresnel re-
flection coefficient, further resulting in a lack of complete analysis of the relevant influences
in the Fresnel reflection coefficient and the establishment of a unified model to attenuate
the effects of these parameters. Therefore, this paper first improved the removal method
of observations affected by water bodies based on the analysis of CYGNSS data. Then,
the variable response of the Fresnel reflection coefficient was analyzed in detail and the
normalization method was proposed. Finally, the accuracy of soil moisture retrieval using
CYGNSS was improved by combining the method of soil moisture retrieval with a linear
model. After the introduction, Section 2 describes an overview of the study area and the
adopted dataset. Section 3 presents proposed methods and the retrieval method of soil
moisture. The results of the proposed method and soil moisture retrieval are displayed and
appraised in Section 5. The discussion for results of the study is given in Section 5. Finally,
the main conclusions for this study are given in Section 6.

2. Study Area and Data Source
2.1. Study Area and Ground Measurements

The study area was located in the southern United States, covering 26 states with
a geographical range of 75◦~122◦W and 30◦~38◦N (Figure 1). The region covers a vast
area, with subtropical, temperate continental and tropical climates in the southeast, central
and southwest. The southeast is warm and humid, the middle is cold in winter and hot
in summer and the southwest has a large annual temperature difference of up to 25 ◦C.
The topography of the entire region is high in the west and low in the east, and there is
a clear topographic divide (100◦W) in the middle of the region. The western part of this
topographic divide is dominated by plateaus and mountains, while the eastern part is
plains (Figure 1a). Based on the LC_Type1 (Scheme of global vegetation classification for
IGBP) band of the MCD12Q1 product of MODIS, a map of vegetation cover types in the
study area was obtained, as shown in Figure 1b.
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ISMN, with a total of 160 measured monitoring points, were used from July 2019 to De-
cember 2021, with a soil moisture depth of 5 cm. Among these measurement stations of 
soil moisture, meaningless stations with values less than 0 cm3/cm3 or greater than 1 
cm3/cm3 were excluded. 

2.2. CYGNSS Data 
CYGNSS is a constellation of eight satellites, each of which has four channels; i.e., 
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pling frequency after July 2019 (i.e., with 500 ms non-coherent accumulation), the resolu-
tion of CYGNSS is 3.5 × 0.5 km at this time. The CYGNSS data used in this study are the 
L1-level data of version 3.0 from July 2019 to December 2021, which can be downloaded 
from the official CYGNSS website (https://cygnss.engin.umich.edu/data-products/ (ac-
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control and empirical quality control were performed [19]. The higher launch power of 
the GPS Block IIF satellite introduces uncertainty at peak power [25]. Removing these data 

Figure 1. Location and measured points of the study area. (a) Topographic map, (b) soil type map.

The measured soil moisture data used in the study area were freely available to
the public in terms of volumetric water content (m3/m3) and were derived from the
International Soil Moisture Observation Network (ISMN; http://ismn.geo.tuwien.ac.at/
networks, accessed on 6 November 2021). In this study, four monitoring networks, ARM,
SCAN, SNOTEL and USCRN in ISMN, with a total of 160 measured monitoring points,
were used from July 2019 to December 2021, with a soil moisture depth of 5 cm. Among
these measurement stations of soil moisture, meaningless stations with values less than
0 cm3/cm3 or greater than 1 cm3/cm3 were excluded.

2.2. CYGNSS Data

CYGNSS is a constellation of eight satellites, each of which has four channels; i.e.,
thirty-two observations per second can be received. Due to the increase in CYGNSS sam-
pling frequency after July 2019 (i.e., with 500 ms non-coherent accumulation), the resolution
of CYGNSS is 3.5× 0.5 km at this time. The CYGNSS data used in this study are the L1-level
data of version 3.0 from July 2019 to December 2021, which can be downloaded from the
official CYGNSS website (https://cygnss.engin.umich.edu/data-products/ (accessed on
6 November 2021)). To improve the quality of CYGNSS data, standard quality control
and empirical quality control were performed [19]. The higher launch power of the GPS
Block IIF satellite introduces uncertainty at peak power [25]. Removing these data will

http://ismn.geo.tuwien.ac.at/networks
http://ismn.geo.tuwien.ac.at/networks
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reduce the overall data volume by 30%. Therefore, this part of the data was chosen to be
retained in this study. The power received by CYGNSS consists of both incoherent and
coherent scattering components [26]. Most studies have been based on the assumption
that the incoherent component is ignored and only the coherent scattering component
is retained [11,12,14,20]. Therefore, based on the land scattering model of GNSS-R, the
surface reflectivity Γ(θ) of CYGNSS can be readily derived, following the assumption that
the coherent component dominates:

Γ(θ) =
Pr(Rt + Rr)

2(4π)2

PtGtGrλ2 (1)

where Pr and Pt are, respectively, the reflected power received by the receiver and the
transmitted power. λ is the carrier signal wavelength. Rr and Rt are, respectively, the
distances from the receiver and transmitter to the specular reflection point. Gt and Gr are
the transmitting antenna gain and receiving antenna gain, respectively.

2.3. SMAP Data

Soil Moisture Active and Passive (SMAP) is an Earth observation mission carrying an
L-band radiometer and radar, which provides soil moisture and freeze–thaw data with a
time-resolution of 2–3 days from NASA (https://nsidc.org/data/smap/smap-data.html
(accessed on 6 November 2021)). In this study, soil moisture data (L3_SM_P) of SMAP
L3 were used, which were obtained by retrieval using the Single Channel Algorithm
(SCA) with a spatial resolution of 36 km. The time period was selected from July 2019 to
December 2021. SMAP was divided into two types of data: daily 6:00 a.m. (descending
orbit) and 18:00 p.m. (ascending orbit). It has been shown that the surface temperature
homogenization at 6:00 a.m. is better than that at 18:00 p.m., and the retrieval accuracy is
higher than that at 18:00 [27]. In this study, both descending orbit and ascending orbit data
were incorporated and averaged to obtain soil moisture data of SMAP.

2.4. Water Body Data

The water body data of GSWE came from a 30 m dataset produced based on optical
images from Landsat satellites [28], with global coverage. GSWE released several sub-
datasets, including Occurrence, Change, Seasonality, Recurrence, etc. Each sub-dataset
consisted of a 10◦ × 10◦ grid with a total range of 60◦S~80◦N and 180◦W~180◦E. The
“Seasonality” product was selected for this study, and the individual pixel values were
classified on a scale of 1 to 12, indicating how many months of the year were inundated
with water. In this case, all values greater than 1 were labeled as water bodies to facilitate
the exclusion of observations influenced by water bodies. Since this study was in the
southern region of the United States, a total of 12 Seasonality data were selected for the
range of 30◦N to 50◦N and 130◦W to 70◦W. A Seasonality product from these data was
shown in Figure 2. Due to the special and static nature for the time-resolution of Landsat
data, the produced GSWE dataset could not be synchronized with the observation time of
CYGNSS. However, this dataset could remove the observations affected by water bodies to
some extent.

https://nsidc.org/data/smap/smap-data.html
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3. Methodology

In this study, the procedure for the retrieval of soil moisture using CYGNSS based on
proposed methods was illustrated in Figure 3. The first step involved the quality control
and processing of data used, such as CYGNSS, SMAP and GSWE. The surface reflectivity
derived from CYGNSS was corrected using an improved method of water removal and the
normalization method of the Fresnel reflection coefficient. A linear regression equation of
soil moisture was established by combining the resampled soil moisture product of SMAP
with the corrected surface reflectivity. Finally, the results of soil moisture were obtained by
averaging the retrieved soil moisture, and the accuracy was comparatively verified based
on the measured data, SMAP products and CYGNSS products.

3.1. Removal of Water

The current solution for observations influenced by water bodies is to exclude ob-
servations that carry information about water bodies [19,20]. A square grid of 7 × 7 km
to exclude observations influenced by water bodies was designed by Chew et al. [19],
based on the “Seasonality” product from GSWE data. According to the research of Chew
et al. [19], an improved method for removing observations affected by water bodies in a
3 × 3 km square grid was proposed by analyzing the characteristics of CYGNSS data. The
process was as follows:

Step 1: Based on the latitude and longitude of the specular reflection point from
CYGNSS, its corresponding location in the “Seasonality” product was searched.

Step 2: A square grid of 3 × 3 km was created, with this corresponding location as
the center.

Step 3: When there was a value marked as 1 (i.e., there is a water body) in this 3 × 3 km
square grid, then the point was eliminated, i.e., the specular reflection point was eliminated.

Step 4: The above process was repeated to complete the removal of specular reflection
points affected by water bodies.

The removal diagram of the observations affected by the water was shown in Figure 4:
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3.2. The Normalization of the Fresnel Reflection Coefficient

According to the Kirchhoff approximation, the surface reflectivity Γ(θ) of CYGNSS
can be further expressed as [29–31]:

Γ(θ) = |Rlr(θ)|2γ exp(−(2kσ cos θ)2) (2)

γ is the vegetation attenuation term; exp(−(2kσ cos θ)2) is the attenuation term of surface
roughness; and Rlr(θ) is the Fresnel reflection coefficient, which is a function of the incident
angle θ and the soil dielectric constant ε [32]. ε is calculated by the Dobson model [24],
which is adapted to the frequency range of 0.3–1.3 Ghz and 1.4–18 Ghz and consists of
microwave frequency, soil temperature, soil type composition and soil moisture:

εα
soil =

[
1 +

pb
ps
(εα

s − 1) + mβ
v εα

f w −mv

] 1
α

(3)

β = 1.2748− 0.00519Psand − 0.00152Pclay (4)

where Pb and Ps are the bulk density of soil and the density of the solid medium in soil,
respectively. α is generally 0.65, and εfw and εs are the permittivity of free water and solid
soil, respectively. mv is soil moisture. Psand and Pclay represent the sand and clay contents of
soil (%), respectively.

According to Formulas (3) and (4), the response of these relevant variables to the
Fresnel reflection coefficient was shown in Figure 5. Soil type parameters refer to the table
of physical parameters published by the Dobson model [24] (Table 1).

Table 1. Physical parameters of typical soil types.

Sandy Loam Fertile Land Silty Loam Silt Soil

Psand (%) 51.52 41.96 30.63 5.02
Pclay (%) 13.42 8.53 13.48 47.38
Psilt (%) 35.06 49.51 55.89 47.6

Ps 2.66 2.7 2.59 2.56
Pb (g/cm3) 1.6006 1.5781 1.575 1.4758

From Figure 5a–d, it can be seen that the Fresnel reflection coefficients obtained
from different soil moisture values varied greatly under the condition of constant soil
temperature and the same soil type. For a constant soil temperature and the same soil
moisture, the Fresnel reflection coefficient corresponding to different soil types was also
different. The above results indicate that differences in the soil type and soil moisture
can lead to changes in the Fresnel reflection coefficient. Figure 5e–h show the response
of the Fresnel reflection coefficient for a constant value of soil moisture and different soil
temperatures. It can be observed that the changes in Fresnel reflection coefficients obtained
from soil temperature differences were small relative to those caused by changes in soil
moisture. Of course, differences in the Fresnel reflection coefficient between soil types are
always present. Moreover, in Figure 5, the Fresnel reflection coefficient becomes smaller
and smaller, with an increasing incident angle regardless of the differences in soil moisture,
temperature and soil type, indicating that the incident angle plays a very important role.

In this study, a normalization method of the Fresnel reflection coefficient was proposed
to reduce the influence of relevant parameters on the Fresnel reflection coefficient, and
thus reduced the surface reflectivity error of CYGNSS caused by the Fresnel reflection
coefficient and improved the accuracy of soil moisture retrieval. The process of establishing
this method consisted of four steps in total.
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Step 1: A database of Fresnel reflection coefficients with incident angle as the inde-
pendent variable was created by freely combining values in the range of soil moisture, soil
temperature, soil type and incident angle. Soil moisture, soil temperature and incident
angle were limited to [1, 100], [1, 60] and [1, 90], respectively. The increments for these three
parameters were set as 1%, 1 ◦C and 1◦, respectively. Soil types referred to the physical
parameters of the Dobson model (Table 1). Microwave frequency was set to 1.57542 GHz.
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Through the combination of the above variables, a total of 2,160,000 Fresnel reflection
coefficient values in the range of incident angles from 1 to 90◦ were formed.

Step 2: Based on the combination of variables in Step 1, a database of a total of
the values of 2,160,000 Fresnel reflection coefficients with an incident angle of 0◦ was
additionally composed.

Step 3: Based on the database created in Step 1 and Step 2, the correction variable was
obtained using the following equation:

Rlr(θ)cor = Rlr(θ)/Rlr(0) (5)

where Rlr(θ)cor is the corrected Fresnel reflection coefficient, Rlr(θ) is the Fresnel reflection
coefficient obtained from Step 1 and Rlr(0) is the Fresnel reflection coefficient for an incident
angle of 0◦ in Step 2.

Step 4: With incident angle as the independent variable and corrected Fresnel reflection
coefficient values of 2,160,000 as the dependent variable, the functional relationship between
corrected Fresnel reflection coefficient and incident angle (1–90◦) was established. A
functional expression for the angle of incidence was as follows:

f (θ) = a· exp(b·θ) + c (6)

where a, b and c are all empirical parameters, which can be obtained by solving the
parameters using the least square method.

3.3. The Retrieval Algorithm of Soil Moisture

In this study, the soil moisture retrieval algorithm of the linear regression equation
proposed by Chew et al. [11] was based on the assumption that the surface reflectivity
obtained from CYGNSS data is linearly correlated with the soil moisture of SMAP, and
this linear correlation presents spatial variation and does not vary with time. The spatial
resolution of CYGNSS is much smaller than the SMAP product, and the surface reflectivity
varies depending on land cover and topography. Therefore, to effectively attenuate the
effects of vegetation cover and topography, surface reflectivity corrected by the proposed
method and soil moisture products of SMAP were sampled on a 3 × 3 km grid using the
nearest neighbor sampling method [33–35], and thus soil moisture was retrieved. Among
them, the nearest neighbor sampling method did not change the original pixel values of
the SMAP products during resampling. The SMAP products of the 36 × 36 km grid were
sampled into the 3 × 3 km grid, i.e., all 3 × 3 km grids within a 36 × 36 km grid have the
same values. The expression was as follows:

SMCYGNSS,t = β·
(
Γt − Γcal

)
+ SMSMAP,cal (7)

SMCYGNSS,t is the soil moisture retrieved with CYGNSS, Γt is the corrected surface
reflectivity of CYGNSS and Γcal and SMSMAP,cal are the mean values of corrected surface
reflectivity from CYGNSS and soil moisture products of SMAP during the modeling time,
respectively. β is the slope, representing the slope of the SMAP products and corrected
surface reflectivity after removing SMSMAP,cal and Γcal at the modeling time. If there were
less than three sampling points of CYGNSS in a 3 × 3 km grid, the β of the grid was not
calculated. The value of β will be used to estimate the soil moisture during the validation
period. Soil moisture retrieval was performed for the 3 × 3 km grid according to the above
process, and then the soil moisture result of 3 × 3 km were aggregated and averaged to the
36 × 36 km grid. The mean values for soil moisture of all 3 × 3 km within the 36 × 36 km
grid were used as the retrieval values of soil moisture of the final 36 × 36 km grid.
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4. Results
4.1. The Correction Results of the Fresnel Reflection Coefficient

Figure 6 shows the responses of four soil types at the same soil temperature and
different soil moisture after the normalization method of Fresnel reflection coefficient. It
can be seen that the effect of differences in the soil moisture and soil type on the Fresnel
reflectance coefficient was significantly weakened compared to the previous one, indicating
that the surface reflectivity of CYGNSS corrected by the proposed method can significantly
attenuate the effect of factors related to the Fresnel term. However, when the incident angle
was larger (greater than 65◦), the normalization effect became less effective. Excessive
incident angles can significantly affect the quality of CYGNSS data [11,23], and this method
used should keep the incident angle less than 65◦.
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4.2. Estimation of Soil Moisture

Based on the study area and data, data from July 2019 to December 2020 (modeling
time) were used for modeling, and data from 2021 (validation time) were used to retrieve
the soil moisture (Figure 7). Accuracy was evaluated in terms of unbiased root-mean-square
error (ubRMSE) and Pearson correlation coefficient (R) based on soil moisture data from
measured sites. Figure 7 provides the retrieval maps of soil moisture for any time in the
four seasons: spring, summer, fall and winter. It can be seen that the western region showed
a significantly lower soil moisture phenomenon in four seasons in 2021, while the eastern
part was relatively much wetter. Based on the occurrence of the phenomenon of annual
drought in the western United States in 2021 (US Drought Monitor, USDM), the retrieval
results of soil moisture in this study were more consistent with the actual situation.
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The sites where the retrieved soil moisture was in good agreement with the measured
data are shown in Figure 8. It can be seen that the retrieval results of soil moisture at
these four stations were dense, and all of them could capture the changes in measured soil
moisture and reflect the changes in low and high values of soil moisture.

4.3. Validation of Soil Moisture

The data from the measured sites were based on the results of point measurements,
and the soil moisture results were obtained in this study for a 36 × 36 km grid. It is
reasonable to use the average value of measured soil moisture in a large area grid as
the true value, but there is a lack of such a design for a soil moisture station. Therefore,
related studies have used the values of a single measured site to verify the accuracy of
soil moisture retrieval [11,14,20]. The accuracy validation of soil moisture results using the
retrieval method of this study was executed based on the data measured in the study area.
Tables 2 and 3 provide statistics on the accuracy comparison between the SMAP and the
soil moisture retrieval results using the method of this study, based on the data of each
measured site within the experimental area.
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Table 2. Accuracy comparison of SMAP product and this study based on measured site data.

Number of Sites
ubRMSE (cm3/cm3)

Median Standard Deviation Mean

CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP
ALL(160) 0.057 0.051 0.026 0.024 0.061 0.056
ARM(15) 0.633 0.050 0.011 0.008 0.058 0.049
SCAN(75) 0.050 0.046 0.022 0.020 0.055 0.050

SNOTEL(32) 0.078 0.073 0.032 0.027 0.081 0.070
USCRN(38) 0.048 0.046 0.025 0.021 0.056 0.050

Table 3. Correlation comparison of soil moisture for SMAP and this study based on measured
site data.

Number of Sites
R

Median Standard Deviation Mean

CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP
ALL(160) 0.450 0.624 0.310 0.286 0.40 0.550
ARM(15) 0.710 0.828 0.110 0.063 0.677 0.824
SCAN(75) 0.457 0.624 0.278 0.288 0.380 0.558

SNOTEL(32) 0.241 0.366 0.291 0.264 0.180 0.300
USCRN(38) 0.510 0.670 0.226 0.191 0.440 0.638

The average ubRMSE for the retrieval results of soil moisture in this study was
0.061 cm3/cm3 at 160 measured stations, with an average correlation of 0.4. However,
SMAP products presented a better retrieval performance for the soil moisture
(ubRMSE = 0.056 cm3/cm3, R = 0.55). In ubRMSE, the median and mean values of soil
moisture retrieved by the method used in this study in the four monitoring networks were
worse than those of SMAP, with relatively large standard deviations. The same was true in
the correlation. Areas with low or no variation in soil moisture during the validation time
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resulted in a lower correlation, possibly because the effect of random noise was amplified.
The soil moisture values retrieved by CYGNSS may have had more noise than those of
SMAP due to the lack of complete coverage of the soil moisture time series in part of
the grid.

In order to show the effectiveness of the method in this study, the accuracy indexes for
the CYGNSS product (i.e., UCAR/CU) and the results of this study at the common mea-
sured sites were systematically counted [19] (Tables 4 and 5). Since the UCAR/CU product
was only updated until August 2020, a comparison of the accuracy metric results from this
study and the accuracy metric results from the paper by Chew et al. [19] was performed.

Table 4. Accuracy comparison for the results of this study and the UCAR/CU product.

Number of Sites
ubRMSE (cm3/cm3)

Median Standard Deviation Mean

CYGNSS UCAR/CU CYGNSS UCAR/CU CYGNSS UCAR/CU
ALL(88) 0.051 0.057 0.023 0.024 0.051 0.06

SCAN(49) 0.051 0.053 0.022 0.021 0.055 0.057
SNOTEL(8) 0.070 0.091 0.015 0.017 0.076 0.097
USCRN(31) 0.044 0.054 0.023 0.024 0.051 0.057

Table 5. Correlation comparison for the results of this study and the UCAR/CU product.

Number of Sites
R

Median Standard Deviation Mean

CYGNSS UCAR/CU CYGNSS UCAR/CU CYGNSS UCAR/CU
ALL(88) 0.467 0.510 0.250 0.236 0.410 0.470

SCAN(49) 0.488 0.600 0.246 0.200 0.427 0.500
SNOTEL(8) 0.126 0.095 0.242 0.191 0.131 0.186
USCRN(31) 0.500 0.470 0.224 0.233 0.440 0.457

Compared with the UCAR/CU product, the accuracy of the soil moisture results
obtained by this study was significantly improved, with the average ubRMSE of SCAN,
SNOTEL and USCRN improved by 3.5%, 19% and 10%, respectively. The average ubRMSE
at 88 measured sites was improved by 10%. The standard deviation and median had
smaller values relative to those of UCAR/CU, indicating that the accuracy of this study
remained more stable. In terms of correlation, the results of this study were the same as
those of UCAR/CU. Furthermore, the median of the results of two measured networks
(SNOTEL and USCRN) was relatively high, and the overall standard deviation was larger.

5. Discussion

From Figure 7, there were more blank points in the retrieval map of soil moisture in
this study, which may be due to the lack of values in the 3 × 3 km grid, resulting in blank
values when 3 × 3 km was aggregated to 36 × 36 km. Therefore, the number of surface
reflectivity points of CYGNSS contained in each grid at the 3 km spatial resolution in the
modeling time was counted (Figure 9). The number of grids with surface reflectivity points
fewer than 20, between 20 and 40, between 40 and 80, and greater than 80 accounted for
40%, 19.7%, 29.3% and 11% of the total number of grids, respectively. As shown in Figure 9,
a large number of null values appeared in the central and eastern parts of the study area;
the western part presented more grids with fewer surface reflectivity points; grids with
fewer than 20 grid points accounted for 40% of the total number of grids in the study area
during the modeling time. The absence of values for surface reflectivity points of CYGNSS
made the retrieved soil moisture results show the phenomenon of a blank value, probably
because some of the surface reflectivity points of CYGNSS were removed by the method
of a water body, especially in the central and eastern regions, as well as in the seaward
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regions, where a large number of water bodies exist. However, after analyzing the results
without using the removal method of water bodies, it was found that this method was not
the main reason for the appearance of few reflection points and null places, but rather the
non-coherent accumulation times of CYGNSS receivers and the irregular distribution of
specular reflection points resulted in the sparse spatial distribution of surface reflectivity
points of CYGNSS at 3 km spatial resolution and the low distribution of observation points.
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Figure 9. The map of CYGNSS points in the 3 km grid during the modeling time.

The slope was calculated based on the SMAP product and the corresponding surface
reflectivity of CYGNSS after removing the average value. A temporal resolution of 2~3 days
for SMAP and the property of random distribution of CYGNSS would reduce the number
of mutually matched values. Meanwhile, if there were fewer than three matching values
in the modeling time, the corresponding slope was not calculated. However, the number
of grids with fewer than three in this part was 1% of the total number of grids. Therefore,
the slope of the linear equation is another reason for the existence of blank values in the
retrieval results of soil moisture (Figure 10).
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The soil moisture results obtained in this study varied across the measured soil mois-
ture networks (Tables 2 and 3), and these were projected onto maps for further analysis, as
shown in Figures 11 and 12. The ubRMSE for most of the measured sites were below the
mean value of 0.061 cm3/cm3, accounting for about 60% of the total; the rest were main-
tained between 0.061 cm3/cm3 and 0.100 cm3/cm3; the measured sites with an accuracy
greater than 0.1 cm3/cm3 accounted for 7% of the total. The distribution of sites of soil
moisture retrieval larger than 0.1 cm3/cm3 showed that these sites were basically in the
forest. The lush vegetation has a significant effect on the reflectance signal, as shown by the
lower value of surface reflectivity of CYGNSS, which subsequently reduced the sensitivity
to soil moisture. Counting the sites with ubRMSE below 0.061 cm3/cm3, most of them
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were in low vegetation areas such as grasslands and wetlands, indicating that the retrieval
method in this study still maintains a certain sensitivity to soil moisture in areas with low
vegetation cover. In the measured soil moisture network, especially the SNOTEL network,
all the results of soil moisture retrieval had poor accuracy performance in this network. The
analysis revealed that the sites of the SNOTEL network are mainly located in high altitude
and heavily vegetated areas. Due to vegetation and high altitude, the accuracy of the area
where the measured network is located was poor. Compared with the correlation between
SMAP and the measured data, the correlation between this study and the measured data
was mainly distributed between 0.4 and 0.8, indicating that the correlation was weak. The
effect of factors such as vegetation and high altitude resulted in little variation in the soil
moisture, which may account for the low correlation.
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6. Conclusions

With the advantages of wide signal sources, many sampling points and high spatial-
resolution for spaceborne GNSS-R, the removal of the influence of water bodies and the
correction of the Fresnel reflection coefficient could effectively improve the accuracy of soil
moisture retrieved by CYGNSS. According to the problem of water impact, in this paper an
improved method to remove the influence of water bodies was proposed. A normalization
method for the Fresnel reflection coefficient was proposed to correct the surface reflectivity
of CYGNSS data by analyzing the change in the Fresnel reflection coefficient under different
influencing factors. Finally, based on the linear algorithm, the results of the retrieved soil
moisture were obtained, and the accuracy was compared and verified by the product data
and the measurement data.

The improved method of water removal proposed in this paper can effectively remove
observations affected by water bodies. The normalization method of the Fresnel reflection
coefficient could effectively attenuate the effect of influencing factors on the Fresnel reflec-
tion coefficient, but at larger incident angles (greater than 65◦) the normalization effect
became worse. Compared with the results of the official CYGNSS product, the average
ubRMSE of soil moisture retrieved by the method in this paper was improved by 10%,
and the correlation was similar overall. Based on all measured data, the average ubRMSE
for retrieval results of soil moisture in this paper was 0.061 cm3/cm3, with an average
correlation of 0.4.

The direct removal of observations affected by water bodies is currently the most
common approach, which leads to a reduction in the number of sampling points. Retaining
observations and studying more efficient removal models are future research topics. The
normalization method of the Fresnel reflection coefficient only considers typical soil types.
Due to the complexity of soil composition in the natural environment, a unified correction
model will be developed in the future by collecting more data.
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