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Abstract: Tropical forests are major sources of global terrestrial evapotranspiration (ET), but these
heterogeneous landscapes pose a challenge for continuous estimates of ET, so few studies are con-
ducted, and observation gaps persist. New spaceborne products such as ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS) are promising tools for closing such
observation gaps in understudied tropical areas. Using ECOSTRESS ET data across a large, protected
tropical forest region (2250 km2) situated on the western slope of the Andes, we predicted ET for
different days. ET was modeled using a random forest approach, following best practice workflows
for spatial predictions. We used a set of topographic, meteorological, and forest structure variables
from open-source products such as GEDI, PROBA-V, and ERA5, thereby avoiding any variables
included in the ECOSTRESS L3 algorithm. The models indicated a high level of accuracy in the
spatially explicit prediction of ET across different locations, with an r2 of 0.61 to 0.74. Across all
models, no single predictor was dominant, and five variables explained 60% of the models’ results,
thus highlighting the complex relationships among predictor variables and their influence on ET
spatial predictions in tropical mountain forests. The leaf area index, a forest structure variable, was
among the three variables with the highest individual contributions to the prediction of ET on all
days studied, along with the topographic variables of elevation and aspect. We conclude that ET
can be predicted well with a random forest approach, which could potentially contribute to closing
the observation gaps in tropical regions, and that a combination of topography and forest structure
variables plays a key role in predicting ET in a forest on the western slope of the Andes.

Keywords: remote sensing; elevation; aspect; leaf area index; machine learning; mountain forest;
Ecuador; GEDI; PROBA-V; ERA5

1. Introduction

Forests dissipate heat through evapotranspiration (ET), which is a crucial biophysical
process in sustaining the hydrological cycle and regulating climate [1,2]. As such, ET
impacts rainfall patterns by “recycling” precipitation [1,3,4] and attenuates temperature
extremes at local and regional levels [1,5]. ET is influenced by complex interactions between
environmental variables, species compositions, and forest structure [1,6]. Over the last
decades, an intensification of the global hydrological cycle with increases in global ET
has been observed and attributed with high confidence to human activities related to
changes in land use [7,8]. Tropical forests are main sources of global terrestrial ET [9], and
their continuing transformation into other types of land use affects ET, with potentially
severe consequences for regional and global climates which may further intensify global
warming [1,2,10]. Although accurate ET estimations across tropical forests are pivotal in
improving our understanding of future climate responses [11,12], only a few ET studies

Remote Sens. 2023, 15, 2985. https://doi.org/10.3390/rs15122985 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15122985
https://doi.org/10.3390/rs15122985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9457-4459
https://doi.org/10.3390/rs15122985
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15122985?type=check_update&version=1


Remote Sens. 2023, 15, 2985 2 of 18

are available for tropical regions thus far due to their remoteness and often challenging
accessibility [9,13].

New spaceborne experiments such as the ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) can help cope with such challenges in tropical
regions. ECOSTRESS is a thermal radiometer coupled to the International Space Station
that measures land surface temperature between ~52◦N and ~52◦S. The ECOSTRESS
algorithm derives different levels of data products, one of which is the Level-3 ET estimate
calculated from the PT-JPL algorithm [14]. It is available as an instant ET value at the
respective time of overflight and as an extrapolated daily ET estimate. Compared to
established remote sensing products such as Landsat or MODIS, ECOSTRESS provides
data with higher spatial (70 m × 70 m) and temporal resolutions (1–5 days) [15]. The
ECOSTRESS Level-3 ET product has been validated with measurements from 82 eddy
covariance sites, showing a close linear relationship across different biomes and land use
types (r2 = 0.89, [15]). Although tropical ecosystems were strongly underrepresented due
to a lack of eddy sites, the good performance of ECOSTRESS across different regions is
attributed to the efficiency of the PT-JPL model applied to calculate ET, paired with the high
accuracy of the land surface temperature measurements [16]. While further studies are
needed to better assess and validate the performance of ECOSTRESS across tropical (forest)
ecosystems, existing studies show that ET can be estimated well by the PT-JPL algorithm
across tropical biomes in South America (r2 > 0.6) [17] and in a tropical mountain forest at
the eastern Andes [18], suggesting that the ECOSTRESS L3 ET product does closely reflect
actual spatial ET patterns and is thus a powerful asset for studying the magnitude, spatial
variability, temporal dynamics and driving mechanisms of ET along diverse environmental
gradients. Such studies are further facilitated by an increasing array of openly available
global satellite products characterizing local topographies [19], climates [20], and ecosystem
structures [21–23], often with similarly high spatial resolutions as ECOSTRESS.

The influences of physical and biological factors on the spatial variability of ET and
across (tropical) forest ecosystems are diverse and locally dependent [1,24,25]. Therein, day-
to-day variations in ET at a given site are often explained by fluctuations in microclimatic
variables such as air humidity, wind speed, and solar irradiance [26,27], while seasonal ET
variations in the (sub)tropics are often related to water availability [28]. Previous studies
have related spatial variability in ET to topographic variables such as elevation, slope,
or aspect [29,30], as well as to variables related to ecosystem structure [31]. In contrast
to topographic characteristics, ecosystem structure variables are highly variable across
time, often because of human intervention. For example, tropical forests typically have
higher canopy cover with larger trees, and higher leaf area indexes than agroforestry
or agricultural systems [32,33]. Changes in ecosystem structure associated with forest
conversion or degradation thus often result in substantial changes in key vegetation–
atmosphere interactions such as ET [34–36].

While modern remote sensing experiments provide products with higher spatial and
temporal resolutions, observation gaps remain. Particularly in tropical (mountain) regions
where partial or complete cloud cover is frequent, the availability of data from remote
sensing platforms is limited [37]. Machine learning approaches are potentially powerful
tools for filling existing observation gaps, e.g., in ECOSTRESS-derived ET maps. Machine
learning algorithms can be trained to predict ET or other ecosystem exchange processes
from freely available ancillary variables (e.g., [20–22]) over thousands of pixels and can
subsequently be applied to close observation gaps via spatially explicit predictions. To
date, several different machine learning algorithms exist, and they are widely applied
throughout the environmental sciences to analyze large datasets that potentially involve
dozens of interacting variables, complex non-linear relationships, and several thousand
observations [38–40]. RF is one of the most popular algorithms and often performs well
in ecological contexts, e.g., when applied to predict reference ET, water stress, sap flux,
leaf stomatal conductance, net ecosystem exchange, or changes in land cover [41–46]. The
application of machine learning for spatial predictions is a special case, and in recent years,
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some specific studies have addressed autocorrelation issues to avoid overfitting [47–49],
which is mainly caused by a lack of independence between training and testing (prediction)
samples [50]. Techniques such as forward feature selection and target-oriented cross-
validation with a random forest (RF) approach reduce the risk of spatial overfitting and
demonstrate more realistic model performances [47,48,51].

In our study, we used an advanced RF machine learning approach to predict ET for
2250 km2 of tropical forest (>80% tree cover, [21]) located on the western slopes of the Andes,
inside Cotacachi Cayapas National Park in Ecuador. We combined daily ET estimates from
ECOSTRESS with freely available topographic, meteorological, and forest structural remote
sensing products. We aimed to determine (1) what combination of variables is relevant for
the spatial prediction of ET across the region, and (2) what roles forest structure variables
play in the spatial prediction of ET.

2. Methodology
2.1. Study Area

This study was carried out in Cotacachi Cayapas National Park, a protected area
located in northwestern Ecuador (Figure 1). The park hosts 62% of the total native plant
species in Ecuador [52] at the intersection of two global biodiversity hotspots, the Tropical
Andes and the Chocó-Darién Ecoregion [53]. It extends over 2610 km2 [54], and its elevation
ranges from 34 to 4989 m a.m.s.l. [19]. The mean annual air temperature ranges from 2 ◦C
to 25 ◦C, and the annual precipitation ranges from 1076 mm to 3251 mm [55,56]. In the
lowlands, the dry season begins in June and extends until September, while at higher
elevations, it can last until November [52]. During the wettest month, precipitation ranges
between 143 mm and 408 mm, and during the driest month, precipitation ranges between
21 mm and 165 mm [56]. Along the altitudinal gradient, local reports describe eight
different ecosystems, the most dominant of which are evergreen premontane forests (49%
of the total area), evergreen low montane forests (20%), evergreen montane forests (10%),
and lowland rainforests (3%) [54]. We focused our study on 2250 km2 (86%) of the national
park that corresponded to a forested area with more than 80% tree cover [21] and elevations
of up to 4055 m [19].
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2250 km2 of forest in the study area (right).
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2.2. Study Design and Data Collection

The target variable in our study was the daily evapotranspiration (ET) from the
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS),
which is available as a Level-3 (L3) latent heat flux estimate in W m−2 with a spatial
resolution of 70 m × 70 m [15]. The daily ET estimate is derived from the instant ET
value (at the time of overflight) by adjusting the data to the diurnal radiation intensity
cycle and assuming that the relative ratios of the instantaneously measured variables are
constant throughout the daytime [57]. The data were retrieved for the entire year 2020
through the ECOSTRESS Early Adopter Program and transformed into geo-located grid
data using the Python swath2grid programming tool [58]. Daily ET values were transformed
from W m−2 into mm d−1 for better comparability to other studies [11], therein assuming
12 h of daylight for our study region, which is in close proximity to the equator. For the
year 2020, 15 images were available for the study region, but only a few met the selection
criteria of (1) images captured during the daytime, i.e., between 9:00 and 17:00 UTC-5,
(2) ET estimates associated with less than 70% uncertainty (based on the uncertainty layer
“ETinst Uncertainty” provided with the ECOSTRESS L3 product), and (3) the number
of pixels covering the area, i.e., an image covering at least 50% of the study area. Three
images taken on 6 February, 8 August, and 10 October met all three criteria, covering
between 58 and 66% (1290–1446 km2) of the study area (note that none of the images
covered the entire area of interest). On day 1 (D1), 6 February 2020, the image comprised
301,072 pixels (corresponding to a forest area of 1446 km2); on D2 (8 August 2020), it
comprised 268,085 pixels (1290 km2); and on D3 (10 October 2020), the image comprised
271,694 pixels (1307 km2).

As the basis for the prediction of ET across the study area and for each of the three
days, a set of physical and biological variables was retrieved from freely available remote
sensing products. We excluded all variables that were directly part of the calculations of
the ECOSTRESS L3 algorithm (net radiation, soil heat flux, air temperature, vapor pressure
deficit, relative humidity, surface reflectance in the red band, surface reflectance in the near-
infrared band, normalized difference vegetation index, and soil adjusted vegetation index),
and related variables were retrieved from different independent satellite products [19–22],
leading to a final dataset of five topographic, four meteorological, and four forest structure
variables (Table 1).

Using QGIS 3.16 [59], data were projected to the same coordinate system (EPSG:32717–
WGS 84/UTM zone 17S) and aligned to the same extent. Due to large differences in spatial
resolution among the predictor variables, the ECOSTRESS data were transformed into
points, and the point sampling tool plugin was used to extract the information from the
respective predictor raster layers for each ECOSTRESS pixel-point location. Topograph-
ical data were derived from the Global Digital Surface Model ALOS World 3D product
(version 3.2) generated by the Japanese Aerospace Exploration Agency (JAXA), which has
a 30 m resolution [19]. QGIS was used to calculate the slope, aspect, and topographic
position index (TPI). As aspect is a circular variable, it was transformed into two distinct
continuous variables (ranging from 0 to 1): eastness and northness [60]. Hourly meteoro-
logical data between 6:00 and 18:00 UTC+5 was retrieved from the European Centre for
Medium-Range Weather Forecast (ECMWF) Reanalysis v5 (ERA5), which has a spatial
resolution of 9 km [20]. The extracted variables were the 10 m u-component of wind, 10 m
v-component of wind, dew point temperature, skin reservoir content, and total precipi-
tation. The variable wind speed was derived from the u and v components, as shown in
Equation (1). All retrieved ERA5 data were aggregated to daytime means using the raster
calculator tool in QGIS.

ws = sqrt (u2 + v2) (1)
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Table 1. Target variable, evapotranspiration, and predictor variables in the categories of topography,
meteorology, and forest structure, as extracted from different open-access remote sensing products.

Variable Category Variable Description Variable
Abbreviation Unit Remote Sensing

Product
Original

Resolution

Target variable Observed daily
evapotranspiration ET mm d−1 ECOSTRESS [15] 70 m

Topographic Derived data from digital
surface model (DSM)

Elevation m

ALOS World 3D-JAXA
[19] 30 m

Slope ◦

Eastness rad
Northness rad

TPI m

Meteorological

Wind speed calculated
from u and v components Ws m s−1

ERA5-ECMWF [20] 9 kmDew point temperature DewT ◦K
Skin reservoir content SkRc mm

Total precipitation Prec mm

Forest structure

Tree cover TreeCov % Global forest change
2000–2020—Landsat [21] 30 m

Tree height TreeH m
Global forest canopy
height—GEDI and

Landsat [22]
30 m

Leaf area index LAI m2 m−2 PROBA-V V1 [23] 300 m
Roughness length SfRo m ERA5 and ECMWF [20] 28 km

Forest height data were retrieved from a global forest canopy height map at a spatial
resolution of 30 m (the data were recorded between 18 April 2019 and 2 October 2019) [22].
Tree canopy cover data were retrieved from the global forest cover map at a 30 m spatial
resolution, using the most updated version, version 1.9 (the forest cover baseline calculated
in the year 2000 and the forest change from the year 2000 to 2021) [21]. Roughness length
was extracted from the previously mentioned ERA5 product at a spatial resolution of
28 km [20]. Leaf area index (LAI) data for 2020 were extracted from the Project for On-
Board Autonomy—Vegetation (PROBA-V) V1 at a spatial resolution of 300 m (the data
were recorded between 15 July 2019 and 31 March 2020) [23]. As the study area is covered
by evergreen forest types, the LAI was assumed to be constant throughout the year of study.
The three datasets analyzed in our study (one for each of the three studied days) comprised
the daily ET estimates from ECOSTRESS and the respective data on the 13 predictors
for each pixel (Table 1). A preliminary quantitative analysis showed significant linear
relationships between most of the predictors and ET, but only marginal parts of the variance
in ET were explained (r2: < 0.001–0.055, p < 0.05) (Figures S1–S3).

2.3. Statistical Analysis

To decrease the risk of overfitting and to obtain models with the ability to accurately
predict across different locations, we applied the best-practice strategies outlined in previ-
ous studies [47,61,62]. Such strategies are time- and computing-intensive processes, and
we thus limited our study to a single machine learning algorithm. The random forest
(RF) approach was selected for the spatial prediction of ET, as observed from ECOSTRESS
with 13 potential predictors (Table 1). The RF approach combines multiple decision trees
from a randomly selected sample of the training data and different randomized combi-
nations of explanatory variables to predict a target variable. Each decision tree produces
independent new values corresponding to every subgroup of the training data. The final
prediction is a single value that averages all predictions [63]. A particular strength of
RF is that it can determine the contributions of single variables in explaining the studied
phenomena [64,65], making it a popular algorithm in ecological studies. To account for
spatial autocorrelation and to avoid overfitting, we applied three main strategies: (1) the
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spatial block approach, as suggested in [62], to assign a spatial ID, (2) RF forward feature
selection (FFS) with k-fold leave-location-out cross-validation (LLO-CV) to select the best
spatial predictors [51,66], and (3) RF modeling with k-fold LLO-CV [47]. Spatial blocks were
created using the R package blockCV [67], FFS was carried out with the CAST package [47],
and RF was implemented in the randomForest package [68] via the caret package [69].

We first divided the study area into spatial blocks of 2 km2 (Figure 2), i.e., each pixel
within a given block was identified with a unique spatial ID between 1 and 5. The data
were randomly split into training (40%) and testing (60%) sets before the FFS. The FFS
algorithm works by combining all pairs of variables. It saves the best initial model and
adds further variables, with a function capturing model improvement as each variable is
added using LLO-CV [47]. FFS is a time-intensive process; thus, as suggested in [61], a
sub-sample of 50,000 pixels from the training dataset was selected using stratified random
sampling and the spatial ID as splitting criterion. Based on the spatial ID and using the
CreateSpacetimeFolds function from the CAST package, the subsample was divided into five
folds (k-fold = 5) for spatial cross-validation [47]. The combination of predictor variables
selected at each split (mtry) was set at a value of two. For the 13 predictors in our study, the
FFS algorithm thus evaluated a maximum of 576 models. The best variables selected by
the FFS were used as input predictors for the final RF model for each of the studied days
(D1–D3). Following the workflow applied in [61], all training data—which were previously
assigned to a spatial fold based on the spatial ID—were used for tuning and final training.
The number of predictor variables selected at each split (mtry) was tuned for each model
between two and the maximum selected number of predictors after FFS. The number of
trees were tuned between 200 and 2500 (200 to 1000 in increments of 100 and 1000 to 2500
in increments of 500) [65]. The tuning process showed that for all three models, the best
mtry value was two, and the best number of trees was 1000.
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Figure 2. Data splitting, variable selection, and modeling applied to the datasets comprising
ECOSTRESS data and topographic, meteorological, and forest structure variables. Methodology
adapted from [61].

Model performances were analyzed by predicting over the independent testing dataset,
which comprised 60% of the total data. We calculated the mean absolute error (MAE) and
root mean squared error (RMSE) in mm d−1 as well as the normalized root mean square
error (nRMSE) in % for the model training and testing steps. We further calculated the
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coefficient of determination, r2
, as an indicator of the variance explained by each model. To

assess the contribution of each predictor to the final model outcome, the individual variable
importance (in %) was extracted using the wrapper varImp function from the R package
caret [69]. All statistical analysis and plotting were carried out with R 4.2.2 [70], and the
maps were produced in QGIS [59].

3. Results

The forward feature selection (FFS) of topographic, meteorological, and forest structure
variables for the prediction of ET resulted in different combinations of variables for each of
the studied days (D1–D3) (Table 2). For D1, 10 of the 13 available variables were selected,
while 11 variables were selected for D2 and D3. The FFS removed slope, precipitation (Prec),
and roughness length (SfRo) from D1; for D2, it removed northness and skin reservoir
content (SkRc); and for D3, it removed dew point temperature (DewT) and tree canopy
cover (TreeCov). The remaining variables were used to model ET via a random forest
(RF) approach with spatial cross-validation (CV). There were only marginal differences
in the mean square error (MAE), root mean square error (RSME), normalized root mean
square error (nRMSE), and r2 values between the respective training and testing outcomes
(Table 3), indicating that the models can predict ET for locations that were not part of the
model training. Overall, model performance was good, with r2 values of 0.61 to 0.74, MAE
values between 0.3 mm d−1 and 0.6 mm d−1

, and an nRMSE below 14%.

Table 2. Topographic, meteorological, and forest structure variables after forward feature selec-
tion (FFS) as the basis for modeling ET with a RF approach on the studied days (D1–D3). TPI:
topographic position index; Ws: wind speed; DewT: dew point temperature; SkRc: skin reservoir
content; Prec: total precipitation; TreeCov: tree cover; TreeH: tree height; LAI: leaf area index; SfRo:
roughness length.

Model/Date Variable Set from FFS

Topographic Meteorological Forest Structure

D1: 6 February 2020 Elevation, eastness, northness, and TPI Ws, DewT, and SkRc TreeCov, TreeH, and LAI
D2: 8 August 2020 Elevation, eastness, slope, and TPI Ws, DewT, and Prec TreeCov, TreeH, LAI, and SfRo

D3: 10 October 2020 Elevation, eastness, northness, slope, and TPI Ws, SkRc, and Prec TreeH, LAI, and SfRo

Table 3. Comparison of model accuracies in terms of mean absolute error (MAE), root mean square
error (RMSE), normalized root mean square error (nRMSE), and coefficient of determination (r2) for
training and testing (prediction) datasets for the studied days (D1–D3).

Training Testing

MAE RMSE nRMSE r2 MAE RMSE nRMSE r2

mm d−1 mm d−1 % - mm d−1 mm d−1 % -

D1: 6 February 2020 0.48 0.67 11.54 0.73 0.49 0.67 11.51 0.74

D2: 8 August 2020 0.56 0.75 13.38 0.62 0.54 0.76 13.33 0.62

D3: 10 October 2020 0.32 0.49 8.33 0.62 0.32 0.49 8.32 0.61

The average observed ET values for over 160,000 ECOSTRESS pixels for each of the
studied days were 5.8 ± 1.3 mm d−1 (D1), 5.7 ± 1.2 mm d−1 (D2), and 5.9 ± 0.8 mm d−1

(D3) (mean ± SD, Figure 3). The predicted ET means were nearly identical to the observed
means, with divergences of less than 0.1%. The predicted minima were consistently higher
than the observed minima, and the predicted maxima were lower than the observed max-
ima, resulting in ranges that were 25% to 33% smaller and standard deviations that were
23% to 33% smaller for the predicted ET compared to the observed ET. The predicted data
were also characterized by a less multimodal distribution than the observed data (Figure 3).
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The spatial patterns of ET in the study area predicted from the RF models resembled the
observed ET patterns well on all days (Figure 4). There were no apparent patterns in the
distribution of divergences (differences between observed ET values and predicted ET
values for the testing datasets) across the study area. Pixel-level divergences between
observed and predicted ET values ranged from −4.11 mm d−1 to 4.18 mm d−1 for D1, from
−4.06 mm d−1 to 3.32 mm d−1 for D2, and from −3.75 mm d−1 to 3.63 mm d−1 for D3
(Figure 4). Between 84% and 95% of the predicted ET values had divergences less than or
equal to 1 mm d−1 (Figure 4). Scatter plots of ET divergences vs. all predictors revealed no
clear influences of the studied environmental variables on the accuracy of the spatial ET
predictions. Interestingly, while there were no trends in the average divergences when plot-
ted along different environmental gradients, the maximum observed divergences partially
show distinct non-linear patterns, e.g., with maximum ET divergences at intermediate
values of elevation, precipitation, or wind speed (Figures S4–S6).
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An analysis of variable importance for the RF modeling on the studied days showed
that it takes five variables to explain at least 60% of the results (Figure 5). The three
most important variables in all models were elevation, eastness (topography), and LAI
(forest structure), in varying order and with varying contributions to the model outcome
(12–14% for elevation, 10–16% for eastness, and 13–14% for LAI). Further variables with
contributions of more than 10% in at least one model were northness and tree height
(D1), slope (D2), and roughness length (D3), i.e., more variables of topography and forest
structure. Overall, the respective sets of topographic variables together explained between
43% and 47% of the spatial predictions of ET, the forest structure variables explained
between 30% and 31%, and the meteorological variables explained between 19% and 25%.
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Figure 4. Spatial distribution of observed ET, predicted ET, and prediction divergences in Cotacachi Caya-
pas National Park for the studied days (D1–D3). D1: 6 February 2020 (predictions over 180,643 pixels),
D2 on 8 August 2020 (predictions over 160,851 pixels), and D3 on 10 October 2020 (predictions over
163,016 pixels). White areas on the maps correspond to excluded pixels (forest coverage < 80%, missing
data from the predictor variables), training data or no data (observation gaps from ECOSTRESS). Fre-
quency distribution of prediction divergencies (right column) show that 87% of pixels for model D1,
84% for model D2, and 95% for model D3 had divergence values less than or equal to 1 mm d−1.
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a RF approach for the studied days (D1–D3). TPI: topographic position index; Ws: wind speed; DewT:
dew point temperature; SkRc: skin reservoir content; Prec: total precipitation; TreeCov: tree cover;
TreeH: tree height; LAI: leaf area index; SfRo: roughness length.
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4. Discussion
4.1. Observed ET Data from ECOSTRESS

There are no previous ET assessments for the study region for comparison, but our
daily means fall into the range of values reported for tropical evergreen forests in Indonesia
and Costa Rica (on average, 4.1 mm d−1–6.3 mm d−1) [71,72]. They are also comparable to
a recent study in a tropical mountain forest in southern Ecuador in which ET was assessed
with a scintillometer and a daily ET value of up to 6 mm d−1 was reported [73]. The
same study reported large day-to-day variations in ET (1 mm d−1–6 mm d−1), which were
attributed to differences in solar irradiance between sunny, overcast, and rainy days. In our
study, only three days in 2020 met all quality criteria, including a large, cloud-free coverage
of the study area. This may explain the similarly high values across the days in our study,
which were distributed relatively evenly over the year (February, August, and October 2020).
The equatorial study region generally has high precipitation, no substantial dry periods,
and is dominated by evergreen forest types; the lack of seasonal variation in the observed
daily ET across the relatively cloud-free study days thus seems reasonable. In our study,
we selected only the ECOSTRESS ET estimates with less than 70% uncertainty to balance
data quality and data availability, as an exploratory analysis showed severely limited
data availability when applying stricter uncertainty thresholds. This demonstrates that
even with state-of-the-art remote sensing methods, obtaining high-quality, low-uncertainty
estimates of ET in tropical (mountain) regions remains a challenge. In the Appalachian
Mountains, a study along an elevation gradient reported a close linear relationship between
ECOSTRESS ET and eddy covariance (r2 = 0.64, p < 0.05, [74]). The study also reported a
weaker but significant relationship when including all estimates regardless of the associated
ET uncertainty (r2 = 0.27, p < 0.05). In the study in the Appalachian Mountains, the
ECOSTRESS ET data were consistently higher than the ground-based reference values [74],
which may partially explain the high observed maximum daily ET values in our study area.

4.2. Predicting ET from Random Forest Modeling

Forward feature selection (FFS) was applied to reduce the risk of spatial overfitting and
to improve spatial model performance [47]. It reduced the dataset for ET prediction from
the original 13 variables (five topographic, four meteorological, and four forest structure
variables) to a final set of 10 to 11 variables. Even though the FFS method generally tends
to remove geolocation variables, the final sets of predictors comprised such variables (e.g.,
elevation and topographic position index). Likely, our training data were well distributed
across the large study area with complex and heterogeneous topography so that the spatial
clustering that leads to variable exclusion in FSS did not occur [47]. Due to the spatial nature
of our data, we applied a target-oriented cross-validation strategy (LLO-CV) [48,61,62]. The
very similar values of MAE, RSME, nRMSE, and r2 between training and testing (prediction)
outcomes suggest that spatial overfitting did not occur in the models and that they can thus
predict ET for locations that were not part of the model training. The ability of our models
to predict ET at different locations was further applied exemplarily in filling observation
gaps (see maps in Figure S7). Overall, the performance of the applied random forest (RF)
algorithm was good across the studied days, with RMSE values ranging from 0.49 mm d−1

to 0.67 mm d−1, nRMSE values ranging from 8% to 13%, and model prediction accuracy
values (r2) of 0.64 to 0.74. These accuracy metrics are comparable to other studies applying
RF modeling for the spatially explicit prediction of ecological target variables, such as
reference ET (nRMSE = 9%, r2 = 0.91) [42], daily ET (RMSE = 1.27 mm d−1, r2 = 0.63) [75],
sap flux (r2 = 0.8), and stomatal conductance (r2 = 0.5) [43].

In our study, the RF models yielded precise mean ET values compared to the observa-
tions, but the predictions of extreme values were softened by the algorithm, with 25–33%
smaller ranges in predicted ET than in observed ET. Likewise, the distributions of the
predicted datasets were less multimodal than the observed data, with most predicted ET
values occurring between 3 mm d−1 and 7 mm d−1. While it is well known that machine
learning algorithms tend to favor the most typical data, from an ecological point of view,
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less frequent observations with extreme values may carry important information [76].
There is room for improvement in future machine learning applications to better account
for the importance of rare observations in ecological studies, e.g., by assigning a degree of
importance to observations and by applying enhanced methods to distinguish between
outliers and minority data and by using ensemble learning algorithms [76,77]. Overall,
our study helps demonstrate that RF is a powerful tool for the spatial prediction of key
ecosystem exchange processes such as ET, especially in tropical areas where satellite-based
observation gaps persist. Our study is a good prospective for future assessments over
extended areas at the western Andes to generate continuous ET coverage maps based on
the available ECOSTRESS L3 ET data.

4.3. Variable Importance

The analysis of variable importance in the RF models showed that no single variable
was dominant (<15% contribution to model outcome), i.e., the ET spatial prediction is driven
by multiple variables and their interactions. Together, topographic variables contributed
more to model outcomes (43% to 47%) than meteorological (19% to 25%) and forest structure
variables (30% to 31%). The three most important single variables in all models were
elevation and eastness (topography) and leaf area index (LAI, forest structure).

The strong effect of the topographic variables on ET spatial predictions are within
expectations and in line with a recent study in southeastern Ecuador in which spatial
ET variability was explained by elevation and topographic position [73]. In our study,
the variables elevation (12–14%) and eastness (aspect) (10–16%) had major roles across
all models. Along large elevation gradients, such as those in our study (34 to 4055 m
a.m.s.l.), major shifts in forest structure and composition occur in response to changing
environmental conditions [78,79]. Likewise, eastness is known to affect forest distribution
and composition in the Ecuadorian Andes [80] and thus potentially influences ET. For
example, individuals of the same species growing on shaded slopes can show different
responses to water stress than species located on sunny slopes [81], leading to distinct ET
patterns and dynamics [82,83]. Slope had intermediate variable importance (7–10%) in
two out of the three models and was removed by the FFS in the third model. Intermediate
slopes can accommodate more trees per unit ground area than level areas, while past
a certain threshold, slopes become too steep to support forest ecosystems [31,84], thus
potentially influencing ET via changes in vegetation cover and tree density. In complex
mountainous terrain, slope may additionally affect wind flow regimes and thus energy and
water exchange [85]. It also affects soil water availability, which can constrain or enhance
local ET; as such, previous studies reported enhanced (evapo)transpiration on slopes
compared to waterlogged valley bottoms [77,83]. The variable topographic position index
was present in all three models but was of relatively low variable importance (5–7%). It is
likely mainly of relevance in the ET prediction of pixels with extreme positions, such as on
ridges or in depressions, with largely contrasting topographic characteristics to neighboring
pixels. Some of the studied topographic variables may (partially) act as proxies for the
environmental conditions at a given pixel, i.e., solar radiation, air temperature, or other
climatic factors that are known to influence ET. In our study, as key drivers of ET, some
climatic variables, particularly radiation, were excluded from the analysis for statistical
reasons, i.e., because they were directly used in the ECOSTRESS L3 algorithm. This may
partially explain the high importance of topography as a potential radiation proxy variable
in our study. In general, the use of topographic variables in ET prediction models, e.g., for
the purpose of filling the spatial gaps on ET maps with partial cloud cover, has advantages
over the direct use of climatic variables and the use of most forest structure variables. As
such, topographic variables are relatively simple to calculate and extract, are available at
a much higher spatial resolution, are consistent over large timespans and, perhaps most
importantly, are available with no data gaps. The latter may be a substantial advantage
when, e.g., attempting to fill ET observation gaps in regions with frequent cloud cover,
such as in mountainous (tropical) regions.
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Among the four meteorological variables that were not part of the ECOSTRESS L3
algorithm and were thus used in RF modeling, wind speed occurred in all three models,
with relatively low contributions (6–8%) to model outcome. In general, wind speed is
an important driver of hydrological processes and is a key variable in understanding ET
dynamics [86,87]. A higher wind speed often enhances ET (up to critical thresholds) by
accelerating the turbulent exchange of water vapor from the leaves to the atmosphere
in the boundary layer [87,88]. However, previous studies reported that aerodynamic
properties in tropical regions influence less than 20% of ET and between 20% and 35% of
ET in the sub-tropics [87,89]. In mountainous regions, wind systems are often of particular
importance; for example, on the steep slopes of the western Andes, wind uplift causes
orographic precipitation on the windward side and rain shadow effects on the lee side
where foehn winds create dry valleys [90,91]. The lack of a strong effect of wind speed
in our study may (partially) be related to the relatively coarse spatial resolution of the
ERA5 satellite product. Two further meteorological variables which each occurred in two
out of the three models with relatively low contributions (7–9%) were related to water
availability, i.e., precipitation and skin reservoir content. Several previous studies reported
that water availability can severely restrict ET when passing certain thresholds, both under
conditions of water surplus [31,92,93] and water scarcity [94–96]. The non-dominant role
of variables relating to water availability in our study, in addition to the consistently high
mean ET values observed for the studied days, likely indicate that water availability was
not a strongly limiting factor. As a further meteorological variable, dew point temperature
occurred in two out of the three models with low contributions to model outcome (6%). It
is related to air pressure, humidity, and precipitation and thus indirectly influences ET. A
potential reason for its low contribution is that precipitation and skin reservoir content, i.e.,
variables more directly expressing ecosystem water status, already adequately integrate ET
responses to varying water availability.

In our study, we focused on the roles of forest structure variables for spatially explicit
predictions of ET. The variable LAI occurred in all three models and was the most important
(14% for D2) and second most important variable (13% for D1 and D3). Leaves mediate the
exchange of gas between ecosystems and the atmosphere, and LAI thus plays a key role in
the carbon and water cycle and often is a key input variable in ecological modeling [97,98].
LAI varies substantially over space and time, and a higher LAI is associated with higher
ET [36]. In line with our results, previous studies reported the LAI to be a key predictor of
the spatial variability of transpiration in tropical ecosystems of the Americas [99] and ET in
a mountain cloud forest [31]. We speculate that the importance of LAI for predicting ET
in Cotacachi Cayapas National Park may be even higher than reflected in our results; the
applied LAI product—the best product available for the study area in terms of coverage
and spatial resolution—still had a spatial resolution 10 times lower (300 m, [23]) than, e.g.,
the topographical set of variables and thus does not adequately reflect smaller-scale LAI
heterogeneity in the field [45,100]. Future LAI and thermal infrared products with finer
resolutions to better characterize the biophysical properties of vegetation could further
improve the accuracy of ET predictions over broad forest areas and across different land use
types and support the generation of total ET coverage maps, which could help researchers
study response patterns along larger environmental gradients. Further studied forest
structure variables were tree height (intermediate contributions to all three models, 8–10%),
surface roughness length (intermediate contributions to two models, 7–10%) and tree cover
(relatively low contributions to two models, 7%). Increases in vegetation height and cover
are often associated with higher ecosystem biomass and greater leaf area index and thus
higher levels of ET [101,102]. Vegetation height and surface roughness length, the latter
of which characterizes the heterogeneity of vegetation height, also influence ET via their
roles in the turbulent energy and water exchange by shaping the ecosystem–atmosphere
boundary layer [103].

The greater contribution of topographic variables to the model outcomes in our
study compared to the contribution of forest structure variables is, in part, related to
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the experimental design. In our study, we provided baseline results from near-undisturbed
forests. Thus, we only considered forests with a tree canopy cover of more than 80% (as
assessed from the global tree cover map in [21] at a spatial resolution of 30 m), excluding
degraded forests and the tussock grass vegetation in the national park. This strongly
reduces the spatial variability in the studied forest structure variables as intact forests are
expected to generally have much higher LAI, canopy cover, and tree height values than
neighboring degraded forests or agricultural systems [32,33]. Additionally, the temporal
variability in forest structure and particularly LAI in our study region was also rather low
due to the lack of strong seasonality and the associated dominance of evergreen forests, as
well as the lack of higher-spatio-temporal-resolution data available for the area of study.
Forest structure variables would likely provide a more dominant contribution to spatial
predictions of ET across (tropical) seasonal forests or across heterogeneous landscapes with
different land use types, which makes an interesting subject for follow-up studies in other
previously underreported tropical areas. We consider our study in the evergreen forests
of the western Ecuadorian Andes as a first attempt at a spatially explicit prediction of ET
based on a set of freely available topographic, climatic, and forest structure variables and
as a potential solution to fill observation gaps. There is much room for further improving
spatial predictions of ET (or other ecological variables) with a new generation of remote
sensing products with new and enhanced sensors and platforms, steadily increasing spatial
and temporal resolutions and increasingly automated and sophisticated data extraction,
quality control, and gap-filling procedures [104–106]. Potential improvements from a
software/algorithm perspective could involve semi-automated and guided data handling
and extraction approaches (at best, from multiple products simultaneously), as well as a
standardized set of recipes (with pre-set quality filters e.g., for automated cloud removal
and uncertainty thresholds) and associated gap-filling procedures.

5. Conclusions

We used a random forest approach to predict the daily evapotranspiration (ET) across
a tropical forest region on the western slopes of the Ecuadorian Andes. Using a set of
remotely sensed predictors, we achieved fair errors and good model performances. The
spatial predictions of ET were mostly influenced by topographic and forest structure
variables. Therein, the elevation, aspect, and leaf area index (LAI) were consistently the
most important set of variables. We hypothesize that finer-spatio-temporal-resolution LAI
products can further improve ET predictions and will contribute to generate wall to wall
maps across the western Andes, where multiple types of land use converge.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15122985/s1, Figure S1: Relationship between ET as retrieved
from ECOSTRESS L3 ET product and all 13 predictor variables for D1; Figure S2: Relationship
between ET as retrieved from ECOSTRESS L3 ET product and all 13 predictor variables for D2;
Figure S3: Relationship between ET as retrieved from ECOSTRESS L3 ET product and all 13 predictor
variables for D3; Figure S4: Relationship between divergencies and predictor variables for D1;
Figure S5: Relationship between divergencies and predictor variables for D2; Figure S6: Relationship
between divergencies and predictor variables for D3; Figure S7: Prediction of ET based on models
D1: 06 February 2020, D2: 08 August 2020 and D3: 10 October 2020 for observation gap filling in
Cotacachi Cayapas National Park.
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