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Abstract: Infrared (IR) and visible image fusion is an important data fusion and image processing
technique that can accurately and comprehensively integrate the thermal radiation and texture details
of source images. However, existing methods neglect the high-contrast fusion problem, leading to
suboptimal fusion performance when thermal radiation target information in IR images is replaced
by high-contrast information in visible images. To address this limitation, we propose a contrast-
balanced framework for IR and visible image fusion. Specifically, a novel contrast balance strategy
is proposed to process visible images and reduce energy while allowing for detailed compensation
of overexposed areas. Moreover, a contrast-preserving guided filter is proposed to decompose the
image into energy-detail layers to reduce high contrast and filter information. To effectively extract
the active information in the detail layer and the brightness information in the energy layer, we
proposed a new weighted energy-of-Laplacian operator and a Gaussian distribution of the image
entropy scheme to fuse the detail and energy layers, respectively. The fused result was obtained by
adding the detail and energy layers. Extensive experimental results demonstrate that the proposed
method can effectively reduce the high contrast and highlighted target information in an image while
simultaneously preserving details. In addition, the proposed method exhibited superior performance
compared to the state-of-the-art methods in both qualitative and quantitative assessments.

Keywords: infrared and visible image fusion; contrast balance; guided curvature filter; Gaussian
distribution of entropy; contrast-preserving guided filter

1. Introduction

Numerous sensors are used for data collection in real-life scenarios. Unlike a single
sensor, the use of multiple sensors to collect data from the same scene facilitates a com-
prehensive and accurate interpretation [1–3]. However, redundant data may be present
when multiple sensors are used. Therefore, specific algorithms should be developed to
extract critical pixel information. In infrared and visible image fusion (IVIF) [4–6], the
target information of the thermal radiation is extracted from the infrared (IR) image, and
the details and contrast information are obtained from the visible image. In IR imaging
sensors, the physical properties of IR radiation are used to measure objects. Therefore,
these sensors are not easily affected by complex external environments (i.e., haze and
high-exposure areas). However, although IR images can approximately locate the area of
a target based on the temperature or radiation difference, they cannot capture the detail
and color information of the target scene, which results in low contrast. Therefore, using
only a single IR image cannot provide comprehensive information about the scene. Visible
imaging sensors capture the reflection of the target scene and can effectively preserve
contrast and detail information in the scene. However, these sensors are easily affected by
external environmental factors. Integrating useful detail information from a visible image
and target information from an IR image into a single image can effectively compensate for
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the innate defects of various sensors and facilitate human observation without the influence
of complex environments. Therefore, IVIF technology has been developed rapidly and is
applied in military reconnaissance [7] and target tracking [8], among other fields. Figure 1
shows the application of IVIF in the military domain, demonstrating its effectiveness in
enhancing military reconnaissance tasks. The fusion results demonstrate the ability of the
technology to detect and identify military facilities, such as tanks and armored vehicles,
within a scene.
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Figure 1. Examples of infrared (IR) and visible image fusion technology used in military applications.

IVIF methods can be categorized into deep learning (DL)-based and conventional
methods. DL-based methods have been widely used in image fusion and achieve satis-
factory results. For example, Xu et al. [9] proposed an unsupervised network for image
fusion tasks that uses the same model and parameters to process various fusion problems.
Zhang et al. [10] proposed a CNN-based image fusion framework that processes images
in an end-to-end manner without postprocessing. To address the dependence of DL on
the training dataset, Liu et al. [11] proposed a deep architecture for IVIF and achieved
excellent fusion performance. However, DL-based algorithms rely on computer hardware
and require intensive training. Furthermore, inadequate real-world datasets have limited
the development of DL-based methods.

Multi-scale transform (MST)-based methods are commonly used in conventional IVIF
methods, in which the source image is typically decomposed into multiple sub-bands
and appropriate fusion rules are designed based on the features represented by the sub-
bands [1]. For example, Chen et al. [12] proposed a target-enhanced MST decomposition
model to extract details and energy information at various scales. However, multilevel and
multidirectional decomposition may result in significant computational complexity of the
algorithm. For IVIF tasks, Li et al. [13] proposed a total variation decomposition strategy to
decompose an image into structure and texture layers, and construct appropriate weights
for fusion in various layers. Nie et al. [14] proposed a total variation-based IVIF strategy to
obtain fusion results using a variation model without designing fusion rules for various
decomposition components such as in multi-scale decomposition methods. Furthermore,
various filters are used in IVIF tasks. For example, to achieve the fine classification of IR and
visible images, Mo et al. [15] proposed an attribute filter for IVIF that fully considers the
attributes of objects in the source image and can effectively extract the target information in
the IR image. In addition to the use of filters as a decomposition method, LatLRR [16] is
widely used for IVIF. In this decomposition strategy, the source image is a combination of a
low-rank component that represents the global structure and a prominent component that
represents the local structure. Liu et al. [17] proposed a multi-decomposition LatLRR-based
IVIF method that combined the advantages of MST and LatLRR-based methods to extract
details from the source image. However, the inefficiency of this decomposition process
limits its practical application.

In IVIF, target information extracted from the IR image and texture information ob-
tained from the visible image are integrated into a single image. Typically, pixels at the same
location in different source images do not affect each other, and the measurement values of
the feature area pixels are higher than those in flat areas. However, because of the diversity
and complexity of the shooting environments, many images can be affected to varying
degrees. For example, when capturing outdoor photographs during the day, images may
be overexposed and exhibit high contrast because of intense sunlight. When capturing
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photographs outdoors at night, light from passing cars and streetlamps may cause unrea-
sonable contrast and scattering. Under hazy weather, visible images may enhance gray
color information, which may result in the loss of scene details and colors. These problems
increase the difficulty of developing IVIF methods. However, in most IVIF algorithms, only
the ideal situation for IVIF is considered, and the aforementioned problems are ignored.
In complex scenes, the high contrast and haze grayscale information provided by visible
image may cause the scene to lose useful details and textures. If these adverse visual phe-
nomena are not suppressed, thermal radiation information or high-contrast features in the
fusion results may be lost, resulting in unclear targets. Figure 2 displays the fusion results
for the proposed algorithm and the comparison method, namely, relative total variation
decomposition (RTVD)] [13], for the two groups of IR and visible source images. When the
source image exhibits overexposure and light-scattering effects, the RTVD method loses
target pixel information and produces suboptimal fusion results. Although many image
processing techniques, such as enhancement [18], dehazing [19,20], and denoising [21],
have been proposed, if the image is preprocessed separately before fusion, this increases
the complexity of the fusion task and is not conducive to practical applications.
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Therefore, we propose a contrast balance approach based on the IVIF method, CBFM,
to adjust the overly high-contrast areas of visible source images through a contrast balance
strategy. Thus, the pixels in these areas can be prevented from affecting the distribution of
target information in the IR image. First, we propose a multilayer decomposition scheme
based on guided curvature filtering to obtain the most distinctive energy layer in the
visible image. The high-brightness pixel information in the energy layer causes an overly
high contrast in the image; therefore, we reduce the weight of the energy layer when
reconstructing the source image. To avoid the detail loss caused by pixel loss in the energy
layer, we perform detail compensation in the detail layer; i.e., we increase the weight
of the useful detail information in the detail layer. Using the contrast balance strategy,
we obtain a preprocessed visible image. We then propose a novel weighted guided filter
that constructs weights using a combination of contrast fidelity and sparse constraints to
effectively blur overexposed areas and extract important detail information. Using this
weighted guided filter, various source images can be decomposed into energy and detail
layers. For energy layer fusion, we propose a weighted fusion rule, based on entropy and a
Gaussian distribution, which adjusts the contrast in the energy layer via weighted averaging.
For detail layer fusion, we propose a weighted energy-of-Laplacian (EOL) operator that can
effectively detect pixels with high activity and extract clear structural and detail information.
The source code of this work is publicly available at https://github.com/ixilai/CBFM.

The contributions of this study are as follows:

1. A novel IVIF algorithm based on contrast balance is proposed to effectively address
the fusion challenge in complex environments, including maintaining reasonable
contrast and detail fusion tasks affected by adverse phenomena such as overexposure,
haze, and light diffusion.

https://github.com/ixilai/CBFM
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2. A novel contrast balance strategy is proposed to reduce the adverse effects of overex-
posure in the visible light image by decreasing the weight of the energy layers in the
source image and supplementing the details.

3. A contrast-preserving guided filter (CPGF) that constructs weights specifically for
IVIF tasks is proposed. The IVIF outperforms the guided filter (GIF) and weighted
GIF (WGF).

The remainder of this paper is structured as follows: Section 2 provides a detailed
presentation of the proposed algorithm, Section 3 describes the experimental setup, and
Section 4 presents the main conclusions of the study.

2. Materials and Methods

In this section, the specific steps of the proposed method are described in detail
(Figure 3). First, to prevent high-contrast pixel information in visible images from affecting
the distribution of thermal radiation target information, we proposed a contrast balance
strategy for processing visible images. Additionally, we designed a new CPGF filter specifi-
cally for the IVIF task to effectively extract feature information of different dimensions from
IR and visible images. This filter can decompose the source image into an energy layer and
a detail layer. The energy layer contains most of the energy of the image and low-frequency
information, which determines the overall structure and texture of the image. To extract
pixels with the most information from the energy layer, we used a new weighted average
fusion rule based on entropy Gaussian distribution. The detail layer represents image
details or local features with high pixel activity. The weighted EOL operator can effectively
extract significant edge details, making it suitable for the design of detail layer fusion rules.
Finally, we added the fusion energy layer to the detail layer to obtain the final fusion result.
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2.1. Contrast Balance Strategy

Highly exposed visible images typically result in high contrast and loss of target
thermal radiation information. Therefore, we proposed a strategy to balance the contrast in
overexposed regions of visible images. We considered the visible image to be a combination
of energy and detail layers. The energy layer generally carries considerable luminance and
energy information in the source image. Therefore, the weights in the energy layer were
reduced to adjust the high-contrast regions in the source image. However, detailed texture
information may be lost when the weight of the energy layer is reduced. Therefore, we
performed a detail enhancement process; i.e., the weight of the detail layer was increased
in the source image so that the obtained preprocessed visible source image can effectively
balance the contrast and enhance the distribution of useful details in the image.

To effectively extract detail information at various scales using the energy in the
source image subject to [22], we proposed a novel guided curvature filtering (GDCF)-based
image decomposition strategy. GDCF is based on GIF [23] and curvature filtering [24]
and can decompose the source image into energy, fine structure (FS), and coarse structure
(CS) layers.

2.1.1. GDCF-based Multilayer Decomposition Strategy

GIF is used as a filter for image smoothing to effectively smooth out detail features of
the image and preserve strong edges. Suppose the guide image is G, the input image is f
and the output image is O. The local linear model can be expressed as follows:

O(p) = αp′G(p) + βp′ , ∀p ∈ Ωψ1
(

p′
)

(1)

where Ωψ1(p′) represents a square window with radius ψ1 centered on pixel p′, and the
values of αp′ and βp′ are fixed in this window; ψ1 is set to 15.

The parameters of α, β are determined by minimizing the cost function, as follows:

E
(

αp′ , βp′
)
= ∑p∈Ωψ1 (p′)

((
αp′G(p) + βp′ − f (p)

)2
+ λ̂α2

p′

)
(2)

where λ̂ is a regularization parameter that penalizes a large αp′ , which was set to 0.3 in this
study. Subsequently, the GIF process is represented as GIF(·).

Regarding the GDCF-based multilayer decomposition strategy, given that
f (i)g (i = 1, 2, . . . , n) is the filtered result of the ith GIF; f (i)c (i = 1, 2, . . . , n) is the filtered
result of the ith CF; and n is a constant that represents the number of decomposition layers
(and is set to 3 in this study). Furthermore, f can be expressed as follows:

f = ∑n
i=1

(
FS(i) + CS(i)

)
+ EG (3)

where EG, FS(i), and CS(i) represent the base layer, ith fine structure, and ith coarse
structure, respectively, which can be expressed as follows:

EG = f (n)g (4)

FS(i) =

 f − f (1)c , i = 1

f (i−1)
g − f (i)c , i = 2, 3, . . . , n

(5)

CS(i) = f (i)c − f (i)g , (i = 1, 2, . . . , n) (6)
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where f (i)g and f (i)c are computed as follows:

f (i)g =

 GIF
(

f , f , λ̂
)
, i = 1

GIF
(

f (i−1)
g , f (i−1)

g , λ̂
)

, i = 2, 3, . . . , n
(7)

f (i)c =

 CF( f , υ), i = 1

CF
(

f (i−1)
c , υ

)
, i = 2, 3, . . . , n

(8)

where CF(·) represents the CF operation [22] and υ represents the iteration number, which
was set to five in this study.

2.1.2. Contrast Balance

After obtaining the fine structure, rough structure, and base layers, we adjusted the
contrast in the source image using the following weighted fusion rules to enhance the detail
information in the figure:

P = 0.8× EG + K× FS(1) + (K− 1)× FS(2) + (K− 1.5)× FS(3)

+K× CS(1) + (K− 0.5)CS(2) + (K− 1)× CS(3)
(9)

where K was set to 1.8. In Equation (9), the weights assigned to the first 3 layers of
FS are K, K − 1, and K − 1.5, whereas the weights for the first 3 layers of CS are K,
K − 0.5, and K − 1. This weighting scheme is based on the characteristics of FS and
CS in representing different types of information in the source image. FS captures fine
structure details, whereas CS represents large-scale edge structure information. The weight
values gradually decrease as we move from the first layer to subsequent layers, because
the amount of detailed information tends to diminish. This weighting scheme ensures a
balanced contribution from each layer. In regions with excessive contrast, almost all the
detailed information is lost, and only a small amount of large-scale edge information exists.
Hence, a larger weight must be assigned to the CS overall during detailed compensation.
In addition, because the FS layer contains more detailed information, if its weight is
considerably large, it may lead to information redundancy in the preprocessed image,
which can affect the visual result. In addition, because undesirable visual phenomena, such
as overexposure, generally occur only in visible images, the contrast-balancing strategy
applies only to the visible images. In the subsequent fusion process, we denoted the IR
source image as f1 and preprocessed the visible image as f2.

2.2. Image Decomposition by CPGF
2.2.1. Proposed CPGF

A previous study [25] revealed that because the parameter λ is fixed in conventional
GIF, blurring is concentrated near the edges and halos are introduced. To solve this problem,
Li et al. [25] added edge-aware weights to GIF to form the WGF, as follows:

E
(

αp′ , βp′
)
= ∑p∈Ωψ1 (p′)

((
αp′G(p) + βp′ − f (p)

)2
+

λ

ΓG(p′)
α2

p′

)
(10)

where ΓG(p′) denotes the edge perception weight and λ is a regularization parameter.
Compared with GIF, WGF can avoid halo artifacts associated with the filtering process

and produce a higher-quality filtered image. However, for IR and visible image fusion tasks,
image filtering is not performed for edge-preserving smoothing, but to efficiently extract
target and detail information in the scene without the interference of high-contrast areas and
to smooth overly bright pixel information. Therefore, edge-aware weights in [25] are not
necessary for IVIF; thus, the assignment of appropriate weighting factors for specific fusion
tasks is critical. Subject to [26], we introduced a weight that can improve the excessive
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contrast in the source image by constructing new weights using the specification of contrast
fidelity and sparsity constraints, as follows:

Contrast fidelity ζ1 is defined by the following expression:

ζ1 = ‖ω− f ‖2
2 (11)

where ω denotes the weight map, and Equation (11) balances the contrast in the input
image by using the L2 norm to maintain a reasonable light-to-dark ratio of the target to
background information, without requiring the exact pixel intensity as the input image.

Sparse constraint ζ2 is defined as follows:

ζ2 = ‖∇ω−∇ f ‖1 (12)

where ∇ω and ∇ f represent the gradients of ω and f , respectively.
The weighting problem can be formulated by minimizing the following objective

function according to the contrast fidelity and sparsity norms:

ξ(ω) = ζ1 + γζ2 = ‖ω− f ‖2
2 + γ‖∇ω−∇ f ‖1 (13)

where γ is the balance parameter control between ζ1 and ζ2, which was set to 15 in this
study. In addition, ‖ · ‖2

2 refers to the squared L2 norm and ‖ · ‖1 represents the L1 norm,
which calculates the sum of the absolute values of the elements of a vector or matrix.
According to [26], the above Equation (13) can be solved to obtain the contrast weights ω.
ω is embedded in Equation (10) to form a new CPGF, as follows:

E
(

αp′ , βp′
)
= ∑

p∈Ωψ1(p′)

((
αp′G(p) + βp′ − f (p)

)2
+

λ

ω(p′)
α2

p′

)
(14)

where αp′ and βp′ are obtained as:

αp′ =
µG� f ,ψ1(p′)− µG,ψ1(p′)µ f ,ψ1(p′)

σ2
G,ψ1

(p′) + λ
ω(p′)

(15)

bp′ = µ f ,ψ1

(
p′
)
− αp′µG ,ψ1

(
p′
)

(16)

where� represents the element-by-element product of two matrices; µG� f ,ψ1(p′), µG,ψ1(p′),
and µ f ,ψ1(p′) are the mean values of G� f , G, and f , respectively. Furthermore, σ2

G,ψ1
(p′)

is the variance in a local window with a radius of 3× 3 centered on pixel p′.

2.2.2. Image Decomposition

First, we filtered the IR and visible source images using the proposed WGF and
obtained the energy layer Et of the source image ft, where t denotes the number of source
images, which was set to two in this study. Next, we obtained the detail layer Dt using the
following equation:

Dt = ft − Et (17)

Figure 4 displays an example of image decomposition using CPGF. The effect of
excessive contrast on detail extraction can be effectively avoided using the proposed model,
and the performance of the algorithm is improved.
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Figure 4. Example of the proposed contrast-preserving guided filter-based image decomposition.

2.3. Energy Layer Fusion

Although excessive contrast information in the energy layer can be effectively reduced
using the proposed WGF, the energy layer still contains the most luminance and target
information in the source image. Entropy represents the aggregation of the luminance
distribution in the source image, and the extreme probability density function of entropy
can be used to determine the degree of image blurring [27]. In the energy layer of IR
and visible source images, clear pixels typically contain more energy information, which
indicates that they have a higher entropy value compared to blurred pixels. Therefore, in
this study, we used the Gaussian distribution of image entropy [28] to construct fusion
weights to effectively retain the most representative energy information in various source
images. The energy layer Et and the entropy of et can be expressed as follows:

et = −∑
j

Pj( ft) log2 Pj( ft) (18)

where Pj( ft) is the probability of intensity value j in the image ft. Therefore, the probability
can be calculated as follows:

P(et) =
1√
2πσ

exp

(
−(et − ε)2

2σ2

)
(19)

As in [28], ε and σ were set to 7.4600 and 0.8732, respectively. According to P(et), we
can construct the fusion weights to obtain the fusion results of the energy layer as follows:

FE =
P(e1)

P(e1) + P(e2)
× E1 +

P(e2)

P(e1) + P(e2)
× E2 (20)

where E1 and E2 represent the energy layers of the source images f1 and f2, respectively.

2.4. Detail Layer Fusion

The detail layer represents rich texture information in the source image, and the ideal
fusion result should contain clear details in both the visible and IR images. The energy of
Laplacian of the image (EOL) [29] can be used by the Laplace operator to analyze the high
spatial frequencies associated with the sharpness of the image boundaries, and the model
can effectively detect the information of pixels with greater sharpness in the image, i.e., the
detail corresponding to the source image. Therefore, we proposed a novel weighted EOL
(WEOL) method to construct a weight map of the detail layer. The input image is Dt, and
EOL is expressed as follows:

EOL( ft) = ∑
x

∑
y

(
Dxx + Dyy

)2 (21)
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according to [29], Dxx + Dyy can be defined as:

Dxx + Dyy = −D(x− 1, y− 1)− 4D(x− 1, y)− D(x− 1, y + 1)− 4D(x, y− 1)+

20D(x, y)− 4D(x, y + 1)− D(x + 1, y− 1)− 4D(x + 1, y)− D(x + 1, y + 1)
(22)

In the proposed algorithm, the WEOL is denoted as follows:

WEOL(Dt) = ∑
x

∑
y

W ′ ·
(

Dxx + Dyy
)2 (23)

where the weight matrix W ′ is defined as follows:

W ′ =
1

15

∣∣∣∣∣∣
1 2 1
2 3 2
1 2 1

∣∣∣∣∣∣ (24)

The detail layer fusion result is obtained based on WEOL( ft) to construct the detail
layer fusion weights to obtain the detail layer fusion results.

FD =
WEOL(D1)

WEOL(D1) + WEOL(D2)
× D1 +

WEOL(D2)

WEOL(D1) + WEOL(D2)
× D2 (25)

where D1 and D2 represent the detail layers of source images f1 and f2, respectively.

2.5. Fusion Result Construction

Finally, the fused energy layer and detail layer are added to develop fusion result F
as follows:

F = FE + FD (26)

3. Experiments
3.1. Experimental Setup

We compared the proposed algorithm with nine state-of-the-art algorithms and con-
ducted extensive experiments on two publicly available IR and visible image datasets.
The first dataset was a road dataset [9] that contained 221 sets of IR and visible images
captured under complex road conditions. The primary challenge was to effectively sup-
press the impacts of high contrast from strong light sources during the day and night.
The second dataset was from [30] and contained 48 sets of IR and visible images captured
in outdoor scenes. The proposed algorithm is abbreviated as CBFM in our experiments.
LatLRR [16], RTVD [13], TEMF [12], MFEIF [11], U2Fusion [9], DIVFusion [31], GAN-
McC [32], SDDGAN [33], and UMFusion [34] are the nine state-of-the-art algorithms that
were compared with our proposed algorithm. The source code with default parameters
provided by the original authors was used. In addition, CBFM and three traditional meth-
ods were tested using Matlab 2021b on a PC with an AMD Ryzen 5 4600H with a Radeon
Graphics processor and NVIDIA GeForce GTX 1650 graphics card. The results of the
fusion of six deep learning-based comparison methods were obtained using Python 3.8
and a discrete PC with an Intel Core i7-7700HQ processor and NVIDIA GeForce GTX-1070
graphics card.

Six objective evaluation metrics, namely, gradient-based fusion performance (QG) [35],
image fusion metric based on a multi-scale scheme (QM) [36], Piella’s metric (QS) [36],
entropy (EN) [37], average gradient (AG) [38], and spatial frequency (SF) [39], were used
to evaluate the fusion performance of all the methods. Specifically, QG evaluates the
amount of edge information; QM is a fusion image quality metric based on a multi-scale
scheme; AG reflects the gradient information in the fusion result (i.e., the richer the gradient
information, the higher the image quality); EN is based on information theory and measures
the amount of information contained in the image; and SF reflects the sharpness of the
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fused image, wherein a higher value represents a higher-quality fused image and better
algorithm performance. The six metrics can be used to comprehensively evaluate the fusion
performance of various methods, with higher values representing better performance.

3.2. Parameter Analysis

For the regularization parameter in Equation (10), λ considerably affects the per-
formance of the proposed algorithm. Therefore, we performed parametric analysis to
determine the optimal parameter values to ensure excellent fusion performance. First, we
fixed the values of other parameters of the model and set λ ∈ {0.05, 0.07, . . . , 0.4}. We
then randomly selected 30 sets of images from the road dataset to add to the parameter
analysis experiment. The scores for each index when different values were obtained are
presented in Table 1; the maximum values are in bold. When λ increases, QM, EN, AG, and
SF gradually increase, indicating that the parameter λ can affect the ability of the model
to extract features. However, the trend in the values of the QG and QS indicators does not
conform to the aforementioned rule. When the value of λ was set to 0.4, both the QG and QS
metrics achieved the lowest scores among all the comparison experiments. This outcome
suggests that an excessively large λ value can result in redundant detail information and
structural distortion in the fusion results. Such distortions are unfavorable for producing
visually useful images that are consistent with the human visual system. Therefore, to
achieve visual balance and optimal fusion performance, we set the value of λ to 0.3. This
value met the requirements for the proposed algorithm, resulting in excellent scores for all
the metrics.

Table 1. Quantitatively comparing the effect of different values of λ.

λ QG QM QS EN AG SF

0.05 0.5238 0.6027 0.7914 7.0539 4.9628 13.1062
0.07 0.5240 0.6123 0.7901 7.0659 5.0875 13.4770
0.1 0.5240 0.6203 0.7886 7.0770 5.1983 13.8106
0.2 0.5234 0.6296 0.7862 7.0930 5.3534 14.2851
0.3 0.5229 0.6338 0.7851 7.0994 5.4133 14.4711
0.4 0.5227 0.6345 0.7846 7.1028 5.4450 14.5696

3.3. Ablation Analysis
3.3.1. Ablation Analysis of Contrast Balance Strategy

To effectively reduce the effects of high contrast and diffusion from overexposed
regions in visible images, a novel contrast-balancing strategy was proposed. An ablation
analysis was performed to determine whether this strategy could improve the fusion
performance of the proposed model. The algorithm without contrast-balancing treatment
was labeled N-CBFM, as shown in Figure 5; the three sets of fusion results for CBFM
and N-CBFM are also provided. The contrast-balancing strategy effectively improved the
fusion performance of the model to better retain reasonable contrast and present the detail
information in source images.
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3.3.2. Ablation Analysis of the Proposed Filter

For the specificity of the IVIF task, we designed a novel weighted guided filter whose
weights consisted of contrast fidelity with sparsity constraints. To evaluate the effectiveness
of the strategy, we performed an ablation analysis. First, we selected 20 sets of source
images from the road dataset as the data source. Second, we compared GIF and WGF to
the proposed method as the filters for image decomposition in the proposed algorithm. For
comparison, we named the method of image decomposition by GIF as A-CBFM and the
method of image decomposition by WGF as B-CBFM. The same parameters were used for
all three filters to ensure an unbiased comparison. The experimental results for the methods
are shown in Table 2. The maximum values are in bold. Table 2 shows that CBFM obtained
the highest scores for the four metrics, and although the QG and QS metrics did not score
as well as B-CBFM, they were generally better than the compared algorithms. Thus, the
decomposition of images using the proposed CPGF yields better fusion performance than
GIF and WGF methods.

Table 2. Quantitative comparison of different comparison algorithms.

Methods QG QM QS EN AG SF

A-CBFM 0.5333 0.5789 0.7680 7.1411 5.9602 15.6960
B-CBFM 0.5375 0.4986 0.7811 6.9772 4.7292 11.8979
CBFM 0.5327 0.5915 0.7665 7.1500 6.0415 15.9530

3.4. Subjective Evaluation

Figure 6 displays the fusion results for the proposed algorithm with nine state-of-
the-art comparison methods for two classical image pairs from the road dataset. For an
intuitive comparison, we zoomed in on a local region of the fusion results located in the
high-contrast region of the visible image. The IR image provides rich target information
and provides a clear view of the distribution of cars on the road, whereas the visible image
contains texture information. RTVD and TEMF are easily affected by the high-contrast
region in the visible image and cannot identify the target information in the IR image. In
contrast, the four methods LatLRR, MFEIF, U2Fusion, and UMFusion can retain some
target information such as power lines in the sky and leaves on trees. However, they
cannot maintain reasonable contrast to some extent, which can reduce the visual effect of
the fusion results, and do not provide a comprehensive interpretation of the scene. Three
methods, DIVFusion, GANMcC, and SDDGAN, appear to produce blurred images and
lose the target and detail information in the scene. The CBFM exhibits superior ability to
extract target information from the IR image and the texture information from the visible
image, and can maintain a reasonable contrast in the fusion result. This result could be
attributed to the filtering of most of the high-contrast pixel information in the proposed
WGF to ensure that the luminance target information in the IR image can be effectively
extracted. If contrast balance is not applied to the highlighted region, this phenomenon
may lead to a situation similar to that of the RTVD and TEMF methods, in which the overly
bright pixel information in the visible image can mask the target luminance information in
the IR image. The proposed algorithm can achieve better fusion performance than the five
state-of-the-art contrast methods.

Figure 7 displays the fusion results of the proposed algorithm for nine state-of-the-art
comparison methods for two classical image pairs from the road dataset. In this study,
we selected images captured at night, and both headlights and streetlights on the road
had light-diffusion effects, which could produce undesirable visual effects in the fusion
results if they are not suppressed. All five algorithms—RTVD, TEMF, MFEIF, DIVFusion,
and UMFusion—were affected by the light-diffusion effect, which resulted in the loss
of some of the target information in the IR images. Although LatLRR and U2Fusion
effectively mitigated this situation, they still lost part of the image contrast and exhibited
insufficient feature extraction capability. Three methods, namely, DIVFusion, GANMcC,
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and SDDGAN, appeared to blur the target information and generate suboptimal fusion
results. The proposed algorithm can maintain excellent fusion performance despite the
light diffusion effect at night, effectively balancing the contrast between various source
images and providing excellent visual effects for fusion results. The proposed algorithm
handled the images of various situations and exhibited a superior fusion performance than
the five state-of-the-art algorithms.
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Figure 8 shows the fusion results of the two sets of IR and visible images captured
from outdoor scenes. As displayed in the figure, in the first fusion task, the main challenge
arises from the sky region of the visible image, which has high contrast and energy infor-
mation because of the intense light source of the sun, which may lead to the loss of target
information in the IR image if it not suppressed. Moreover, the visible image is rich in detail
information; therefore, the preservation of details should be considered when balancing the
contrast. In the second fusion task, the primary challenge originates from the foggy sky in
the visible image, which may lead to the loss of texture information and inconspicuousness
of the target information in the fusion result. Therefore, a comparison of these two fusion
tasks can effectively reflect the performance of the various fusion algorithms. Both the
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TEMF and MFEIF methods were disturbed by high-contrast information, which led to
inconspicuous target information of clouds in the sky. The DIVFusion method contained
incorrect target information, resulting in poor visual quality fusion results. Under the
influence of a foggy sky, all four methods, LatLRR, TEMF, SDDGAN, and UMFusion, failed
to retain the texture information of tree leaves in visible images and produced suboptimal
fusion results. As observed in the red magnified area, all five methods lost some useful
pixel information during the fusion process, which resulted in a lower contrast with a loss
of texture. Unlike the comparison methods, the proposed algorithm, CBFM, exhibited
excellent performance in both sets of fusion tasks, proving that the contrast-balancing
strategy can effectively solve the fusion problem in complex situations without losing detail
information while achieving reasonable contrast.
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3.5. Objective Evaluation

In addition to subjective visual comparisons, objective evaluations based on the entire
road dataset were performed in the comparison experiments. Table 3 presents the scores
of the proposed algorithm and the comparison methods on the road dataset for various
metrics. The maximum values are highlighted in bold, the second-highest scores are shown
in red, and the third-highest scores are shown in blue. Table 3 shows that the proposed
algorithm obtained the best scores for all five metrics, proving that it performed well in
extracting features and retaining information in the source images. The U2Fusion method
obtained the second highest score for the two metrics, similar to the subjective evaluation,
and achieved the best visual results among all the compared methods. However, U2Fusion
obtained the lowest score in the EN metric because it lost most of the contrast information
during fusion.

Table 3. Quantitative comparison of the proposed algorithm and different comparison methods on
the road scene dataset. Bold is the best, red is second, and blue is third.

Methods QG QM QS EN AG SF

LatLRR 0.3990 0.4393 0.7786 6.9161 3.7787 10.1186
RTVD 0.4555 0.5538 0.7415 7.0207 4.1072 10.9419
TEMF 0.3657 0.4118 0.7335 6.9794 3.6752 9.8647
MFEIF 0.4312 0.4558 0.7832 7.0488 3.7644 9.5561

U2Fusion 0.4884 0.4514 0.8133 6.8021 4.6377 11.4237
DIVFusion 0.2883 0.3309 0.6213 7.5318 4.8050 11.6477
GANMcC 0.3606 0.4034 0.7126 7.2366 3.7788 9.0192
SDDGAN 0.3655 0.3946 0.7377 7.5261 4.3825 10.4413
UMFusion 0.4785 0.4771 0.8133 7.0474 4.0954 10.5501

CBFM 0.5489 0.7217 0.8186 7.1383 5.8674 15.2249

Table 4 shows the performance of the methods on the dataset [9]. The maximum
values are highlighted in bold, the second-highest scores are shown in red, and the third-
highest scores are shown in blue. The results of the quantitative comparison show that
the proposed algorithm achieved the best scores in three metrics: QG, AG, and SF. The
proposed algorithm achieved fusion with high-resolution and rich feature information.
Given that the purpose of this algorithm was to maintain a reasonable contrast of the image,
some of the pixel energy information may be missing. Thus, the data does not facilitate
comparison with some of the methods for the EN metrics. RTVD and U2Fusion achieved
excellent performance on this dataset. However, a qualitative evaluation revealed that
RTVD exhibited a partial loss of texture information during fusion. Therefore, its score
on the SF index was lower compared to the scores for U2Fusion and CBFM. Thus, consis-
tent with the conclusions obtained for the subjective evaluation, the proposed algorithm
outperformed the other nine methods in fusion. This result proved the superiority of the
contrast-balancing strategy.

3.6. Computational Time

Table 5 presents the computational time comparison results for all 10 methods. Notably,
the TEMF method exhibits the lowest computational cost among the compared methods.
However, this can be attributed to its decomposition of fewer layers, potentially leading
to a compromised performance in handling overexposed regions. In contrast, the LatLRR
method, which relies on learning the projection matrix, demonstrates relatively higher time
consumption. Although the proposed algorithm may not achieve optimal computational
efficiency owing to the longer runtime of CPGF, we acknowledge this limitation and plan
to explore the impact of different parameters on the computational load in future research.
A direct comparison of the six DL-based methods may seem unfair owing to the various
platforms used to run the proposed algorithm. Nonetheless, DL-based algorithms facilitate
higher computational efficiency, which is advantageous.
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Table 4. Quantitative comparison of the proposed algorithm and different comparison methods on
IVIF dataset [30]. Bold is the best, red is second, and blue is third.

Methods QG QM QS EN AG SF

LatLRR 0.4176 0.3169 0.8251 7.1010 4.8726 14.0734
RTVD 0.4914 0.5246 0.7986 7.1284 5.1918 14.3747
TEMF 0.4268 0.3709 0.8085 6.8659 4.9588 14.0858
MFEIF 0.4642 0.3622 0.8330 7.1174 4.8914 12.8592

U2Fusion 0.4830 0.3106 0.8442 7.0989 6.3451 16.0479
DIVFusion 0.3029 0.2252 0.7218 7.5289 4.9692 12.0900
GANMcC 0.3847 0.2971 0.7791 7.1071 4.7454 12.6711
SDDGAN 0.3573 0.2654 0.7675 7.4608 4.3714 11.1505
UMFusion 0.4582 0.3566 0.8438 7.1387 5.1984 14.4103

CBFM 0.5246 0.4097 0.8277 7.1164 7.0740 20.2707

Table 5. Comparison of the average computational time of 10 methods on the road scene dataset.

Methods Time Methods Time

LatLRR 29.1462 DIVFusion 2.64
RTVD 0.5451 GANMcC 1.103
TEMF 0.01 SDDGAN 0.166
MFEIF 0.093 UMFusion 0.7692

U2Fusion 0.861 CBFM 8.5802

4. Conclusions

In this study, a novel IVIF algorithm based on a contrast-balancing strategy was pro-
posed to effectively mitigate the impact of high-contrast regions, such as highly exposed
areas, and address the issue of light diffusion effects present in the source image. Fur-
thermore, we proposed the CPGF to categorize the source image into detail and energy
layers. To fuse the detail layers, we proposed a weighted EOL operator to obtain the highest
fusion weights. To fuse the energy layers, we designed a weighted fusion rule based on the
Gaussian distribution of entropy. The final fusion results were obtained by summing the
fused energy and detail layers. Experimental results revealed that the fusion performance
of the proposed algorithm was superior compared to other state-of-the-art comparison
methods and effectively suppressed undesirable visual effects in the source image. In addi-
tion, excellent fusion results that provide a comprehensive interpretation of the scene were
obtained. The proposed contrast balance strategy may not achieve significant advantages in
terms of computational efficiency because a multi-scale decomposition approach is used to
extract the sub-bands of various features. Therefore, in the future, we will explore methods
to optimize the strategy to reduce computational complexity.
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