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Abstract: Mountains are an important research object for surveying, mapping, cartography, space
science, and ecological remote sensing. Automatic mountain segmentation is one of the most critical
techniques in large-scale mountain analyses. However, several factors limit the segmentation accuracy,
such as the complexity of mountains, the noise of geospatial data, and the confusion in distinguishing
non-mountainous objects with similar features. In order to improve the accuracy of mountain
segmentation against these limiting factors, we impose the cloth constraint over the digital elevation
model (DEM) with the underlying assumption that the mountain has a sizeable relative elevation and
slope. We propose a robust mountain segmentation method with the cloth simulation constraint. The
core algorithm extracts the relative elevation of the region using a cloth simulation filtering algorithm
by transforming the mountain segmentation problem into an optimization problem based on the
global energy function consisting of the relative elevation and slope. Experiments on a wide range
of Earth and lunar elevation datasets with some of the aforementioned limitations show that the
proposed method can extract complex mountain baselines, avoid the misclassification of lunar craters,
and significantly improve the robustness and accuracy of mountain segmentation. Compared to
three state-of-the-art methods (the Lunar Mountain Detection Method, the Landform Mask Method
in SNAP™ from European Space Agency (located in Paris, France), and the Multiscale Segmentation
Method in eCognition™ from Definiens Imaging (located in Munich, Germany), the F1 and IoU
improved by 14.70% and 20.46% on average and 29.07% and 38.94% at most, respectively, which
validates that the proposed method has a better all-around performance.

Keywords: mountain segmentation; cloth simulation constraint; global optimization; relative elevation;
slope; digital elevation model

1. Introduction
1.1. Background

The Earth’s surface consists of various landforms and topographic features, such as
plains, mountains, and hills, formed by natural internal and external forces [1]. Thus,
the classification of landforms is one of the essential tasks in mapping geomorphological
features and understanding the Earth’s evolutionary processes [2].

Mountain data are the premise of ridgeline mapping, automatic contour mapping,
and intelligent processing of summit extractions. Most mountain detection studies are
utilized for detecting and further researching the morphological information about moun-
tains [3]. Therefore, effective extraction of mountain regions is of great significance for
natural science and mapping research, such as the distribution of natural landforms, bio-
geographic distribution, and summit extraction [4].

Mountain segmentation is a preparatory work for geomorphology research, and the
effectiveness of segmentation is closely related to research on mountain feature analyses [5].
As digital elevation models or other types of topographic data may have various types of
complex landforms with some noise [6], early visual interpretation was one of the primary
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methods for mountain extraction [7]. In recent years, automated landform classification
and mountain extraction have been gradually developed in earth science. However, current
research may meet challenges in accurately extracting multiple mountain digital eleva-
tion data, identification of swales, and classifying gradual or homogeneous regions [7].
Traditional mountain extraction methods mostly use binary segmentation with a certain
threshold or semi-supervised classification [8,9]. However, such methods may meet issues
in large-scale, complex mountainous regions. Therefore, it is necessary to propose a stable
and applicable mountain segmentation algorithm for large areas of complex landforms
with multiple mountains.

1.2. Contribution of the Proposed Method

In order to automatically achieve robust mountain segmentation for large and complex
landforms, this paper proposes an adaptive mountain segmentation method based on the
global optimization of an energy function with the cloth simulation constraint, which can
realize automatic extraction and segmentation in the condition of multiple mountains with
different areas and landform types.

The contribution of the method is to formulate the mountain extraction problem
into an optimal solution of a global energy function, which is then optimized by the
graph cut algorithm [10–12]. Generally, the energy function comprises two parts: the
regional term and the smoothness term. Considering the distinction between mountains
and plains, the design of the regional term is mainly based on the relative elevation and
the slope, where the relative elevation is derived from the elevation difference between the
elevation of the ground fitting surface (simulated cloth surface) and the real one. On the
other hand, the design of the smoothness term is based on the principle that a group of
pixels with similar slope values has a high probability of belonging to the same landform
type. The adaptive mountain segmentation method proposed in this paper can reduce the
interference of complex landforms and noise. It can effectively extract mountain regions
in a complex landform environment for surveying and mapping, topographic surveys,
and other related work.

The structure of the remaining sections in this paper is as follows: Section 2 introduces
the related work, Section 3 discusses the mountain features and basic model conditions,
Section 4 provides a detailed explanation of the segmentation method, Section 5 presents the
experimental conditions, results, and analyses, and finally, Section 6 concludes the paper.

2. Related Work

As an essential branch of topographic classification, mountain segmentation is a
preparatory work before geological studies. The relationship between topography clas-
sification and geology is of significant importance as it sheds light on the formation of
topographic relief. The formation of mountains and other landforms is intricately linked to
geological processes. Wade explored the relationship between topography and geology,
highlighting how geological history is reflected in the physical features of a region [13].
In their study on the Samaria Gorge in Crete, Greece, Manoutsoglou et al. conducted a
comprehensive review of the geological and geomorphological structures, emphasizing the
connection between geological models and the evolution of landforms [14]. Additionally,
Morelli et al. examined the morpho-structural setting of the Ligurian Sea, uncovering the
role of structural heritage and neotectonic inversion in shaping the region’s geomorphol-
ogy [15].

However, relying on the expert experience of geomorphologists for visual interpre-
tation is time consuming and laborious [7]. Early visual interpretation was one of the
primary methods for mountain extraction. With the development of the geosciences and
data processing algorithms, geomorphological classification methods, including moun-
tain segmentation techniques, have been automated [16,17]. Mountain segmentation and
extraction are commonly used for pre-processing in mountain feature analyses [18] and
geomorphology research [5].
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In general, traditional mountain extraction or landform classification methods can
be categorized into three types: (1) pixel-based classification methods, (2) object-oriented
classification methods [19], and (3) machine-learning-based methods [20].

Pixel-based classification or segmentation methods are based on landform features of
single or multiple pixels. For example, Minár et al. proposed a pixel cluster method [21–23]
through ISODATA to distinguish and extract landforms, which clusters pixels with sim-
ilar characteristics. Miliaresis et al. proposed a pixel-region-growing segmentation al-
gorithm [24] to divide the landform into three levels (mountains, basins, and piedmont
slopes). However, pixel-based methods use mainly local features of the landscape instead
of considering the global optimization constraints, which are sensitive to separating noise.
Therefore, it is not easy to achieve a robust mountain classification for non-uniform and
complex landforms [25].

Object-oriented classification or segmentation methods need to effectively and ob-
jectively define landform objects. Object-oriented classification methods consider the
continuity and integrity of geomorphic entities compared to pixel-based classification
methods. For example, Verhagen et al. proposed an object-based landform delineation
and classification method [26,27] that can quickly classify multi-landforms into objects, but
it requires an improved conceptual framework adapted to the local situation. Saha et al.
proposed a method [25] to identify the landforms in a DEM based on the pixel value in the
raster dataset and the context information between the pixel and the extracted object, which
has high accuracy in medium-scale landforms, but is unable to adapt to DEMs with various
spatial resolutions. Drăguţ et al. proposed an object-based method [1] that automatically
segments and classifies elevation layers into three-scale objects. Objects are partitioned into
sub-domains based on the thresholds given by the mean elevation values and standard
deviation of elevation, respectively, which has a high classification accuracy on a global
scale. However, its extraction effect in small regions is still poor. As the above method
adopts a threshold value or a semi-supervised method for classification, automatic extrac-
tion of multi-regions and multi-mountains cannot be effectively achieved [28]. Moreover,
due to the noise of the DEM or DTM itself and the existence of swales, achieving effective
segmentation or extraction of mountains for landforms in complex regions is still tricky.

Machine-learning-based algorithms can extract image spectral information and DEM
morphological feature information from big data to train models and improve the classifi-
cation or segmentation results [28]. Among machine learning methods, deep learning has
been widely used in geomorphological classification due to its powerful active learning ca-
pability. Wen et al. obtained better results [29–31] in classifying peaks, ridges, and flatlands
of macro landforms with definite geomorphic boundaries. Li, S. et al. used a deep-learning-
based approach [7] to classify loess hills and ridges. However, deep-learning-based meth-
ods suffer from a high computational effort, high hardware requirements, and weak model
transferability [32,33].

Therefore, it is necessary to propose a stable and refined mountain segmentation algorithm
for complex landforms to achieve high-accuracy mountain extraction results automatically.

3. Mountain Feature Analysis

In order to achieve high-accuracy mountain segmentation results, this paper firstly
analyzes mountain features. Geographical studies point out that there are various def-
initions of a mountain according to the elevation, shape, scale, and some combination
characteristics [6,34].

According to the descriptions of mountains in these studies [6,34], the mountain
should have a certain relative undulating elevation, among which the ground elevation and
its undulation are the most basic morphological indicators. In order to reduce the influence
of noise in DEMs, mountain regions should also be large enough.

In general, the characteristics of the mountain include:

• A certain relative elevation: a relatively noticeable elevation difference between the
mountain and surrounding non-mountainous regions.
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• A certain slope: the transition region between the mountain and non-mountains
should have a more obvious slope than flat regions.

• A certain area: the mountain region should be an irregular closed polygon with a
large area.

The literature [6] points out that surface morphology can be divided into seven land-
form types: plains, terraces, hills, small rolling hills, medium rolling hills, large rolling
hills, and huge rolling hills. The method proposed in this paper aims to extract the four
basic morphological landforms: small rolling hills, medium rolling hills, large rolling hills,
and huge rolling hills.

However, the absolute elevation and slope of the region alone cannot effectively define
the mountain, especially in the regions of plateaus with high absolute elevations and
swales with sharp gradients. Therefore, further effective extraction of the surface near the
mountain is needed to obtain the relative elevation of the mountain. According to the
above analysis, this paper uses the cloth simulation filter (CSF) algorithm [35] to extract
the surfaces which can effectively fit the flats and the swales with low gradients through a
physical simulation model of a cloth (as shown in Figure 1, the cloth effectively fits in the
swales and the plains and it is far away from the mountain’s surface).

Figure 1. Cloth simulation filter and energy function diagram: S Node is connected to pixels marked
as mountains, and T Node is connected to pixels marked as non-mountains after the graph cut.

In addition, the mountain region also has a certain slope and area. Although the noise
in DEM data will produce a large slope, it does not have a large area. Therefore, we need
to use the overall global constraint of DEMs. Since the imported digital elevation model
is likely to have more than one mountain, we need to be able to detect and segment each
mountain independently.

In general, combined with mountain features and the mountain distribution in a DEM,
the mountain segmentation algorithm should meet the following requirements: (1) make
full use of landform slopes, (2) extract and utilize the relative elevation of the landform,
(3) effectively suppress the impact of noise, and (4) extract multiple mountains in a single
DEM adaptively.

Given the above requirements, this paper establishes an energy function consisting
of the smoothness term, the regional term, and the graph structure. By transforming the
mountain extraction problem into the labeling problem of grid nodes, the final solution
is obtained by minimizing the energy function through the graph cut algorithm [10–12].
Initially, all grid nodes in the topography are interconnected with each other and connected
to both the source node (S) and the sink node (T) with weighted edges, which forms the
structure of the energy function graph. By minimizing the energy function, the problem is
transformed into a minimum cut/maximum flow problem of the graph. In the resulting
graph, as illustrated in Figure 1, the source and sink nodes are completely disconnected.
Consequently, the nodes connected to the source node are labeled as mountains, while
those connected to the sink node are labeled as non-mountainous regions (i.e., flats and
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swales). A more detailed explanation of this process will be provided in Section 4.2 of
the paper.

4. Methodology

The proposed method is divided into two parts: the computation of relative eleva-
tion based on cloth surface fitting and mountain extraction with the optimization of an
energy function.

In order to effectively extract the relative elevation of the mountain, the cloth filtering
algorithm is used to extract the cloth node from the existing DEM to generate the cloth
surfaces. Specifically, SRTM data from NASA (https://earthexplorer.usgs.gov/ accessed
on 30 September 2022) and lunar DTM data from JAXA image archive (https://darts.isas.
jaxa.jp/planet/pdap/selene/index.html.en accessed on 16 October 2022) are utilized in
this study. In order to make the cloth higher than the swale region and fit to the flat region
as much as possible, the surface of the cloth is further processed by mean filtering, and the
processed result is then defined as the ground fitting surface. Finally, the relative elevation
grid can be obtained by subtracting the DEM grid from the ground fitting surface grid.

The second part of the method is constructing and minimizing the energy function,
which aims to extract continuous and smooth mountain regions through the interaction
between slope and relative elevation. In order to avoid the excessive influence of noise
on the results, it is necessary to make a special normalization of the slope grid and then
use the relative elevation grid and the special normalized grid to construct the regional
term of the energy function. On the other hand, to enhance the continuity and smoothness
of the region, it is necessary to use a special normalized grid to construct the smoothness
term of the energy function with the basic assumption that grids with similar slopes should
have similar labels. Finally, the graph cut algorithm [10–12] optimizes the energy function.
The labels of the optimized nodes, i.e., the mountain regions and the non-mountainous
regions, are taken out, as shown in Figure 2.

Figure 2. Workflow of the proposed method.

4.1. Computation of Relative Elevation Based on Cloth Surface Fitting

The relative elevations of the mountain are the key data that need to be obtained first.
The traditional mean, standard deviation processing [1], and threshold method [8,9] are
unable to segment multiple mountains in a wide range precisely. Therefore, the cloth is
used to extract the relative elevation, on the one hand, to increase the data basis of mountain
extraction, and on the other hand, to reduce the misclassification of swales.

https://earthexplorer.usgs.gov/
https://darts.isas.jaxa.jp/planet/pdap/selene/index.html.en
https://darts.isas.jaxa.jp/planet/pdap/selene/index.html.en
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The cloth simulation filter (CSF) algorithm is a point cloud filtering method that
separates LiDAR ground points and non-ground points [35], which has the advantages
of fewer parameters and a high efficiency [36]. Generally, the cloth shape generated by
the simulation is used as the ground. The cloth filtering algorithm connects many cloth
nodes to form a grid called a mass–spring model [37]. The nodes are subjected to stresses
between points, forces from the landform surface, and gravity. Initially, the cloth nodes and
point clouds are flipped [35]. Then, the cloth will start falling from the highest point until
the maximum iterations or the movements reach a predefined threshold. After completing
the above steps, the cloth nodes and the point clouds are flipped and restored.

In this paper, we need to extract the relative elevation of the mountain and avoid the
incorrect segmentation of swales. Cloth generated by the CSF algorithm can effectively fit
the surfaces of plains and swales but stay away from mountains due to the cloth hardness
constraint. On this basis, the fitted cloth surface can effectively separate the mountain
from the flats and the swales. Firstly, we need to initialize the DEM raster data, such as
Figure 3a, and convert them to point clouds (X, Y, H), where (X, Y) are the ground plane
coordinates and H is the elevation coordinate. Then, the point clouds are flipped and the
cloth nodes are initialized at the highest point, as shown in Figure 3b. Under combination
effects of the gravity, the stress between the cloth nodes, and the external force from the
surface, the cloth nodes iteratively stabilize with different displacements, as shown in
Figure 3c. Eventually, the landform point cloud (X, Y, H) and the corresponding cloth
nodes (XCloth, YCloth, ZCloth) are flipped, as shown in Figure 3d. The spatial resolutions
of the cloth nodes (XCloth, YCloth, ZCloth) are much lower than those of the DEM data.
Therefore, it is necessary to upsample the cloth nodes to the same resolution as the DEM
data and then generate the final cloth surface, as shown in Figure 3e.

Figure 3. Workflow of the computation.
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However, the function of the cloth constraint is not only to improve the mountain
separability but also to reduce the probability of misclassification of swales as mountains.
When the cloth surface is directly subtracted from the ground surface, the relative elevation
is almost all greater than 0, and swales and flats cannot be distinguished, as shown in
the red box of Figure 4b. However, the swales have a certain slope, which will still lead
to misclassifying the swales as mountains. The mean filter is an efficient and simple
method that can lift the dented part of the cloth. In order to reduce the above situation,
it is necessary to use mean filtering to lift the cloth surface above the swales so that the
algorithm can distinguish swales and flats. Therefore, the cloth surface can be used as an
effective datum surface after modification, as shown in Figure 4a. Then, we use the ground
surface to subtract the cloth surface. The relative elevation of the mountain is positive,
and the relative elevation of the swales is negative, as shown in the red box of Figure 4c.
In the subsequent segmentation process, negative regions will be strongly suppressed to
avoid the swales being misclassified as mountains.

Figure 4. Comparison of relative elevation extraction: (a) the cloth surface is lifted at the swales after
post-processing. (b) Relative elevation of the cloth surface without post-processing vs. (c) relative
elevation of the cloth surface with post-processing.

The ground fitting surface HG f s is obtained by the mean filtering algorithm, as shown
in Figure 3f:

HG f s = avefliter(HCloth) (1)

Then, the relative elevation dH can be calculated by the ground fitting surface HG f s
and the ground surface H, as shown in Figure 3h:

dH = H − HG f s (2)

In practice, the shape of the mountains and swales will be more complicated, as shown
in the example in Figure 5, where the mountain is located at 22.4◦N, 113.8◦E in Figure 5a,
and the simulated swale is generated by copying and reversing the mountain, as shown
in Figure 5b. Then, the relative elevation is calculated by the above steps, as shown in
Figure 5c,d.



Remote Sens. 2023, 15, 2966 8 of 24

Figure 5. Flow chart for relative elevation extraction using real landform data.

4.2. Construction of Energy Function

The cloth filtering algorithm can distinguish mountain regions and non-mountain
regions to a certain extent. However, due to the complexity of landforms and noise in DEMs,
the cloth constraint is not enough for the high-accuracy extraction of mountain regions.

The requirement for mountain segmentation is to be as smooth and complete as
possible. Therefore, the energy function is used to optimize and segment the mountain,
effectively improving the smoothness and integrity of the results [38]. We set the regional
features (the relative elevation and slope) and the smoothness features (the slope difference)
as the terms of the energy function with regional term R(L) and smoothness term B(L),
respectively. The retentions of smoothness and regional features between raster regions are
contradictory. For example, the noise will make the slope of this region larger. However,
it will have a big difference from its neighbors. Therefore, if the algorithm is based only
on the regional term, the region will be misjudged; if the smoothness term is introduced,
the noise region may be consistent with the segmentation result of its neighbors.

We take the optimization problem above and transform it into a global energy function
E(L) to minimize the computational problem:

min E(L) = λ · R(L) + B(L) (3)

where L denotes the set of labels corresponding to all raster regions: mountain (“mnt”)
and background (“bkg”). E(L) denotes the objective function value of the global energy
function. R(L) = ∑p∈P Rp

(
Lp
)
, B(L) = ∑{p,q}∈N B{p,q} · δ

(
Lp, Lq

)
, p denotes any pixel in

the region, P denotes the set of pixels in the region, q denotes the neighboring pixels of
p, and Rp(Lp) denotes the cost of pixel p corresponds to the label L. Bp,q denotes the cost
based on the weight of p and q calculated from the slope difference. Generally, the smaller
the slope difference, the larger the weight. Coefficient λ represents the relative importance
between the regional term R(L) and the smoothness term B(L) .

4.2.1. Regional Term Design

The regional term R(L) is the sum of the cost when pixels are designated as labels L, i.e.,
R(L) = ∑p∈P Rp

(
Lp
)
, and the design of cost is related to the relative elevation dH and

slope G. When a pixel is designated as the mountain, the corresponding cost is:

Rp(“mnt”) = Pmnt
dH · (PG + wH) (4)
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When a pixel is designated as the background (non-mountainous region), the corre-
sponding cost is:

Rp(“bkg”) = Pbkg
dH · (1− PG + wH) (5)

where PG is the special normalized slope, P
Lp
dH is the relative elevation cost factor corre-

sponding to different labels, and wH is the weight of the relative elevation with a range
between 0.3 and 0.7. When wH is larger, the slope effect is more negligible.

Slope G takes the number of degrees for representation, and the formula [39] is:

G = arctan
√

H2
x + H2

y (6)

where Hx and Hy are the elevation gradients in the x, y direction of the gradient.
In order to suppress the noise and to create a suitable range of regional terms, the above

G needs to be specially normalized to PG:

PG =


1, G

G0
> 1

0, G
G0

< 0
G
G0

, otherwise
(7)

where G0 is the slope of the normalization factor. According to the table of basic terrestrial
landform types proposed in the literature [6], regions with slopes greater than 5◦ are
considered as mountains. It is reasonable to set the slope normalization factor G0 to 10◦.
In other words, when G > 0.5G0, the possibility of “mnt” is greater.

According to Section 4.1, in order to enhance the ability of the algorithm to segment
mountains, the relative elevation dH is used to calculate the cost coefficients Pmnt

dH and Pbkg
dH .

Pmnt
dH is used to increase the cost of the mountain label, and Pbkg

dH is used to increase the cost
of the background (non-mountain) label.

The cost factor Pmnt
dH is defined as:

Pmnt
dH =

{
0, 0 ≤ dH < 1

log10 dH, dH ≥ 1
(8)

The cost factor Pbkg
dH is defined as:

Pbkg
dH =

{
1, 0 > dH > −e

ln(−dH), dH ≤ −e
(9)

Although the ground fitting surface is generally not higher than the ground surface,
there is a small probability of producing dH < 0 only when the regions are pits or swales
and the relative elevation of most plains is greater than 0 but close to 0 (it should be 0 under
ideal conditions). In order to ensure that the basic cost exists in the plains and increase
the cost of the swales, the cost factor of the background is set with a larger starting point
and a larger growth rate. That is, the minimum value of the cost factor of the background
(including the flats and the swales) is 1, and the growth function is ln(−dH). Mountains
generally have a large relative elevation. In order to reduce the misclassification of the flats,
the cost factor of the background is set with a larger starting point and a larger growth rate.
That is, the minimum value of the cost factor of the mountain is 0 and the growth function
is log10 dH.
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4.2.2. Smoothness Term Design

The smoothness term B(L) is used to increase the relevance between pixels, remove
noise in the results, and smooth the segmented mountain regions or non-mountain regions.
The smoothness term is defined as

B(L) = ∑
{p,q}∈N

Bp,qδ
(

Lp, Lq
)

(10)

where Bp,q is used to weight the discontinuity between pixels p and q. δ
(

Lp, Lq
)

indicates
whether Lp is equal to Lq. Bp,q is implied when p and q are labeled differently, so δ

(
Lp, Lq

)
is defined as

δ
(

Lp, Lq
)
=

{
1, if Lp 6= Lq
0, if Lp = Lq

(11)

For neighboring pixels with approximate slopes, a higher cost is applied when their
labels are different. It is defined as:

Bp,q = exp

−
(

PGp − PGq

)2

σ2 · 1
dist p,q

 (12)

where PGp and PGq correspond to the normalized slope of pixel p, q and distp,q is the spatial
distance of the neighbor pixel p, q. According to the definition of the smoothness term in
the literature [38], σ is considered as a measure of noise in the image. We define it as the
standard deviation of the normalized slope:

σ =

√
∑n

i=1
(

PG − µPG

)
n

(13)

where n is the number of the pixels and µPG is the average of the normalized slope.

4.2.3. Energy Function Minimization

The DEM has been converted into nodes and, together with the two source nodes,
forms a node set V. The nodes are connected using lines E with weights, forming the graph
G = (V, E) [40]. The mountain region source node T and the non-mountain region source
node S are separate source nodes that connect all pixel nodes.

There are two types of non-directional edges E: n-links and t-links. Each n-link connects
neighboring nodes {p, q} by eight adjacencies and each t-link connects a node p to the source
nodes S and T, which are constructed as two node sets {p, S} and {p, T}. The weights of
each edge are defined as follows.

The weights of the n-links are:

w{p,q} = Bp,q (14)

The weights of the t-links are:{
w{p,S} = λRp(“mnt”)
w{p,T} = λRp(“obj”)

(15)

where λ is often treated as a hyperparameter and represents the relative importance
between the regional term R(L) and the smoothness term B(L); the selection of λ depends
on an experimental parameter analysis (see Section 5.2.2).

According to the definition of λ, the larger λ is, the greater the weight of the smooth-
ness term, the more resistant the method is to noise, and the smoother the segmentation
result, but it is more likely to produce false connections of similar regions. The smaller λ is,
the smaller the weight of the smoothness term and thus the clearer the contour of the region
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will be, and the method is more sensitive to small mountains and non-mountain regions but
at the same time more susceptible to the influence of noise and small landform undulations.

Finally, the graph cut algorithm [10–12] is used to cut off part of the connection
edge, and the mountain region source node and non-mountain region source node are
completely separated. That is, the energy function is minimized. The pixel connected to
the mountain source node T corresponds to the mountain region. The pixel connected to
the non-mountain source node S corresponds to the non-mountain region, so all the pixels
are labeled and each pixel is assigned as 0, 1 shown in Figure 6.

Figure 6. DEM surface, segment mask, and final mountain segmentation results.

5. Experiment and Analysis
5.1. Data and Research Area

In order to verify the effectiveness of the proposed method, it was tested on four
referenced DEM datasets from SRTM collected by NASA and one DSM dataset referenced
from the JAXA image archive. This includes parts of Guangdong Province in south-
eastern China (22◦∼23◦N, 113◦∼114◦E, Dataset I), Jiangxi Province, China (26◦∼27◦N,
115◦∼116◦E, Dataset II), Nevada, USA (39◦∼40◦N, 117◦∼116◦W, Dataset III), California,
USA (34◦∼35◦N, 118◦∼117◦W, Dataset IV), and the lunar Montsenogradov Mountains
(21◦∼24◦N, 33◦∼30◦W, Dataset V). Figure 7a–e shows the elevation and mountain shading
for datasets I~V, where red indicates a higher elevation and blue shows a lower elevation.

In order to evaluate the mountain segmentation results, this paper manually drew
mountain masks for datasets I~V, as shown in Figure 7f–j. These mountain masks were
taken as true values to evaluate the accuracy of the mountain segmentation results.

5.2. Accuracy Analysis

This paper tested the proposed method on the above five datasets to extract mountain
regions with high relative elevations and slopes. In order to comprehensively evaluate the
performance of the proposed method, this paper adopted five different accuracy metrics,
e.g., precision, recall, overall accuracy (OA), intersection over union (IoU), and F1 score.
This paper then found the optimal parameters of the proposed method using dataset I and
dataset V by gradually changing the parameters and determining those with the highest
accuracy. The optimal parameters were finally fixed in all datasets, and the proposed
method was compared with other state-of-the-art methods.
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Figure 7. Visualization of DEMs and manual mountain masks in the study area.

5.2.1. Precision Analysis Index

In order to evaluate the performance of the proposed method, some accuracy metrics
(e.g., precision, recall, overall accuracy (OA), intersection of union (IoU), and F1) were used
for both the proposed method and other state-of-the-art methods.

We first compared the mountain segmentation results with the true values. We counted
the number of true positive sample pixels TP, the number of true negative sample pixels
TN, the number of false positive sample pixels FP, and the number of false negative sample
pixels FN. Based on this, the following five metrics were derived.
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Precision =
TP

TP + FP

Recall =
TP

TP + FN

OA =
TP + TN

TP + FP + TN + FN

IoU =
area(A ∩ B)
area (A ∪ B)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(16)

5.2.2. Optimal Parameter Adjustment

The proposed method realizes mountain segmentation by minimizing the energy
function, where several important parameters need to be manually adjusted, including the
coefficient λ and the weight of relative elevation wH in Equations (3)–(5). The coefficient
λ maintains the smoothness of the results and reduces the influence of noise. The weight
wH is used to increase the contribution of the relative elevation in the optimization, which
plays an important role in removing pits or swales. This paper adopted the variable control
method and a visual analysis to determine the most optimal choice of the parameters.

In this paper, dataset I and dataset V were selected for parameter adjustment. The re-
gion noise and small fluctuations in dataset I are more distributed, and dataset V has a large
distribution of craters. The experimental interval of the parameter λ was mainly based on
the proportional relationship between the smoothness and regional terms. The correspond-
ing segmentation results were obtained when λ was set within the interval of [50, 250].
The relative elevation weight wH represents the contributions of the relative elevation in
the optimization. In order to make the effects of relative elevation and normalized slope
similar, it was reasonable to set the relative elevation weight range from 0 to 2. In order to
select reasonable parameters, we analyzed the segmentation results of λ at 50, 100, 150, 200,
and 250 with a step of 50 and wH at 0, 0.5, 1, 1.5, and 2 with a step of 0.5.

Figure 8 shows the heat map of the overall accuracy of dataset I and dataset V, where a
high value means a high accuracy. Through 25 groups of segmentation results with different
λ and wH , it was found that the highest accuracy can be obtained when the parameters are
λ = 150 and wH = 0.5.

Figure 8. Overall accuracy heat map of the parameter adjustment: The brighter the color, the higher
the corresponding accuracy. The accuracy reaches its highest level, indicated by the white circle.
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In addition to the heat map of overall accuracy, a more detailed analysis of different
parameters was carried out by checking the corresponding segmentation results in some
difficult regions, as shown in Figures 9 and 10.

Figure 9 shows the results of dataset I at λ = 150 and wH = 0.5, λ = 100 and wH = 0.5,
and λ = 200 and wH = 0.5, where the first row represents the region in the red bounding
box, and the second row represents the region in the yellow bounding box. The parameter
λ determines the contributions of the smoothness term in the optimization. A higher
λ will generate a strong smoothness constraint and vice versa. If λ is too high, some
small mountains may be filtered away, as shown in the green box of Figure 9e at λ ≥ 250.
However, if λ is too low, some noise in the DEM cannot be removed, as shown in the
blue box of Figure 9h at λ ≤ 50. Therefore, an appropriate choice of λ is necessary for
high-accuracy mountain segmentation, i.e., λ = 150.

Figure 9. Comparison of segmentation results with different parameters for dataset I.

Figure 10. Comparison of segmentation results with different parameters for dataset V: The yellow
and red boxes represent the selected analysis regions, while the green and blue boxes represent areas
with misclassifications or omissions.

On the other hand, Figure 10 shows the results of dataset V at λ = 150 and wH = 0.5,
λ = 150 and wH = 0, and λ = 150 and wH = 1, where the first row represents the
region in the red bounding box, and the second row represents the region in the yellow
bounding box. The parameter wH determines the contributions of the relative elevation
in the optimization. A higher wH will generate a strong cloth constraint and vice versa.
If wH is too high, some regions with large relative elevations and small slopes may be
misclassified as mountains, as shown in the green box of Figure 10e at wH ≥ 1. However,
if wH is too low, some pits with a large slope will be mistakenly classified as a mountain,
as shown in the blue box of Figure 10h at wH = 0. Therefore, an appropriate choice of wH
is necessary for high-accuracy mountain segmentation, i.e., wH = 0.5.

We conducted an experimental analysis of different parameters. We determined the
optimal combination of parameters as λ = 150 and wH = 0.5 via a visual analysis and
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overall accuracy heat maps of dataset I and V. The combination of parameters was fixed for
the following comparison and analysis.

5.2.3. Algorithm Comparison and Analysis

In this paper, the results of the proposed method were compared with the lunar moun-
tain detection method (MDA) [3], the landform mask method (SNAP) in SNAP™ (https://
earth.esa.int/eogateway/tools/snap) from the European Space Agency, and the multi-scale
segmentation method (Eco) in eCognition™ [1] (https://geospatial.trimble.com/products-
and-solutions/trimble-ecognition) from Definiens Imaging. The proposed method and the
MDA method were implemented using MATLAB R2022b, while SNAP and Eco were im-
plemented using the aforementioned software. The MDA method segments the mountains
by converting the DEM data into image entropy and using the Riley entropy threshold to
calculate the mask of mountains; the SNAP method uses a certain size window to calculate
the slope in the DEM and then segments mountains by a threshold constraint, which will
decrease the resolution of the DEM; and finally, the Eco method divides the landform into
eight types of objects by multi-scale segmentation based on the elevation and uses standard
deviation of the object mean value to achieve segmentation of the features [1].

This paper compared the proposed method with the above methods on datasets
I∼V and comprehensively evaluated their performance by utilizing the five accuracy
metrics. The different datasets represent different typical landforms. For example, dataset I
corresponds to regions with more plains and fewer mountains; dataset II corresponds to
regions with more mountains and fewer plains; dataset III corresponds to regions with more
complex mountain bases; dataset IV corresponds to regions with more small mountains;
and dataset V corresponds to regions with lunar craters. The mountain segmentation
accuracy of different methods is shown in Table 1.

Table 1. Accuracy assessment of datasets I~V: The bold values represent the highest accuracy
evaluation metrics among the methods.

Method Precision Recall OA IoU F1

Dataset I

Proposed 97.71% 91.93% 98.43% 90.00% 94.73%
MDA 76.78% 98.90% 95.25% 76.12% 86.44%
SNAP 71.90% 94.76% 93.52% 69.15% 81.76%
Eco 47.15% 88.22% 83.05% 44.36% 61.45%

Dataset II

Proposed 97.56% 93.29% 92.95% 91.97% 95.82%
MDA 96.90% 94.76% 93.55% 91.16% 95.38%
SNAP 92.37% 97.79% 91.99% 90.48% 95.00%
Eco 98.99% 48.74% 59.67% 48.50% 65.32%

Dataset III

Proposed 87.71% 91.04% 92.53% 80.75% 89.35%
MDA 83.29% 89.55% 90.23% 75.91% 86.31%
SNAP 75.61% 96.13% 88.01% 73.38% 84.65%
Eco 67.95% 86.69% 81.36% 61.53% 76.18%

Dataset IV

Proposed 93.83% 94.59% 96.81% 89.05% 94.21%
MDA 88.09% 94.55% 95.00% 83.83% 91.21%
SNAP 78.06% 97.96% 91.89% 76.81% 86.88%
Eco 53.93% 78.75% 75.73% 47.08% 64.02%

Dataset V

Proposed 90.45% 83.05% 97.52% 76.35% 86.59%
MDA 68.62% 88.82% 95.00% 63.16% 77.42%
SNAP 44.74% 96.46% 88.15% 44.02% 61.13%
Eco 32.92% 91.39% 81.19% 31.93% 48.40%

Table 1 shows the segmentation accuracy of each method on each dataset, where
the overall accuracy of the proposed method reaches more than 90% for all datasets.
The proposed method produces better results and can more stable segmentation against
various landforms.

https://earth.esa.int/eogateway/tools/snap
https://earth.esa.int/eogateway/tools/snap
https://geospatial.trimble.com/products-and-solutions/trimble-ecognition
https://geospatial.trimble.com/products-and-solutions/trimble-ecognition
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In order to evaluate the overall performance of each method, we averaged the results
of each accuracy metric across all datasets. The average accuracy of each method is shown
in Figure 11. Compared with other methods, the proposed method achieved the highest
segmentation accuracy with the highest average precision, OA, IoU, and F1.

However, since the recall is used to assess mountain coverage, the recall of the pro-
posed method did not reach the maximum value. SNAP and MDA have relatively high
coverage of results, i.e., a high TP, because the methods are based on entropy or slope
and are extremely sensitive to the results of the DEM. Although the results of SNAP and
MDA could cover many mountains leading to a high recall, noise and swale misjudgment
were also introduced. At the same time, the proposed method could deal with the above
problems with better performance and had a lower misclassification probability.

Figure 11. Statistics of the indexes of each method.

In order to analyze the performance more comprehensively, the results of all methods
are visualized for comparison. By comparing the segmentation results of each method with
the manual mountain masks, the differences are shown in different colors in Figure 12a–e,
where red indicates the FN region, yellow indicates the FP region, and cyan indicates the
TN region, while the TP region is shown directly as mountain shading.

According to Figure 12, the results of the proposed method are generally better than
others. For example, in dataset I, II, and IV, the proposed method generated the smoothest
and most complete mountains among all the methods. In dataset III, the proposed method
produced the most precise mountain edges. In dataset V, the proposed method avoided
misclassifying the crater bottom. The above points will also be reflected in the following
detailed analysis.

In order to show the details more clearly, we focus on the misclassification and omis-
sion of the proposed method and MDA, compared with the manual mountain masks.
As the overall accuracies of SNAP and Eco are lower than MDA, both SNAP and Eco were
not considered in the visual comparisons of the local zoomed-in regions. In addition, SNAP
and MDA are both methods based on roughness. Therefore, we only consider MDA and
the proposed method for a detailed comparison.

Before the detailed analysis, we first discuss the characteristics of all the methods and
the corresponding segmentation results:

• The proposed method effectively reduced the noise, and the mountain results were
more complete and smoother in each dataset through the smoothness term constraint
in the energy function, as shown in Figure 12a–e. This method optimized the global
energy function in the pixels as the unit to realize the segmentation of fine mountains,
and better results can be seen in Figure 12c. It introduced relative elevation, so false
segmentation could be effectively avoided for lunar craters, as shown in Figure 12e;
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Figure 12. Visualization of segmentation results (from left to right corresponding to the results of
the proposed method, MDA, SNAP, and Eco, respectively): The red indicates the false negative (FN)
region, the yellow indicates the false positive (FP) region, and the cyan indicates the true negative
(TN) region. The true positive (TP) region is directly depicted as mountain shading.
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• MDA is a mountain segmentation method that uses wavelet de-noising pretreatment.
Wavelet de-noising can reduce the impact of noise to a certain extent; however, this
inevitably affected the image resolution and it was unable to achieve fine segmentation,
especially for the edge of the mountain, see Figure 12c. In addition, MDA is a method
to calculate entropy based on a sliding window. Therefore, large fluctuations or noise
in the sliding window can directly affect the entropy of the nearby region, resulting
in false segmentation of the whole block. Therefore, this method was also extremely
sensitive to noise, as shown in Figure 12a,c,d. This method only segments mountains
based on roughness, so it could not distinguish swales or pits, resulting in many false
segmentations of swales or mountains, Figure 12d,e. In addition, MDA is a local
method based only on the pixels and their neighborhood. Therefore, for regions where
their entropies were near the threshold, fragmented segmentation results were often
produced and the mountain was not presented completely, see Figure 12a,d;

• SNAP is a method to extract the slope in a fixed window by a threshold value based
on the calculation of the slope in a fixed window. It has similar characteristics to MDA,
which is also sensitive to noise, will reduce the data resolution, and cannot judge
swales and pits;

• Eco is an object-oriented mountain segmentation method. Firstly, multi-scale segmen-
tation of eCognition is used to classify each region, and then objects are selected as
mountain regions based on the thresholds of the object mean and standard deviation.
However, the selection of objects by the threshold method often fails to adapt to all
mountains and different types of landforms, which inevitably leads to the misclas-
sification of most flat land or mountains. Therefore, this method is only suitable for
landform statistics in most regions.

Next, this paper discusses and verifies the above analysis in detail based on Figures 12–18.

Figure 13. Regional analysis of dataset I.

Figure 14. Illustration of misclassified results in a valley region.
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Figure 15. Regional analysis of dataset II.

Figure 16. Regional analysis of dataset III.

Figure 17. Regional analysis of dataset IV.

Figure 18. Regional analysis of dataset V.

The region corresponding to dataset I mainly consists of a few mountains and mostly
plains. There is a clear segmentation boundary between mountains and plains, while the
noise and the undulations of the ground increase the classification difficulty.

Figure 12a shows the segmentation results of dataset I. The proposed method produced
the smoothest results with the least noise. MDA and SNAP methods produced the most
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misclassification results due to the increased noise and relief distributed in the whole
picture. These local methods are based on entropy or slope and are more susceptible to
noise and the relief of landforms, resulting in false segmentation.

As shown in Figure 13, the proposed method could effectively perform segmentation
in this region. At the same time, MDA produced misclassification based on only roughness.

The region corresponding to dataset II mainly consists of mountains and a few plains,
and the mountains are interspersed with plains. The interlacing of mountains (including
valleys and ridges) and plains in dataset II increases the classification difficulty.

Figure 12b shows the segmentation results of dataset II. The proposed, MDA, and SNAP
methods all achieved good results. The accuracies of the three methods decreased to a
certain extent due to the presence of valleys, but it had the greatest impact on the pro-
posed method. Due to the inaccurate elevation threshold of Eco, large mountain regions
were misclassified.

The overall accuracies of the proposed method, MDA, and SNAP, were more than 90%
and similar to each other, but Eco produced a relatively large error. However, the overall
accuracy of the proposed method was higher than that of MDA.

The proposed method misclassified some valleys, while the MDA method was more
sensitive to topographic relief. It uses window entropy calculations; thus, gradient changes
have a larger impact range covering the entire window region, hence resulting in a lower
omission rate.

As shown in Figure 15, the valley in Figure 15b is relatively flat but still belongs
to the mountain. The proposed method and MDA produced misclassifications, with a
smaller misclassification through MDA, leading to a slightly lower overall accuracy than
the proposed method.

The misclassification observed in this specific region can be attributed to several factors.
Firstly, the region itself lacks significant variations in elevation, resulting in a relatively
uniform appearance. Then, its location in the central part of the mountain contributes to
the minimal relative elevation from the cloth surface. Consequently, the cloth constraint
fails to provide effective assistance in this particular case, as illustrated in Figure 14.

The region corresponding to dataset III includes mountains and plains which are
relatively uniformly distributed. The mountains are striped with complex foothill lines
distributed and contracted inside and outside, except for undulations near the foothills.
The complex shape of the foothills makes the segmentation more difficult.

Figure 12c shows the segmentation results of dataset III. The proposed method was
the most accurate for the treatment of complex foothills. However, SNAP and MDA
methods calculate the entropy or slope in the window, so they introduced the influence of
the surrounding large gradient change pixels, resulting in the region near the mountain
baselines no longer being segmented.

As shown in Figure 16, the proposed method could deal with the contraction of the
inner and outer foothills, and the result was consistent with the manual mask, while the
MDA was segmented along the outer side.

The region corresponding to dataset IV has a rising elevation trend from low lati-
tude to high latitude, and there are many fine-grained mountains and a small number of
swales. The fine-grained mountains, rough ground, and swales make the segmentation
more difficult.

Figure 12d shows the segmentation results of dataset IV. The proposed method was
able to deal with small sheet mountain ranges. In addition, the method was almost
unaffected by elevation trends due to the introduction of relative elevation, and thus
produced reliable results. On the contrary, MDA and SNAP were more sensitive to subtle
relief and noise due to the change in elevation. The elevation changes led to an overall
increase in the slope of the plains, and there was also influence from noise. MDA and SNAP
inevitably produced fragmentation of the mountain, reducing the integrity and smoothness
of the results.
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As shown in Figure 17, the proposed method could effectively deal with the elevation
trend, the undulations, fine-grained mountains, and swales. At the same time, MDA
inevitably misclassified the swales and undulations.

The region corresponding to dataset V has many craters and lunar mountains. The lu-
nar craters increase the difficulty of segmentation.

Figure 12e shows the segmentation results of dataset V. The proposed method could
distinguish the craters from the mountains due to the introduction of relative elevation.
In contrast, MDA and SNAP segmented mountains only based on slope and entropy and
could not distinguish craters and mountains with large slopes, so many lunar craters were
misclassified as mountains.

As shown in Figure 18, the proposed method could offset the effect of the slope of lunar
craters and correctly classify most craters as non-mountainous regions. In contrast, MDA
misclassified the craters because they also had relative slopes.

The proposed method can effectively deal with pits, complex foothills, noise, and
ground undulations according to the above results. At the same time, MDA and SNAP
segment mountains based only on the roughness and slope and need to use a large window
to calculate the entropy and slope, which introduces the influence of all the pixels in the
window and is susceptible to noise. Eco is based on the elevation mean and standard
deviation, which is suitable for the statistics of large regions but is ineffective for finely
segmented mountains.

The F1 and IoU values obtained by the proposed method are the highest in each sample
among all methods. These two indexes describe the comprehensive indexes of recall and
precision. In other words, the proposed method has the best all-around performance.

6. Conclusions

Mountain segmentation is an important task in the fields of geology and surveying.
However, most existing methods often face limitations due to the complexity of mountain
features. In order to design a more flexible, lightweight, and effective method, this paper
proposes a mountain segmentation method based on global optimization with a cloth
simulation constraint.

The contribution of the method is to formulate the mountain extraction problem as
an optimal solution of a global energy function, which is then optimized by the graph
cut algorithm. Generally, the energy function comprises two parts: the regional term
and the smoothness term. Considering the distinction between mountains and plains,
the design of the regional term is mainly based on the relative elevation and the slope,
where the relative elevation is derived from the elevation difference between the elevation
value of the simulated cloth surface and the ground elevation model. On the other hand,
the design of the smoothness term is based on the principle that a pixel with a similar
slope has a high probability of belonging to the same feature type. Compared with other
methods, the proposed method can reduce the interference of complex landforms and
noise, effectively extract mountain regions in a complex landform environment (including
pits or swales), and produce the most precise mountain edges.

To validate the correctness and effectiveness of the method, four SRTM DEM datasets
and one lunar DSM dataset were utilized. The experimental results demonstrate that the
proposed method achieves a significantly higher accuracy compared to three cutting-edge
methods based solely on roughness or elevation. It effectively maintains the accuracy and
smoothness of mountain boundaries while avoiding misclassification of craters, swales,
and small undulating regions. Compared with the other three methods, the overall accuracy
of the proposed method improved by 8.74% on average, with a minimum of 1.84% and a
maximum of 19.45%. The F1-score improved by 14.70 on average, with a minimum of 4.79
and a maximum of 29.07. The IoU improved by 20.46 on average, with a minimum of 7.59
and a maximum of 38.94. The accuracy improved by 21.63% on average, with a minimum
of 10.72% and a maximum of 33.26%.
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Currently, the proposed method still has certain limitations. In terms of efficiency,
although graph cut exhibits a good performance in the optimization of mountain seg-
mentation, the efficiency of our method still needs improvement compared to traditional
approaches. With the SRTM dataset, with sizes of 3600 ∗ 3600 pixels and resolutions of 1 arc-
second, it takes approximately 50 s for the proposed method with a computer configuration
of a single thread of an Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz. In practical applica-
tions, the computational speed can be enhanced through techniques such as parallel block
processing or downsampling. Regarding segmentation boundaries, although the energy
function solution produces accurate, smooth boundaries, occasional over-segmentation
or under-segmentation may occur during the boundary delineation of highly complex
mountain regions. The proposed cloth simulation constraint effectively avoids misclassifi-
cation of crater-like features and introduces relative elevation data. However, it may also
impact the delineation of mountain boundaries. It is possible that the cloth surface could
extend higher than the actual terrain, leading to an excessive inward contraction of certain
mountain base areas. Such an issue of the cloth surface should be improved.

In future research, efforts will be made to address the aforementioned limitations and
further improve the proposed method. One area of focus will be enhancing the algorithm’s
efficiency by exploring techniques such as parallel processing. Additionally, there will be a
concerted effort to refine the segmentation boundaries, particularly in complex terrains.
Furthermore, improvements will be made to the cloth simulation constraint, aiming to better
align the resolution of the cloth surface with the terrain data. Expanding the applicability
of the method to handle various landforms and investigating potential integrations with
advanced machine learning techniques are also key targets for future research.
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