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Abstract: We studied the use of self-attention mechanism networks (SAN) and convolutional neural
networks (CNNs) for forest tree species classification using unmanned aerial vehicle (UAV) remote
sensing imagery in Dongtai Forest Farm, Jiangsu Province, China. We trained and validated represen-
tative CNN models, such as ResNet and ConvNeXt, as well as the SAN model, which incorporates
Transformer models such as Swin Transformer and Vision Transformer (ViT). Our goal was to com-
pare and evaluate the performance and accuracy of these networks when used in parallel. Due to
various factors, such as noise, motion blur, and atmospheric scattering, the quality of low-altitude
aerial images may be compromised, resulting in indistinct tree crown edges and deficient texture.
To address these issues, we adopted Real-ESRGAN technology for image super-resolution recon-
struction. Our results showed that the image dataset after reconstruction improved classification
accuracy for both the CNN and Transformer models. The final classification accuracies, validated by
ResNet, ConvNeXt, ViT, and Swin Transformer, were 96.71%, 98.70%, 97.88%, and 98.59%, respec-
tively, with corresponding improvements of 1.39%, 1.53%, 0.47%, and 1.18%. Our study highlights the
potential benefits of Transformer and CNN for forest tree species classification and the importance of
addressing the image quality degradation issues in low-altitude aerial images.

Keywords: self-attention mechanism networks; convolutional neural networks; Real-ESRGAN;
transformer; tree species classification

1. Introduction

Traditional tree species classification methods primarily rely on the expertise of forest
workers who visually identify and judge trees based on features such as leaf shape, crown
shape, and texture. These methods are often subjective and labor-intensive, requiring
extensive fieldwork and manual identification. To improve the accuracy of tree species
classification, LiDAR data are often combined with hyperspectral (HS) data [1–3]. However,
the processing of airborne LiDAR data can be costly and complex, which makes this method
unsuitable for large-scale forest classification [4]. Conventional research methods for tree
species classification include manual feature extraction and classical machine learning
algorithms, such as Support Vector Machines (SVMs) [5–7], Artificial Neural Networks
(ANNs) [8,9], and Random Forest (RF) [10–12]. Burai, P. et al. [13] used airborne HS im-
agery and image classification methods (multi-label classification and SVM) combined
with feature extraction to discriminate between species and clones of energy trees. They
proposed an adaptive binary tree SVM classifier (ABTSVM) to improve the species-level
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classification accuracy. Rocha, S.J.S.S.D. et al. [14] used ANNs based on competition in-
dex and climatic and categorical variables to predict tree survival and mortality in the
semideciduous seasonal forests of the Atlantic Forest biome, reaching a high classification
performance. Freeman, E.A. et al. [15] proposed strategies to address the issues of varying
sampling intensity across different strata and the imbalanced presence of target species in
training data when using the RF model for species distribution modeling. However, tradi-
tional machine learning methods for tree species classification often rely on handcrafted
features, including various vegetation indices and texture features. In contrast, CNNs offer
a significant advantage over traditional approaches in extracting essential features from
raw data, which enables their widespread application in tree species classification tasks.

Since LeCun, Y. and his colleagues pioneered the use of CNNs for image classification
tasks in 1998 [16], and it has been demonstrated that CNNs have significant advantages
in extracting low-level features and visual structures. More recently, Krizhevsky, A. and
his team introduced a deep CNN architecture called AlexNet [17], which was trained on a
large scale using GPUs and obtained breakthrough results on the ImageNet dataset. At
the same time, the development of low-altitude UAVs has made the acquisition of high-
resolution aerial images with richer texture information than satellite images easier [18].
This combination has resulted in significant advances in tree species classification. For
example, Nezami, S. et al. [19] proposed a deep learning method based on 3D-CNN for the
high-accuracy classification of three major tree species in a boreal forest using RGB and HS
data layers. Kapil, R. et al. [20] proposed a RetinaNet-based method that reached an average
accuracy of 98.95% in classifying different stages of bark beetle attacks on individual trees.
Hu, M. et al. [21] used a transfer-learning-based approach that fused multiple deep learning
models to solve tree species classification in complex backgrounds, attaining an overall
average accuracy of 93.75%. Natesan, S. et al. [22] used DenseNet for classifying forest
tree species at the individual tree level using high-resolution RGB images from UAVs.
The validation results demonstrate an accuracy of over 84% in distinguishing coniferous
tree species in eastern Canada. Ford, D. J. [23] delved into the use of high-resolution
RGB imagery from UAVs for tree species classification in a tropical wet forest. The study
compared three classifiers and found that U-Net obtained the highest overall accuracy of
71.2%, suggesting the suitability of CNNs for fine-grained species-level classification using
UAV data. In addition, some researchers have used deep learning in combination with
UAV-Borne LiDAR data for individual tree crown segmentation studies [24]. However, it
is noted that canopy images are different from natural images, and mutual relationships
between tree canopies can affect classification results in forests with medium to high canopy
density. In addition, low-altitude drone canopy images exhibit intra-canopy heterogeneity
at the level of individual tree crowns, while displaying repeated similarity at the overall
level. Additionally, due to hardware limitations of the drone imaging equipment, the
images may suffer from blurred tree crown boundaries and weak texture factors. Therefore,
simply adopting a residual network model to identify tree species can lead to overlooking
the importance of different channel feature maps for classification results and result in a
limitation of accuracy. However, attention mechanism models have a natural long-range
modeling ability that enables the full utilization of effective global information from shallow
to deep layers. By taking advantage of this ability, researchers can more effectively classify
tree species and overcome the unique challenges posed by canopy images.

The goal of this research article is to investigate tree species classification methods
using both CNN models and Transformer models on UAV tree crown images. Our proposed
approach involves several steps. Firstly, we utilized a sliding window cropping technique
on low-altitude drone canopy images to obtain smaller image patches. Then, we applied
Real-ESRGAN technology for super-resolution reconstruction to restore the blurry canopy
images and enhance their spatial resolution. Next, we made use of both CNN models
and Transformer models to extract features from the tree crown images, and performed
a differential comparative analysis to evaluate the performance of these two approaches.
Due to the relatively modest scale of the canopy sample set in this experiment, and taking
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into account the constraints imposed by computational resources, this study opted to train
and validate the ResNet-50, ConvNeXt-T, Swin-T, and ViT-B models. These models boast
fewer parameters and exhibit lower computational intricacy, thereby enhancing the efficacy
of the training and inference processes. Through this efficient and accurate tree species
classification method based on low-altitude aerial tree crown images, we aim to delve into
the potential applications of artificial intelligence in forestry intelligence and information
construction, and explore the possibilities of improving tree species classification accuracy
using advanced deep learning techniques.

2. Study Area and Data Collection
2.1. Study Area

The study area was located in Dongtai Forest Farm, Yancheng City, Jiangsu Province,
with geographical coordinates ranging from 120◦47′11′′E to 120◦52′0′′E and 32◦53′30′′N
to 32◦51′17′′N, as shown in Figure 1. We used a Liortho high-resolution imaging system
mounted on a Digital Green Earth octocopter UAV for data collection, with a flight altitude
of 200 m and image resolution of 0.2 m. In the Dongtai Forest Farm study area, we picked
out three representative plots as experimental areas. From these areas, we selected four
predominant tree species, Poplar, Metasequoia, Bamboo, and Ginkgo, as the primary
subjects of our research.
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2.2. Data Collection and Preprocessing

In this study, we selected four tree species, namely Metasequoia, Bamboo, Poplar, and
Ginkgo, as the target recognition objects within the study area. To collect samples, we
used sliding window cropping with a window size of 64 × 64 pixels, resulting in a total
of 4338 samples. Specifically, the number of samples obtained for each tree species was
as follows: 1101 for Bamboo, 880 for Ginkgo, 1105 for Metasequoia, and 1252 for Poplar.
These samples were affected by various imaging factors, such as forest canopy closure, tree
species, lighting, background, and shooting height, resulting in differences in intra-class
and inter-class characteristics, as depicted in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

2.2. Data Collection and Preprocessing 
In this study, we selected four tree species, namely Metasequoia, Bamboo, Poplar, 

and Ginkgo, as the target recognition objects within the study area. To collect samples, we 
used sliding window cropping with a window size of 64 × 64 pixels, resulting in a total of 
4338 samples. Specifically, the number of samples obtained for each tree species was as 
follows: 1101 for Bamboo, 880 for Ginkgo, 1105 for Metasequoia, and 1252 for Poplar. 
These samples were affected by various imaging factors, such as forest canopy closure, 
tree species, lighting, background, and shooting height, resulting in differences in intra-
class and inter-class characteristics, as depicted in Figure 2. 

Given that neural network models, especially Transformer models and their variants, 
can have millions or even billions of parameters, it is crucial to have sufficient samples for 
effective training. To increase the sample size, we performed data augmentation on the 
training and validation sample sets. The data augmentation techniques applied to the tree 
canopy image samples included random rotations by 90°, 180°, and 270°, horizontal 
flipping, and brightness adjustment as depicted in Figure 3. These transformations were 
implemented using the ‘RandomRotation’, ‘RandomHorizontalFlip’, and ‘ColorJitter’ 
functions provided by the Torchvision library. By incorporating these techniques into the 
data augmentation pipeline, variations were introduced to the dataset, allowing for 
enhanced training and improved model generalization. Random rotations provided 
diverse perspectives of the tree canopies, while horizontal flipping increased the dataset’s 
diversity by mirroring the images. Additionally, brightness adjustment ensured 
robustness to varying lighting conditions, enabling the model to generalize better across 
different environments. These techniques collectively contributed to the overall 
robustness and performance of the tree canopy classification model. 

Furthermore, we randomly divided the samples into training and validation sets in 
an 8:2 ratio, respectively. This ensured that both sets had a representative distribution of 
samples from each tree species, allowing for robust model evaluation and performance 
estimation. The augmented dataset with increased sample size and diversity, along with 
the appropriate training and validation set partitioning, facilitated the training of the neu-
ral network models for accurate tree species recognition in the study area. 

              
(a) Bamboo                        (b) Ginkgo 

               
(c) Metasequoia                 (d) Poplar 

Figure 2. Sample tree species: (a) Bamboo; (b) Ginkgo; (c) Metasequoia; (d) Poplar. Figure 2. Sample tree species: (a) Bamboo; (b) Ginkgo; (c) Metasequoia; (d) Poplar.

Given that neural network models, especially Transformer models and their variants,
can have millions or even billions of parameters, it is crucial to have sufficient samples
for effective training. To increase the sample size, we performed data augmentation on
the training and validation sample sets. The data augmentation techniques applied to the
tree canopy image samples included random rotations by 90◦, 180◦, and 270◦, horizontal
flipping, and brightness adjustment as depicted in Figure 3. These transformations were
implemented using the ‘RandomRotation’, ‘RandomHorizontalFlip’, and ‘ColorJitter’ func-
tions provided by the Torchvision library. By incorporating these techniques into the data
augmentation pipeline, variations were introduced to the dataset, allowing for enhanced
training and improved model generalization. Random rotations provided diverse perspec-
tives of the tree canopies, while horizontal flipping increased the dataset’s diversity by
mirroring the images. Additionally, brightness adjustment ensured robustness to varying
lighting conditions, enabling the model to generalize better across different environments.
These techniques collectively contributed to the overall robustness and performance of the
tree canopy classification model.

Furthermore, we randomly divided the samples into training and validation sets in
an 8:2 ratio, respectively. This ensured that both sets had a representative distribution of
samples from each tree species, allowing for robust model evaluation and performance
estimation. The augmented dataset with increased sample size and diversity, along with
the appropriate training and validation set partitioning, facilitated the training of the neural
network models for accurate tree species recognition in the study area.
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3. Methodology
3.1. Super-Resolution Reconstruction

Faced with the limitations of hardware equipment, such as high-denseness forest
stands, aerial photography angles, and resolution, as well as complex geographic back-
grounds, drone aerial images often suffer from degradation issues such as lost details,
reduced brightness, and partially blurred tree crowns. To solve these problems, this paper
uses Real-ESRGAN technology [25] to perform super-resolution reconstruction, denoising,
and deblurring on the original tree crown images. Classical first-order degradation mod-
els, as expressed in Equation (1), often consider only one type of degradation operation,
such as blur or noise, while ignoring the simultaneous presence of multiple degradation
operations. However, in practical scenarios, images may undergo multiple degradations
simultaneously. For example, during transmission, images may experience blur, resolution
reduction, and the introduction of noise. In order to more accurately simulate the degrada-
tion process of real images, Real-ESRGAN proposes a high-order degradation model, as
expressed in Equation (2), which utilizes multiple repeated degradation processes, with
each degradation process representing a classical degradation model. Through ablation
experiments, the second-order model has been proven to exhibit excellent performance
and practicality, effectively meeting the requirements of most image processing tasks [25].
Real-ESRGAN’s second-order degradation model, as shown in Figure 4, aims to simulate
the degradation process of real images through several steps, including blur processing,
downsampling, noise addition, and JPEG compression. Firstly, in the blur processing
stage, isotropic and anisotropic Gaussian blur kernels are applied to the original image,
resulting in the loss of details and clarity to mimic real-world blurring effects. Subsequently,
the blurred image undergoes downsampling using randomly selected methods such as
bilateral interpolation, bilinear interpolation, and regional interpolation, further reducing
the image’s resolution and diminishing details and clarity to simulate actual resolution
reduction effects. Next, noise is added based on the image type (color or grayscale). For
color images, both Gaussian noise and noise following the Poisson distribution are added
to simulate environmental and sensor noise, while grayscale images only receive Gaussian
noise. Finally, the image is subjected to JPEG compression based on a compression quality
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parameter ranging from 0 to 100, where lower compression quality leads to poorer image
quality and more severe distortion.
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Both in the initial blur processing step and the final synthesis step, a sinc filter is used.
The expression for the sinc filter is shown in Equation (3). The sinc filter exhibits high
selectivity in the frequency domain, responding differently to signals of various frequencies.
Consequently, the sinc filter can smooth and blur specific frequency details in the image,
thereby reducing its details and clarity. Additionally, the sinc filter possesses inverse
filtering properties, allowing it to repair blurred or degraded images during the restoration
process, mitigating degradation effects and improving image quality. It is worth noting
that in the final synthesis step, the order of applying the sinc filter and JPEG compression
is randomly exchanged to cover a broader range of degradation scenarios.

In summary, Real-ESRGAN’s second-order degradation model adopts various degra-
dation operations, such as blur processing, downsampling, noise addition, and JPEG com-
pression, to simulate the degradation process of real images. These processed degraded
images lose their detail and clarity, exhibiting visual effects such as blurring, reduced
resolution, noise addition, and distortion, thereby providing challenging inputs for the
subsequent Real-ESRGAN super-resolution reconstruction process.

x = D(y) = [(y⊗ k) ↓ r + n] JPEG (1)

D(·) denotes the degradation process, y denotes the input image, k denotes the blur
function, ↓ r denotes the downsampling factor, n denotes the noise, and [ ]JPEG denotes
the compression of the obtained result in JPEG format.

x = Dn(y) = (Dn ◦ · · · ◦ D2 ◦ D1)(y) (2)

The above equation is actually a multiple repetition operation of the first-order degra-
dation, where each D represents the execution of one first-order degradation.

k(i, j) =
ωc

2π
√

i2 + j2
J1(ωc

√
i2 + j2) (3)

(i, j) is the kernel coordinate, ωc is the cutoff frequency, and J1 is a first-order Bessel
function of the first type.

Real-ESRGAN builds upon the generator structure of ESRGAN [26] as a foundation
and further enhances and refines it through design improvements, comprising numerous
Residual-in-Residual Dense Blocks (RRDB) for enhanced performance. These processed
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images, obtained through the preceding pre-processing steps elucidated earlier, are subse-
quently channeled into the generator of ESRGAN, as demonstrated in Figure 5 underneath.
Primarily, pixel shuffling is implemented to diminish the spatial dimensions and augment
the channel properties. Then, the resultant outcome is fed into the principal architecture of
ESRGAN for super-resolution reconstruction.
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Figure 5. ESRGAN architecture. We used a pixel-unshuffle operation to diminish the spatial dimen-
sions and re-arrange information to the channel dimension for scale factors of x2.

Moreover, owing to Real-ESRGAN’s aspiration to confront a considerably wider range
of degradations than ESRGAN, the original VGG-style discriminator design in ESRGAN
is no longer suitable. Instead, Real-ESRGAN introduces a U-Net framework with skip
connections for the discriminator, inspired by the referenced research endeavors [27,28].
Finally, the generated images are mixed with the input images and fed into the discriminator
for discrimination, which uses spectrally normalized U-Net to mitigate excessive sharpness
and artifacts introduced by GAN training. The original tree species canopy images were
restored by Real-ESRGAN super-resolution reconstruction as shown in Figure 6 below, and
the canopy texture details were restored and processed to facilitate the neural network
model to extract clear canopy edge contour features and detailed texture features.
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3.2. Model Training
3.2.1. ResNet Model

Residual blocks proposed by ResNet [29], as shown in Figure 7, can effectively solve the
problem of network degradation in deep networks. Two varieties of shortcut connections are
adopted within the layers of ResNet. Identity shortcuts are utilized when the dimensions of the
input and output are equal, while projection shortcuts are used to align dimensions [29]. In this
paper, we use ResNet-50 as a representative of such models. The decision to adopt ResNet-50
was grounded on empirical observations and experiments conducted by the researchers who
proposed the ResNet architecture. Their findings revealed that surpassing a certain depth
threshold in the network resulted in diminishing performance improvements or even a decline
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in accuracy, primarily due to the issue of vanishing gradients [29]. ResNet-50 successfully
strikes an excellent balance between model depth and performance. As the name suggests,
ResNet-50 consists of 50 layers, as shown in Figure 8, divided into five stages. Stage 0 can be
regarded as the preprocessing of input data, while stages 1 to 4 are each composed of 3, 4, 6, and
3 bottleneck blocks, respectively. (1) In Stage 0, the first step was to convert the canopy image,
which has a size of 224× 224, into a digital matrix with dimensions [224, 224, 3]. Subsequently,
we used a convolutional layer with a 7 × 7 kernel, stride of 2, and 64 output channels, resulting
in a feature map measuring 112 × 112 × 64. Furthermore, a 3 × 3 max pooling layer with a
stride of 2 was applied to reduce the feature map’s size, yielding a 56 × 56 × 64 representation.
(2) Moving forward, the 56× 56× 64 feature map underwent processing in Stage 1. At this stage,
we adopted three bottleneck blocks to facilitate the integration process. Each block consisted of
a sequence of convolutional operations, including 1 × 1 convolutions with 64 output channels,
3 × 3 convolutions with 64 output channels, and another 1 × 1 convolution with 256 output
channels. These operations reshaped the feature map, resulting in a 56× 56× 256 representation.
(3) Continuing the progression, the transformed 56 × 56 × 256 feature map proceeded to
Stage 2, housing four bottleneck blocks. Each block implemented a series of convolutions to
reshape the feature map from 56 × 56 × 256 to 28 × 28 × 512. (4) Continuing the sequence, the
28× 28× 512 feature map was inputted into Stage 3, containing six bottleneck blocks. Through
a cascade of convolutions, the feature map underwent size transformation from 28 × 28 × 512
to 14 × 14 × 1024. (5) Subsequently, the modified 14 × 14 × 1024 feature map advanced to
Stage 4, incorporating three bottleneck blocks. These convolutions modified the feature map’s
dimensions from 14 × 14 × 1024 to 7 × 7 × 2048. (6) Next, a global average pooling operation
was applied to the 7 × 7 × 2048 feature map, computing the average value of each channel.
Consequently, a feature map of size 1 × 1 × 2048 was obtained. (7) Finally, the 1 × 1 × 2048
feature map was flattened into a one-dimensional vector and subjected to processing through
a fully connected layer for classification purposes. Given that this experiment encompasses
four tree species, the output provides probability values for the four categories. The detailed
architecture specifications of ResNet-50 are described in Table 1.
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Table 1. Detailed architecture specifications for ResNet-50. ‘4-d fc’ denotes a fully connected layer
with 4 dimensions.

Stage Output_Size ResNet-50

Stage0 112 × 112 7 × 7, 64, stride 2

Stage1 56 × 56

3 × 3 max pooling, stride 2
1× 1, 64

3× 3, 64

1× 1, 256

× 3

Stage2 28 × 28


1× 1, 128

3× 3, 128

1× 1, 512

× 4

Stage3 14 × 14


1× 1, 256

3× 3, 256

1× 1, 1024

× 6

Stage4 7 × 7


1× 1, 512

3× 3, 512

1× 1, 2028

× 3

1 × 1 average pooling, 4-d fc, softmax
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3.2.2. ConvNeXt Model

The ConvNeXt model [30] improves upon the ResNet architecture by incorporating
ideas from the Transformer network [31], as depicted in Figure 9. Specifically, ConvNeXt
implements techniques such as mimicking depthwise convolutions to form convolution
blocks and referencing the design of the inverted bottleneck structure, resulting in enhanced
performance. In this study, we made use of the ConvNeXt-T model. The process of
classifying tree species with ConvNeXt-T involved the following steps: (1) To begin, we
started with an input canopy image of size 224× 224× 3. This image was passed through a
convolutional layer with a kernel size of 4 and a stride of 4. Afterward, a Layer Norm (LN)
was applied to normalize the feature map, resulting in a 56 × 56 × 96-sized feature map.
The LN operation plays a crucial role in enhancing network stability and generalization by
standardizing the feature map. (2) Moving on, the feature map underwent four stages, each
containing a ConvNeXt block. In each stage, there were 3, 3, 9, and 3 ConvNeXt blocks,
respectively. These ConvNeXt blocks were composed of a 7 × 7 depthwise convolution
with a stride of 1 and a padding of 3, followed by an LN. In addition, two 1 × 1 Conv2d
layers with a stride of 1 and a GeLU activation function [32] were adopted. The output
channels of the ConvNeXt blocks were 96, 192, 384, and 768, respectively. During the
second to fourth stages, a downsampling operation was performed on the feature map.
This downsampling operation included applying an LN and using a Conv2d layer with a
stride of 2. This operation reduces the size of the feature map to half that of the previous
layer. As a result, the feature map ended up containing 768 channels after passing through
all four stages. (3) Next, the feature map was passed through a global average pooling layer,
and a feature vector with a size of 1 × 1 × 768 was obtained. (4) The final step involved
passing the feature vector through a fully connected layer to convert the 768-dimensional
vector into an output vector of size 4. This output vector represents the probability values
of the four tree species categories. Table 2 shows the detailed structural specifications of
the ConvNeXt-T.
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Table 2. Detailed architecture specifications for ConvNeXt-T. ‘d’ is short for depthwise convolution.

Layer_Name Output_Size ConvNeXt-T

Conv1 56 × 56 4 × 4, 96, stride 4

Conv2_x 56 × 56


d7× 7, 96

1× 1, 384

1× 1, 96

× 3

Conv3_x 28 × 28


d7× 7, 192

1× 1, 768

1× 1, 192

× 3

Conv4_x 14 × 14


d7× 7, 384

1× 1, 1536

1× 1, 384

× 9

Conv5_x 7 × 7


d7× 7, 768

1× 1, 3072

1× 1, 768

× 3

1 × 1 global average pooling, 4-d fc

3.2.3. ViT Model

The ViT model [33] is a specially designed Transformer model for image classification.
It is composed of three modules: Embedding, Transformer Encoder, and Multi-Layer
Perceptron (MLP) Head. The Transformer Encoder comprises LN, Multi-head Attention,
Dropout, and MLP Block, and for this paper, we used the ViT-B model, as shown in
Figure 10. Here is how the image classification process worked using ViT-B: (1) Initially, we
input a tree canopy image with dimensions of 224 × 224 × 3. It underwent convolution
using a 16 × 16 kernel and a stride of 16, resulting in a feature map sized 14 × 14 × 768.
(2) Next, we flattened the feature map in both the height and width directions, transforming
its size to 196 × 768. Subsequently, we concatenated a class token and applied positional
encoding to the feature map, yielding a transformed size of 197 × 768. (3) Following this
step, we applied Dropout and passed the input through 12 stacked Encoder Blocks. The
output from the Encoder was then processed with LN, maintaining the feature map size
at 197 × 768. We proceeded to extract the output corresponding to the class token and
slice it, obtaining a vector of size 1 × 768. This vector was then fed into the MLP Head.
(4) Finally, the feature vectors were fed into a fully connected layer with four neurons for
classification, where each neuron represented a tree species category, resulting in the final
classification results.

3.2.4. Swin Transformer Model

Due to the high computational cost and memory consumption of the self-attention
mechanism in ViT models when processing high-resolution image tasks, the Swin Trans-
former model was proposed [34], which adopts a hierarchical structure as shown in
Figure 11. The model comprises four key components: Patch Partition, Linear Embedding,
Swin Transformer Block, and Patch Merging. Two successive Swin Transformer Blocks
illustrated in Figure 12, incorporate Window-based Multi-head Self-attention (W-MSA)
and Shifted Window-based Multi-head Self-attention (SW-MSA) to address memory con-
sumption challenges while maintaining efficient performance. Additionally, Patch Merging
adopts pooling-like operations to progressively reduce the feature map size and merge
image blocks, constructing a hierarchical feature map in deeper layers. LN layers are used
before each MSA module and each MLP, and residual connections are used after each MSA
and MLP. These characteristics make it a versatile backbone for image classification and
dense recognition tasks. In this study, we adopted the Swin-T model as a representative
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example of such models. (1) Initially, the input was a tree crown image with dimensions
224 × 224 × 3, which underwent Patch Partition. This process involved dividing the image
into fixed-sized blocks using a 4 × 4 convolutional kernel. The resulting feature map
dimensions were 56 × 56 × 48. (2) Next, the Linear Embedding layer was subsequently
applied to each channel of the pixel data, resulting in a linear transformation that changed
the feature map dimensions to 56 × 56 × 96. (3) Moving forward, we proceeded to a series
of Swin Transformer blocks. These blocks consisted of two variations: one utilizing the
W-MSA structure and the other adopting the SW-MSA structure. Consequently, the Swin
Transformer blocks appeared in even numbers, with 2 blocks in each of the first, second,
and fourth stages, and 6 blocks in the third stage. The Swin Transformer block incorporated
window partitioning and window reverse operations, maintaining the output feature map
size at 56 × 56 × 96. Therefore, the input and output sizes of the Swin Transformer block
remained unchanged. (4) Subsequently, Patch Merging was performed to reduce the spatial
dimensions by half and double the channel count. This process was repeated across the
four stages, eventually transforming the feature map dimensions to 7 × 7 × 768. (5) Finally,
global average pooling was utilized to reduce the spatial dimension to 1, resulting in a
feature vector of size 1 × 1 × 768. A linear classifier with four neurons was used to map
the output vector to probability values corresponding to the four tree species categories,
yielding the final prediction. The detailed Swin-T architecture specification is described in
Table 3.
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Table 3. Detailed architecture specifications for Swin-T. win. sz. indicates the size of the window
used; dim indicates the channel depth of the feature map; head indicates the number of heads in a
multi-headed attention module.

Stage_Name Output_Size Swin-T

Stage1 56 × 56

concat 4 × 4, 96, LN[
win. sz. 7× 7

dim 96, head 3

]
× 2

Stage2 28 × 28

concat 2 × 2, 192, LN[
win. sz. 7× 7

dim 192, head 6

]
× 2

Stage3 14 × 14

concat 2 × 2, 384, LN[
win. sz. 7× 7

dim 384, head 12

]
× 6

Stage4 7 × 7

concat 2 × 2, 768, LN[
win. sz. 7× 7

dim 768, head 24

]
× 2

1 × 1 global average pooling, 4-d fc

3.3. Experimental Environment

The experiments were conducted on a computer with the following specifications:
Windows 10 operating system, AMD Ryzen 5 5600X 6-Core Processor CPU, and NVIDIA
GeForce RTX 3070Ti GPU with 8GB of memory. The deep learning platform used for
training and evaluation was PyTorch 1.12.0, along with cudatoolkit11.3 for GPU accelera-
tion. For raster and vector data processing, Arcgis10.8 was utilized, and Matplotlib 3.5.2
was used for data visualization. Python 3.9.13 was the programming language used for
implementation and analysis.

4. Results
4.1. Comparison of CNN and Transformer Models for Tree Species Classification

The main objective of this investigation was to evaluate the impact of different models
on tree species classification using canopy images. To this end, we selected two repre-
sentative pre-trained models from both the CNN and Transformer models, specifically
ResNet-50, ConvNeXt-T, ViT-B, and Swin-T. For these four models, we set the image input
size to 224 × 224 pixels. During training, we used a batch size of 16 and the AdamW
optimization algorithm, and trained for a total of 150 epochs. The initial learning rate
was set to 4 × 10−4, and the weight decay factor was set to 5 × 10−2. We also used the
LambdaLR strategy for learning rate adjustment.

To assess the performance of the models, we monitored the changes in the loss function
and recognition accuracy of the original image data samples on the training set and vali-
dation set across 150 epochs. These changes are visualized in Figure 13 to understand the
training progress and stability of each model. It is observed that for all models, the accuracy
and loss tend to stabilize after around 120 to 130 epochs, with recognition classification
accuracy exceeding 95%, indicating strong stability and high accuracy in the tree species
classification task.

Furthermore, we evaluated the overall classification accuracy (OA), Kappa coefficient,
and confusion matrix of each model, as shown in Figure 14. These evaluation metrics
provide quantitative measures of the performance of the models in the tree species classifi-
cation task. By analyzing these results, we can gain a comprehensive understanding of the
performance of each model in tree species classification using canopy images.
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The ResNet-50 model attained an OA of 95.32% with a Kappa coefficient of 0.9368.
The ConvNeXt-T model reached an OA of 97.17% with a Kappa coefficient of 0.9621. The
ViT-B and Swin-T models reached even higher OAs of 97.41% (with a Kappa coefficient of
0.9668) and 97.43% (with a Kappa coefficient of 0.9671), respectively. This study’s finding
showed that during training and validation, the Transformer models ViT-B and Swin-T
outperformed the CNN model represented by ResNet-50 and ConvNeXt-T in terms of OA
and Kappa coefficient.

This superiority of the Transformer models could be attributed to their multi-head
attention mechanism, which allows them to capture richer feature information more ef-
fectively. The multi-head attention mechanism enables the models to attend to different
regions of the input image simultaneously, capturing both local and global contextual
information. In contrast, the CNN models, ResNet-50 and ConvNeXt-T, were found to be
sensitive to factors such as blurry edges and weak texture in the original canopy images,
which could impact the matching accuracy of feature points during feature extraction.

In summary, the research results show that the ViT-B and Swin-T models perform
better than the ResNet-50 and ConvNeXt-T models in terms of OA and Kappa coefficient,
due to the influence of factors such as blurry edges and weak textures in the original
canopy images. This suggests that the ViT-B and Swin-T models have the potential to
be effective in tree species classification tasks. However, an accurate judgment of model
performance requires a comprehensive consideration of multiple evaluation metrics, as well
as the needs of practical application scenarios, dataset characteristics, and model strengths
and weaknesses. Furthermore, further research and empirical analysis can validate the
performance of these models on different datasets and tasks.

4.2. Super-Resolution Reconstruction for Improved Tree Species Classification

Real-ESRGAN, a proven super-resolution image restoration algorithm [25], was uti-
lized in this study to reconstruct the original image dataset. The reconstructed dataset was
then used as input for training and validation in four different models. To ensure a fair
comparison of the performance of the models, consistent hyperparameter tuning methods
were applied during training.

Figure 15 provides a visual representation of the changes in the loss function and
recognition accuracy for the training and validation sets of the reconstructed dataset for
each of the four models. The figure allows for a detailed analysis of the training progress
and stability of each model. It is observed that after approximately 90 to 100 iterations, the
accuracy and loss of each model tend to stabilize, indicating convergence of the training
process. This implies that the dataset reconstructed and repaired through super-resolution
exhibits a faster convergence of the model with fewer training iterations compared to the
original dataset, and demonstrates improved stability on the training set and validation set.

Furthermore, Figure 16 presents the OA, Kappa coefficient, and confusion matrix of
each model. These metrics provide a comprehensive assessment of the performance of
each model in terms of accuracy, agreement, and confusion among different classes. The
detailed analysis of these metrics can provide insights into the effectiveness of each model
in accurately classifying tree species based on the reconstructed dataset.

After comparing the model parameters reached and tree species classification results
in Table 4, the following conclusions can be drawn: the ResNet-50 model reached an OA
of 96.71% and a Kappa coefficient of 0.9558; the ConvNeXt-T model reached an OA of
98.70% and a Kappa coefficient of 0.9826; the ViT-B model reached an OA of 97.88% and a
Kappa coefficient of 0.9716; and the Swin-T model attained an OA of 98.59% and a Kappa
coefficient of 0.9810. Compared with the data samples that were not reconstructed using
Real-ESRGAN, the recognition accuracy of each model increased by 1.39%, 1.53%, 0.47%,
and 1.16%, respectively. Among them, the ConvNeXt-T model reached the best result.
Therefore, we can conclude that the original image data, which may contain factors such
as blurry edges and weak texture in the canopy, can benefit from reconstruction using
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Real-ESRGAN. This reconstruction method can help improve the accuracy of tree species
classification recognition to a certain extent.
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Table 4. Comparison of classification results of different model tree species.

Model Model Size/Mb Size
Average Accuracy of Model
Validation for the Original

Dataset/%

Average Accuracy of Model
Validation after Super-Resolution
Reconstruction Restoration of the

Dataset/%

ResNet-50 25.55 95.32 96.71

ConvNeXt-T 28.58 97.17 98.70

ViT-B 86.41 97.41 97.88

Swin-T 28.26 97.43 98.59

4.3. Distribution Map of Tree Species in Dongtai Forest Plot

In this study, we selected a typical plot from the study area of Dongtai Forest Farm
with UAV remote sensing images as a test sample set. To match the sample size of the
original dataset, we used the same sliding window method to crop this sample. Then, we
used the ConvNeXt-T model to test this sample set and created a tree species distribution
map based on the model’s predictions, as shown in Figure 17. The plot of this forest farm
is divided as follows: the left plot is mainly planted with Metasequoia, the middle plot
is mainly planted with Poplar, and the right plot is mainly distributed with Ginkgo. In
addition, Bamboo mainly grows in the plot below.
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This study examined the impact of different models on tree species classification
in crown images. The study selected two representative pre-training models from the
CNN and Transformer models, including ResNet-50, ConvNeXt-T, ViT-B, and Swin-T. The
experimental results show that compared to traditional CNN models, Transformer models
are more stable in feature extraction, and have better classification accuracy and stability.
Additionally, this study used the Real-ESRGAN algorithm to perform super-resolution
reconstruction and repair on the original image dataset, resulting in an improvement
in the accuracy of tree species classification as demonstrated in the results. Finally, the
study presents a distribution map of tree species in Dongtai Forest Farm, demonstrating
the practical application of the Real-ESRGAN algorithm and serving as a reference for
further research.

5. Discussion
5.1. Performance of CNN and Transformer in Classifying Tree Species Using the Original Dataset

For the application of tree species classification in low-altitude remote sensing images
obtained from UAV, this paper further evaluated the classification accuracy performance
of four models, namely, ResNet-50 and ConvNeXt-T as representatives of CNN models,
and ViT-B and Swin-T as representatives of Transformer models, using the original canopy
image dataset. Transformer has demonstrated its exceptional ability to capture global infor-
mation, thereby bolstering a wide range of vision-related tasks such as image classification,
object detection, and particularly semantic segmentation [33,34]. CNN and Transformer
use object-based classification to achieve end-to-end tree species classification and avoid
the non-transferability of manual feature extraction. The experimental results reveal that, as
depicted in Figure 18, all four models exhibit classification validation accuracies exceeding
95%. Notably, the Swin Transformer reaches the highest classification accuracy, demon-
strating an OA of 97.43% and a Kappa coefficient of 0.9671. Conversely, the CNN models,
particularly the traditional CNN model, are more susceptible to the challenges posed by
low-spatial-height aerial images, including detail loss, brightness reduction, blurred canopy
edges, and weak image texture. These issues, coupled with small inter-class differences and
significant intra-class differences, adversely impact the feature point matching accuracy of
the CNN model, whereas the Transformer model is comparatively less affected.
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5.2. Performance of CNN and Transformer in Tree Species Classification Using Super-Resolution
Reconstructed Dataset

To address these issues, this paper introduced the Real-ESRGAN super-resolution
reconstruction technique to recover low-quality tree canopy images captured by UAVs.
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The recovery process improved the validation accuracy of the four models. For example,
the OA of the ConvNeXt-T model increased by 1.53% and the Kappa coefficient increased
by 0.0205. The validation accuracy comparison derived from the model using the original
dataset and the Real-ESRGAN processed dataset for training is depicted in Figure 19.
Although the Real-ESRGAN super-resolution reconstruction technique has some limitations
and shortcomings, it can be further improved in future research by introducing more
fuzzy kernels and enhancing the image super-resolution algorithm model. These findings
suggest that models trained on datasets restored and reconstructed by super-resolution
may achieve stability faster while reaching higher accuracy on both training and validation
sets compared to models trained on the original dataset. This phenomenon may be due
to the fact that the restored and reconstructed datasets provide higher-quality images,
which help the models to quickly acquire features related to tree species classification.
However, further empirical evidence and validation are needed to confirm the correctness of
this inference.
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6. Conclusions

The assessment of tree species classification in Dongtai Forest utilizing RGB im-
ages captured by UAV has yielded promising outcomes through deep-learning-based
approaches. Four models, including CNN models (ResNet-50 and ConvNeXt-T) and Trans-
former models (ViT-B and Swin-T), were trained and validated using UAV RGB tree crown
images, achieving classification accuracies surpassing 95%. CNN models have been exten-
sively used in forest resource surveys for tree species classification tasks, demonstrating
exceptional classification accuracy [22,35]. Transformer models have also started finding
applications in plant classification using UAV imagery [36] and exhibit significant potential
for future advancements in forest surveys. However, the limited spatial resolution of
aerial images introduces degradation challenges, such as detail loss, decreased brightness,
blurred tree crown edges, and weak image texture. These issues negatively impact the
feature point matching accuracy of CNN models and the capture of crucial information in
the images. In contrast, Transformer models, with their inherent attention mechanisms, ef-
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fectively leverage contextual information and global correlations in the images, resulting in
comparatively less susceptibility to such issues. To address these challenges, Real-ESRGAN
technology was adopted to perform super-resolution reconstruction and restoration on the
original tree crown image dataset, leading to improved classification accuracy across all
four models. This study confirms and underscores the observed enhancement in classifica-
tion accuracy when using neural network models trained on images reconstructed through
super-resolution. Super-resolution reconstruction techniques facilitate the restoration of
low-quality images by recovering details, enhancing brightness, improving tree crown edge
clarity, and augmenting image texture. These reconstructed images provide higher-quality
information, enabling CNN and Transformer models to more accurately learn and extract
features relevant to tree species classification. Consequently, when trained on these repaired
and reconstructed image datasets, the four models exhibit improved stability and accuracy
on validation sets.
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