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Abstract: Vision transformers (ViT) have the characteristics of massive training data and complex
model, which cannot be directly applied to polarimetric synthetic aperture radar (PolSAR) image
classification tasks. Therefore, a mixed convolutional parallel transformer (MCPT) model based on
ViT is proposed for fast PolSAR image classification. First of all, a mixed depthwise convolution
tokenization is introduced. It replaces the learnable linear projection in the original ViT to obtain patch
embeddings. The process of tokenization can reduce computational and parameter complexity and
extract features of different receptive fields as input to the encoder. Furthermore, combining the idea
of shallow networks with lower latency and easier optimization, a parallel encoder is implemented by
pairing the same modules and recombining to form parallel blocks, which can decrease the network
depth and computing power requirement. In addition, the original class embedding and position
embedding are removed during tokenization, and a global average pooling layer is added after
the encoder for category feature extraction. Finally, the experimental results on AIRSAR Flevoland
and RADARSAT-2 San Francisco datasets show that the proposed method achieves a significant
improvement in training and prediction speed. Meanwhile, the overall accuracy achieved was 97.9%
and 96.77%, respectively.

Keywords: polarimetric SAR; convolutional neural network; vision transformer; mixed depthwise
convolution tokenization; parallel encoder; global average pooling

1. Introduction

Synthetic Aperture Radar (SAR) [1] is a remote sensing sensor belonging to the ac-
tive imaging technology that operates in the microwave band. It has many extraordinary
characteristics, such as full-time work, being less affected by weather and certain pene-
tration ability to ground objects [2–5]. Therefore, SAR-related applications affect various
aspects of human production and life, such as land use, urban planning and crop yield
assessment [6]. Polarimetric SAR (PolSAR) is a type of SAR that works in different forms
of polarization combinations. It captures information on object material composition, ge-
ometric features and azimuth, and provides more comprehensive object descriptions for
different deployment scenarios. Thus, it has become a research hotspot in the field of SAR
remote sensing [7]. PolSAR image classification [8] refers to the process of dividing all
pixels in an image into a specific category according to specific rules. It is a fundamental
research direction in PolSAR image understanding and interpretation techniques. Auto-
matically analyzing radar image features to classify and recognize images is very beneficial
in improving the efficiency of human image understanding, while also greatly enhancing
the ability of people to obtain image information.

In traditional PolSAR image feature extraction methods, such as polarization target
decomposition [9], the scattering mechanisms of targets are interpreted based on practi-
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cal physical constraints. The polarimetric data are decomposed into several physically
meaningful parameters to facilitate the analysis of complex scattering processes. So far, sev-
eral decomposition methods have been proposed, including Cameron decomposition [10],
Cloude–Pottier decomposition [11,12], Krogager decomposition [13], and so on. However,
these methods can only determine target scattering types and not specifically classify them
into land cover types. Moreover, large amounts of PolSAR data are being obtained with
the maturing development of various earth observation platforms. Traditional methods
based on polarization decomposition and data characteristics cannot meet the expanding
interpretation requirements. At the same time, deep learning technology has continued to
evolve, demonstrating powerful capabilities for processing data and extracting features.
As a result, more and more researchers are applying it to PolSAR image classification
research [14]. Compared to traditional methods, deep learning methods use labeled data
to train neural networks to obtain features, establish relationships between data feature
information and categories, and predict the category of unknown pixels. Such data-driven
feature extraction frameworks are also known as representation learning [15].

At present, convolutional neural networks (CNNs) [16] are the most widely used
representation learning method in PolSAR image classification tasks. Zhou et al. [17]
first studied the application of deep CNNs in PolSAR image classification and designed
a four-layer CNN customized for PolSAR image classification that automatically learns
different levels of polarized spatial features from data through two cascaded convolutional
layers. By taking the spatial characteristics of PolSAR images into account, it is able to
successfully distinguish between sloping built-up areas with vegetation. These are often
mixed in the polarization feature space. Since then, various CNN variants for PolSAR
image classification have been proposed. For example, Chen et al. [18] attempted to exploit
a limited number of labeled samples to train deep CNNs for PolSAR image classification
and proposed a polarimetric-feature-driven deep CNN classification scheme. Classic roll
invariant polarimetric features and hidden polarimetric features in the rotation domain
were used to support the training of the deep CNN classifier and to enhance the final
classification performance. The model has better performance compared with traditional
CNN. However, the polarization features used for training are derived from field knowl-
edge [19–21], which makes the acquisition of labeled data for the method a time-consuming
and difficult task. Yang et al. [22] pointed out that selecting an appropriate number of
high-quality features obtained by target decomposition of PolSAR images is crucial for
the tasks. Thus, a CNN-based PolSAR image classification feature selection method was
proposed to select feature subsets. The best-performing one is selected as the final result.
Taking the performance of feature combinations into account, the selected subset of features
performs better in both traditional and deep learning classification methods. In order to
improve the performance of CNNs on limited training data, Shang et al. [23] proposed a
new densely connected and depthwise separable convolutional neural network. Depthwise
separable convolution extracts features independently from each channel of the PolSAR
image and dense connection is introduced to directly connect non-adjacent layers. In this
way, it can avoid extracting redundant features, reuse different levels of feature maps from
PolSAR images and reduce the number of training parameters. Nonetheless, as research
on CNN-based PolSAR image classification continues to deepen, the locality caused by
inductive biases has become a bottleneck restricting its performance, making it difficult for
CNN-based PolSAR image classification methods to make further improvements.

The transformer [24] model was originally proposed in the field of natural language
processing (NLP), mainly by pre-training on a large text corpus, followed by fine-tuning
on a smaller specific task dataset. Inspired by the success of the transformer in NLP,
Dosovitskiy et al. [25] proposed a vision transformer model that can be easily applied to
the image domain with minimal modifications to the standard transformer model. ViT
utilizes a self-attention mechanism (SA) [24] to replace tokens (words) in languages with
image patches, which can achieve remote interaction between pixels and capture global
correlations in the image domain [26]. Dong et al. [27] explored the ViT model for PolSAR
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image classification in detail and proposed a representation learning framework based
on ViT, which included both supervised and unsupervised learning. In the supervised
learning framework, image patches are used as input, and SA is utilized to extract global
features. In addition, an improved contrastive-based strategy is introduced to achieve
simple unsupervised representation learning. Compared to CNNs and their variants, ViT
improves classification performance by building more global representations, while also
demonstrating robustness to the initial input form. These studies may prompt people to
rethink the dominant position of CNNs in PolSAR image classification. As research on
ViT in PolSAR image classification continues to deepen, many ViT-based classification
methods have emerged. For example, Wang et al. [28] pointed out that the scarcity of
PolSAR-labeled samples and the small receptive field of models limit the performance of
deep learning methods for PolSAR image classification and then proposed a ViT-based
classification method. It can receive PolSAR images of different resolutions and is pre-
trained with masked autoencoders with unlabeled data to address the problem of scarce
labeled data. Correspondingly, Jamali et al. [29] demonstrated that the main problem with
applying ViT to PolSAR image classification is the scarcity of labeled data and proposed
a ViT-based framework. Both 3-D and 2-D CNNs are adopted as feature extractors and a
local window attention is implemented to enhance local feature representation power for
effective classification of PolSAR data. Therefore, it can greatly reduce annotation costs and
hardware requirements.

As can be seen from the existing work, most of the ViT-based classification methods
proposed so far are basic applications of ViT to PolSAR image classification tasks. There
is a lack of deeper integration and exploration between ViT and PolSAR image classifica-
tion. However, convolutional structures still dominate in PolSAR image representation
learning and classification. The local nature of convolution is not always advantageous
as it extracts local neighborhood features and does not take the global information into
account. Consequently, when extracting features from PolSAR patches centered around
the input pixels, there is a large amount of local information in the extracted features that
leads to low efficiency or accuracy. Although the application of ViT partially addresses
these issues, research on ViT in PolSAR image classification is still limited and not deep
enough. In addition, the pre-training of ViT requires sufficient labeled data but annotating
every pixel in a PolSAR dataset is time-consuming and costly. Based on the above analysis
and inspired by previous works, a mixed convolutional parallel transformer model is
proposed for PolSAR image classification. It improves the original ViT model with better
targeting for PolSAR image classification. Furthermore, the model achieves higher training
and prediction speed while maintaining high accuracy with fewer parameters and lower
computational cost. There are three main improvements to the proposed model:

(1) Mixed depthwise convolution tokenization. A mixed depthwise convolution (Mix-
Conv) is introduced in the data pre-processing part of the model for the tokenization of
the input data, which replaces the linear projection used in the original ViT. MixConv
naturally mixes multiple kernel sizes in a single convolution and can extract feature
maps with different receptive fields at the same time. This tokenization process makes
the proposed method more flexible than the original ViT. It is no longer limited by the
input resolution, which must be strictly divisible by a pre-defined patch size. It also
facilitates the removal of position embedding and enriches training data information.
Additionally, the class and position embeddings in ViT are removed, further reducing
the number of parameters and computation cost.

(2) Parallel encoder. The idea of parallel structure is introduced to implement an parallel
encoder. It can still have a relatively low depth when superimposed with multiple
encoders during training, thus achieving a lower latency and making it easier to
optimize. Consequently, the speed of training and prediction is accelerated and good
training results can be achieved even on less powerful personal platforms.

(3) Global average pooling. The global average pooling (GAP) method is used as a
substitute for class embedding. A GAP layer is added after the encoder and the
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average of all the pixels in the feature maps of each channel is taken to give an output.
This operation is simple and effective, does not increase additional parameters, and
avoids over-fitting. It summarizes spatial information and is more stable to spatial
transformations of the input.

The remaining sections of this article are organized as follows. Section 2 provides a
brief introduction to the relevant technical background and describes in detail the specific
improvements proposed by our method. In Section 3, the experimental results are presented
and analyzed comprehensively. Finally, Section 4 concludes the study and offers prospects
for future works.

2. The Proposed Method

As input data for the method proposed in this paper, the initial form of the PolSAR data
is a 9-D real vector [30]: [T11, T22, T33, Re[T12], Im[T12], Re[T13], Im[T13], Re[T23], Im[T23]],
where Re[•] and Im[•] denote real and imaginary parts, respectively. Its rows represent
the feature dimensions, while columns indicate the total number of pixels in the image.
The overall structure of the proposed method is illustrated in Figure 1. First of all, we
extract pixel-centric neighborhoods of the PolSAR data as image patches of the same size,
which serve as the initial input to the model. These image patches are then transformed into
1-D token vectors through mixed depthwise convolution tokenization, without additional
class and position embeddings. Moreover, a multi-layer parallel encoder with two branches
extracts global information from the input data and obtains the importance weights of each
token vector relative to others. Finally, a global average pooling layer is applied to output
the features of each class. After incorporating a softmax classifier, pixels can be classified
into specific categories and the final output results are obtained. These improvements are
described in more detail below.

MHSA-1

……

Initial form MCPT Backbone Classifier Head
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Figure 1. The scheme of the proposed PolSAR image classification method.

2.1. Mixed Depthwise Convolution Tokenization

CNNs have been widely used in image classification [31–33], segmentation [34–36],
detection [37–40] and many other applications [41–44]. The latest design trend is to improve
accuracy or efficiency. Following this trend, depthwise convolutions have become more
prevalent in CNNs, such as MobileNet [45], ShuffleNet [46], NASNet [47], etc. Different
from conventional convolutions, depthwise convolutions apply the kernel separately to
each channel, thereby reducing the computational cost by a factor of c, where c is the number
of channels. When designing convolutional networks with depthwise convolutional kernels,
the kernel size is an important factor but is often overlooked. Traditionally, a simple
3× 3 kernel is used, but recent research indicates that larger kernel sizes such as 5× 5 and
7× 7 kernels can probably improve the accuracy and efficiency of the model. Tan et al. [48]
systematically studied the impact of kernel size and found that a single kernel size is
limited. On this basis, the MixConv was proposed, which mixes different kernel sizes in
a single convolutional operation, making it easy to capture different patterns at different
resolutions. Figure 2 shows the structure of MixConv. It divides the channels into several
groups and applies different kernel sizes to each group of channels.
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Figure 2. Mixed depthwise convolution (MixConv).

ViT splits the original image into equally sized patches and treats them as words in the
text. Since the standard transformer receives token embeddings of 1-D sequences as input,
a learnable linear projection is utilized to flatten the patches and map to D dimensions.
The processed patches are referred to as patch embeddings, where D is a constant latent
vector size that is used throughout all of the ViT layers. To simplify the image represen-
tation output by the encoder, ViT introduces a class token by adding a learnable class
embedding to the previous patch embeddings. In addition, ViT adds a trainable 1-D posi-
tion embedding to the patch embeddings to preserve position information. The resulting
sequence of patch embedding vectors containing both class and position embeddings is
applied as the input to the encoder. During training, the class embedding interacts with
each patch embedding to obtain the image representation and serves as the output of the
encoder. A classification head is then connected to obtain the final output categories of
the model. However, the additional class embedding increases both computational and
parameter requirements, while the position embedding fixes the sequence length and con-
strains the feature information to a immovable scale. To address these issues, we implement
tokenization with a modified MixConv. During tokenization, the receptive field of the
model is effectively expanded to capture data information at different levels by employing
convolution kernels of various sizes. Moreover, tokenization serves as a feature extraction
process, where the resulting multi-scale feature maps produced by different receptive
fields are presented as input to the encoder. Such tokenization enriches the training data
and allows the input resolution to no longer be strictly limited by the preset patch size.
Furthermore, the convolution blocks can also be stacked and further down-sampled, even
facilitating the removal of position embedding in the model [49]. The implementation
details are described below.

As shown in Figure 3, PolSAR patches of size m×m× 9 are first extracted around
the center pixels, and these patches are then used as the input data for processing. Since
ViT only accepts a sequence of token embeddings, tokenization is essential to transform
the 3-D image patches and map them to 2-D patch embeddings. Firstly, the input image
patches are grouped according to the number of output channels, with an average division
method selected such that d channels are equally divided into 3 groups, denoted as G1,
G2, and G3, respectively, where G1 + G2 + G3 = d and d refers to the dimension of the 2-D
patch embeddings. For each group, convolution operations are performed with kernels of
sizes [3× 3, 5× 5, 7× 7] and a stride of 3, producing feature maps of the shape

(m
3 , m

3 , d
)
.

After passing through a max-pooling layer with a size of 3× 3 and stride of 1, the original
PolSAR patch is split into N2 feature patches of shape

(m
N , m

N , 9
)
. Eventually, each feature

patch is flattened along the spatial dimension to form (m
N ·

m
N · 9) -D vectors. These vectors

are stacked to reconstruct the input from Rm×m×9 to RN2×( m
N ·

m
N ·9), which completes the

tokenization process. These vectors are called patch embeddings and serve as input to
the subsequent parallel encoder. Unlike the mainstream ViT model [26], class embedding
and position embedding are not employed in this work. The class embedding can be
replaced by a GAP operation. Furthermore, the classification task does not focus on the
location information in the image and there is no strict positional relationship between the
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pixels in the input PolSAR image patches [50]. Therefore, these two learnable parameters
are removed.

m×m×9

MixConv
Stride = 3

G 1
Kernel 

Size
3×3

G 2

G 3

Kernel 
Size
5×5

Kernel 
Size
7×7

MaxPooling
Stride = 1

Kernel 
Size
3×3

Channels

1

4

7

2

5

8

3

6

9

1

2

9

…
…

Input Reshape

PolSAR Image Patch Feature Map Patches
Patch Embeddings

Figure 3. Mixed depthwise convolution tokenization.

2.2. Parallel Encoder

In ViT, the encoder architecture follows the standard transformer structure, consisting
of multi-head self-attention (MHSA) and multi-layer perceptron (MLP) layers [25]. Layer
normalization (LN) is applied before each layer and residual connection is applied after
each layer. The MLP layer contains two layers with Gaussian error linear unit (GELU) [51]
activation functions. Compared with CNNs, ViT has fewer image-specific biases as only
the MLP layers are local and translation-invariant. Whereas, the MHSA operates globally
and utilizes 2-D neighborhoods rarely. In addition, the position embedding is initialized
without 2-D position information about the image patches, which requires the model to
learn the spatial relationships for all of the image patches from scratch. ViT treats the image
as a sequence of image patches and processes them with the transformer architecture that
is used in NLP. The strategy is simple and scalable and has shown significant performance
gains when combined with pre-training on large data sets. Consequently, ViT achieves
state-of-the-art results on many image classification datasets [25]. The overall structure of
the ViT model is shown in Figure 4 below.
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Figure 4. Vision Transformer model overview.

In recent years, transformer architecture has made a significant impact on the design of
the computer vision field. Many architectures [52–56] have directly inherited some designs
from transformers or have been inspired by their latest discoveries. Despite the significant
progress made by transformers, there is still considerable work to be done in optimizing
how they design and train. In neural network architecture design, there is often a debate
about how to balance width and depth. Since the introduction of residual networks [57],
the obstacles of optimization for deep networks have been significantly reduced. As a
result, neural networks have evolved in a deeper direction. However, some studies have
shown that shallower networks have lower latency and are easier to optimize [58,59].
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The original ViT encoder consists of a series of layers, including normalization layers,
multi-head self-attention layers, feed-forward network (FFN) layers, residual structures,
etc. All of these layers connected in a fixed order, which results in an ever-growing network
depth as the number of encoders continues to increase. Such a design makes the model more
powerful but also increases the computational load. Therefore, Touvron et al. [60] proposed
a parallel ViT approach by duplicating matching blocks to parallelize the architecture,
which can be achieved for any number of parallel blocks. Then, a wider and shallower
architecture was created with the same number of parameters and calculations. Depending
on the implementation, the design allows for more parallel processing, simplifies the
optimization process, and can reduce latency. The idea of shallow networks is adopted by
designing the encoder with a parallelized structure, which maintains a relatively low depth
even when multiple encoders are stacked for training. Therefore, the proposed method
can achieve lower latency and better optimization effects. When trained on platforms
with lower computational power, the model produces a good result which demonstrates
its applicability.

To capture the long-range interactions between pixels in PolSAR image patches, it
is necessary to obtain importance weights for each pixel relative to other pixels. The self-
attention mechanism is the main way to accomplish that goal. For each element in the input
sequence X ∈ RN×D, it is mapped into three variables with the specific dimensions query
q, key k, and value v by a learnable linear projection matrix Wqkv. The importance weight
of this element relative to other elements is obtained by calculating the weighted sum of
all values v in the sequence. The attention weights matrix Aij is based on the pairwise
similarity between two elements in the sequence and their respective representations of
query qi and key kj.

[q, k, v] = XWqkv Wqkv ∈ RD×3Dh , (1)

A = softmax
(

qkT
√

Dh

)
A ∈ RN×N , (2)

SA(X) = Av. (3)

MHSA is an extension of SA. When the input patches are embedded, they are linearly
projected into queries and keys of dimensions dk, and values of dimensions dv. These
queries, keys, and values are then transformed by h groups of different learnable linear
projections. Next, these h sets of transformed queries, keys, and values are processed
in parallel through attention pooling. Finally, the outputs of these h attention pooling
operations are concatenated together and transformed by another learnable linear projection
to produce the final output. This design is referred to as multi-head self-attention, where
each of the h outputs of the attention pooling is referred to as a head. If these queries, keys,
and values are packed into matrices Q, K, and V, respectively, the output matrix can be
represented as:

MHSA(Q, K, V) = Concat(h1, . . . , hh)WO (4)

hi = SAi(QWQ
i , KWK

i , VWV
i ) (5)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel are

parameter matrices for the linear projections. The FFN consists of two fully connected
layers (FC) and a GELU activation function, which can be represented as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (6)

Therefore, the original ViT encoder can be represented as follows:

x′l+1 = xl + MHSAl(xl), xl+1 = x′l+1 + FFNl(x′l+1), (7)

x′l+2 = xl+1 + MHSAl+1(xl+1), xl+2 = x′l+2 + FFNl+1(x′l+2), (8)
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where MHSAl(•) and MHSAl+1(•) represent MHSA residual blocks, and FFNl(•) and
FFNl+1(•) represent FFN residual blocks. This series of operations can be replaced by a set
of parallel structures:

xl+1 = xl + MHSAl,1(xl) + MHSAl,2(xl) (9)

xl+2 = xl+1 + FFNl,1(xl+1) + FFNl,2(xl+1) (10)

For a given number of MHSA and FFN blocks, this will reduce the number of layers
by two. As shown in Figure 5, the architecture can be parallelized by pairing identical
blocks to achieve any number of parallel blocks. The tokenized patch embeddings are fed
into the encoder via three parallel paths to extract global features, which are processed by a
number of parallel blocks to obtain the final feature maps.

MHSA-1

MHSA-2

FFN-1

FFN-2

+ +

+ +MHSA-1 FFN-1 + +MHSA-2 FFN-2

(a)

(b)

Figure 5. The structure of different encoders. (a) Original serial structure encoder block. (b) Proposed
parallel structure encoder block.

2.3. Global Average Pooling

When a convolutional neural network is applied to a classification task, the feature
map of the last convolutional layer in the network is usually vectorized and mapped to
the sample label space by a fully connected (FC) layer, and finally, the final output class is
obtained by a softmax classifier [61,62]. Such a structure treats the convolutional layers as
feature extractors that can be flexibly applied to different tasks. However, the FC layer has
a large number of parameters, which leads to a significant increase in the computational
power of the network. It also tends to cause overfitting and affects the generalization
ability of the network. Therefore, global average pooling [63] is proposed to replace the
FC layer to solve the above problem. As shown in Figure 6, unlike traditional CNNs
that add FC layers at the end of the network, GAP takes the average of each feature map
and feeds the resulting vector directly into the softmax classifier to obtain the category
output. By emphasizing the correspondence between feature maps and categories, GAP is
more suitable for convolutional structures and easily interprets feature maps as category
confidence maps. In addition, GAP is simple and effective. It does not add any additional
parameters, which can prevent overfitting. Furthermore, the spatial information is summed
to improve the stability of the model to the input spatial transformation.

(a) (b)

Feature maps

Fully Connected Layers

concatenation

Output nodes

Feature maps

Output nodes

averaging

Global Average Pooling

Figure 6. Comparison diagram using the fully connected layer and the global average pooling layer.
(a) Obtain output using fully connected layers. (b) Obtain output using global average pooling layer.
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In the original ViT model, the class embedding was trained together with other fea-
tures as part of the global interaction characteristics of ViT. As a result, the trained class
embedding can be used as the final output of the model. As the learnable class and posi-
tional embeddings are removed in the tokenization process, it is impossible to obtain feature
representations of the original data through class embedding. Therefore, a GAP layer is
added after the parallel encoder to replace the class embedding. By adding a GAP layer
after the parallel encoder, the mean value of all pixels in each channel of the feature map is
calculated to obtain one output per feature map. A softmax classification head is connected
at the end of the model, which consists of an MLP layer, and the final classification task is
achieved by using this classification head to obtain the corresponding category.

3. Experimental Analysis and Results
3.1. Datasets Description

(1) AIRSAR Flevoland: The Flevoland image is a 750 × 1024 subimage of the L-band
multi-view PolSAR dataset acquired by the AIRSAR platform on 16 August 1989.
The ground resolution of the image is 6.6 m × 12.1 m, and it includes 15 kinds of
ground objects, each represented by a unique color. Figure 7a illustrates the Pauli
map and Figure 7b shows the ground truth map of the dataset. Figure 7c shows
the corresponding ground truth map and legend of the dataset, which consists of
167,712 labeled pixels [64].

Peas
Stembeans
Beet

Forest
Bare soil
Rapeseed

Grasses
Lucerne
Potatoes

Wheat
Wheat 2
Wheat 3

Barley
Water
Buildings

(a) (b)

(c)

Figure 7. AIRSAR Flevoland dataset and its color code. (a) Pauli RGB map. (b) Ground truth map.
(c) Legend of the dataset.

(2) RADARSAT-2 San Francisco: The second dataset is a San Francisco Bay Area image
with C-band acquired by the RADARSAT-2 satellite. Figure 8a displays the PauliRGB
image of the selected scene with a size of 1380 × 1800, which primarily contains
five land cover types: high-density urban areas, water, vegetation, developed urban
areas, and low-density urban areas. Figure 8b shows the ground truth map consisting
of 1804087 pixels with known label information. Figure 8c respectively show the
corresponding ground truth map and the legend explaining the land cover types [65].
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(a) (b)
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Figure 8. RADARSAT-2 San Francisco dataset and its color code. (a) Pauli RGB map. (b) Ground
truth map. (c) Legend of the dataset.

3.2. Experimental Setup

The experiments were conducted on a personal laptop computer with the model
Legion Y9000P IAH7H, equipped with an NVIDIA GeForce RTX3060 Laptop GPU with
6 GB of graphics memory. The proposed method was implemented using the PyTorch-GPU
deep learning framework with PyTorch version 1.11.0 and CUDA version 12.0. Specific
details of the experimental setup will be discussed in the following sections.

Since the input for ViT is in image format, a neighborhood with a size of 14× 14 is
extracted centered on pixel. Therefore, the value of the input space size m is set to 15.
The MixConv kernel sizes are set to (3, 5, 7), and the number of output channels d is set
to 225. The computation times of the SA, i.e., the number of heads, are set to 4, with the
dimension of each head dh set to 76. The number of parallel branches is set to 2, and the
depth of the parallel encoder, i.e., the number of parallel blocks, is set to 3. The output of
each MHSA and FFN layer in parallel branches is connected to its input through a residual
connection. The hidden node numbers in the FC layer of the FFN are set to 900, and the
residual structure is also used. Layer normalization is applied before each layer of the
parallel encoder to accelerate convergence.

The Flevoland and San Francisco datasets have 167,712 and 1,804,087 labeled data,
respectively. For different dataset experiments, 375 labeled data from each category (3.35%
and 0.1% of the labeled data in the Flevoland and San Francisco datasets, respectively) are
randomly selected for training and validation, while the remaining labeled data are used
for testing. To better measure the model’s performance, 5-fold cross-validation is used for
training. During training, each model in the 5 folds is trained for 150 epochs with a batch
size of 256. The Adam optimizer is used and the initial learning rate is set to 0.001. The
loss function is the original cross-entropy loss function in ViT. Moreover, class balance is
ensured in each subset of data for each fold. By testing on labeled data and selecting the
fold with the highest overall accuracy (OA) among the 5-fold models, the best-performing
fold is chosen as the final training model for subsequent result prediction.

To further demonstrate the effectiveness of the proposed method, several PolSAR
image classification methods based on CNN or ViT are selected and tested in the following
experiments. The CNN-based methods included CV-FCN [66], CV-MLPs [67], and CV-
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3D-CNN [68]. The ViT-based methods included SViT [27], and PolSARFormer [29], for a
total of 5 methods used in the comparative experiments. To ensure the experimental
effectiveness of the comparison methods, each comparison method is set up and trained in
detail according to the parameters specified in its paper.

3.3. Classification Results

The experimental results on the two datasets are shown in Tables 1 and 2 and the
predicted classification results for all data are shown in Figures 9 and 10. The bolded
numbers in both tables indicate the best indicator results in the comparison methods.
The colors in both figures are consistent with the meaning indicated by the legend of the
corresponding dataset. The experimental results demonstrate that the proposed method can
achieve good test accuracy and prediction performance with a relatively small amount of
training data. Furthermore, both the training and prediction time are significantly reduced
compared with other methods. The following is a detailed discussion of the classification
results for each of the datasets, where the training time for the proposed method includes a
5-fold cross-validation training.

Table 1. Objective evaluation indicators of six methods on the AIRSAR Flevoland dataset.

Method CV-FCN CV-MLPs CV-3D-CNN SViT PolSARFormer MCPT

Water 96.49 49.96 99.83 100.00 99.87 99.16
Forest 99.59 60.98 99.87 97.76 96.33 99.05

Lucerne 99.77 73.37 97.90 99.87 81.21 99.92
Grass 99.10 0.00 99.69 98.24 62.75 96.36
Peas 99.79 90.59 99.95 99.36 92.14 99.80

Barley 97.79 0.00 97.03 99.88 97.57 98.55
Bare Soil 99.53 0.00 98.90 99.61 93.80 100.00

Beet 98.80 81.47 98.84 97.74 91.20 98.65
Wheat 2 99.34 56.37 95.54 97.28 69.65 95.95
Wheat 3 99.70 36.66 99.80 99.95 97.88 98.91

Steambeans 95.93 89.70 99.10 99.81 95.98 97.35
Rapeseed 99.86 80.46 98.74 98.88 75.98 92.85

Wheat 99.94 66.19 98.92 95.47 91.28 97.37
Buildings 99.42 0.00 100.00 93.74 83.35 98.23
Potatoes 99.72 87.63 99.99 98.89 89.04 97.47

AA 98.98 51.56 98.94 98.49 87.87 97.97
Kappa 99.33 51.67 98.92 98.43 88.22 97.71

OA 99.39 56.62 99.01 98.62 89.19 97.90
Training time(s) 9034.43 65.79 2180.03 4294.07 93,703.70 482.52

Predicting time(s) 15.85 38.46 1856.65 85.97 1697.50 21.93

Table 2. Objective evaluation indicators of six methods on the RADARSAT-2 San Francisco dataset.

Method CV-FCN CV-MLPs CV-3D-CNN SViT PolSARFormer MCPT

Water 99.86 99.60 99.90 99.97 98.12 99.99
Vagetation 97.48 87.89 95.42 94.79 77.31 91.00

High-Density Urban 99.70 88.97 95.14 95.57 87.24 96.17
Developed 97.49 93.39 93.94 95.68 84.72 92.79

Low-Density Urban 99.49 84.82 92.57 97.83 83.14 94.29

AA 98.80 90.93 95.39 96.76 86.11 94.84
Kappa 99.02 90.16 95.47 97.10 85.83 95.35

OA 99.28 93.17 96.85 97.98 90.16 96.77
Training time(s) 8227.01 153.35 4865.09 1506.58 77,593.12 160.33

Predicting time(s) 103.31 114.66 12,210.48 338.28 6038.70 85.79
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(a) (b) (c)

(d) (e) (f)

Figure 9. Prediction results of the whole map on AIRSAR Flevoland dataset. (a) Result of CV-FCN.
(b) Result of CV-MLPs. (c) Result of CV-3D-CNN. (d) Result of SViT. (e) Result of PolSARFormer.
(f) Result of MCPT.

(a) (b) (c)

(d) (e) (f)

Figure 10. Prediction results of the whole map on RADARSAT-2 San Francisco dataset. (a) Result
of CV-FCN. (b) Result of CV-MLPs. (c) Result of CV-3D-CNN. (d) Result of SViT. (e) Result of
PolSARFormer. (f) Result of MCPT.
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3.3.1. Experimental Results on The AIRSAR Flevoland Dataset

It can be observed from Table 1 that among the CNN-based methods, the CV-FCN
method has the highest OA (99.39%), AA (98.98%) and Kappa (99.33%). However, its
training time is excessively long at 9034.43 s. The experimental results of the CV-MLPs
method are not acceptable compared with other methods. Among the 15 land types,
the testing accuracy of four classes, grass, barley, bare doil, and buildings is 0. This
indicates that the representation learning ability of this method on the AIRSAR Flevoland
dataset is poor and it is not competitive. The CV-3D-CNN method has shown good
performance with an OA of 99.01%, AA of 98.94% and Kappa of 98.92%. However, its
prediction time (1856.65 s) is the longest of all methods. Among the ViT-based methods,
the SViT method also achieves good performance with an OA of 98.62%, AA of 98.49% and
Kappa of 98.43%. However, its training time (4294.07 s) and prediction time (85.97 s) are
not advantageous. The PolSARFormer method does not have significant advantages in
terms of accuracy, and its training and prediction times are too long compared with other
methods. The proposed method demonstrates high-level performance in OA (97.90%),
AA (97.97%), and Kappa (97.71%). Moreover, it shows strong advantages in terms of both
training and prediction time. The training time is only 482.52 s and the prediction time is
only 21.93 s.

Figure 9 displays the predicted results of different classification methods on the
Flevoland image. It can be seen from Figure 9a that the CV-FCN method can make good
predictions on the labeled data but there are irregular and noisy results on the unlabeled
part. It has significant overfitting and does not achieve the desired effect. In Figure 9b, it
can be observed that the classes of grass, barley, bare soil, and buildings cannot be clearly
perceived in the prediction map, while water and wheat 3 occupy most of the image space.
It indicates that the CV-MLPs method performs poorly on this dataset, with most regions
showing prediction errors. The results of each class in Figure 9d are relatively pure with
fewer instances of other categories. However, its classification boundaries are irregular with
obvious stickiness. Figure 9e shows slightly worse results. The classification boundaries
are unclear and many cases of marginal parts are predicted to be other categories. The pre-
diction results in Figure 9c,f are relatively good and can also provide positive category
judgments for the unlabeled part. From some details, it can be seen that the proposed
method performs marginally worse than the CV-3D-CNN method in some local classifica-
tions. However, the proposed method achieves 100% accuracy in the classification of the
bare soil class. Meanwhile, it has an advantage in the prediction results of the building class
compared with all other comparison methods. In conclusion, the subjective evaluation of
the predicted images based on the corresponding image ground truth and the PauliRGB
image leads to the same conclusion as the objective evaluation.

3.3.2. Experiment Results on The RADARSAT-2 San Francisco Dataset

The experiment results in the Table 2 show that the CV-FCN method still achieves the
highest OA (99.28%), AA (98.80%), and Kappa (99.02%) among the CNN-based methods.
However, it requires a training time of up to 8227.01 s. The CV-MLPs method exhibits a
good performance on this dataset. However, its accuracy is low for the vegetation, high-
density urban, and low-density urban classes, resulting in a relatively low overall accuracy.
The performance of the CV-3D-CNN method on this dataset is worse than on the AIRSAR
Flevoland dataset. Not only all three indicators OA (96.85%), AA (95.39%), and Kappa
(95.47%) decrease, but also both training time (4865.09 s) and predicting time (12,210.48 s )
increase dramatically. This indicates that the CV-3D-CNN method performs less favorably
when dealing with large amounts of data. Among the ViT-based methods, the SViT
method achieves high accuracy and has advantages in terms of training time (1506.58 s)
and prediction time (338.28 s) compared with CNN-based methods. The PolSARFormer
method has the lowest accuracy of all the methods used in the experiment. It is not
competitive compared with other methods with a training time of 77593.12 s and prediction
time of 6038.70 s. The proposed method achieves impressive results in terms of OA (96.77%),
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AA(94.84%), and Kappa (95.35%). Furthermore, both the training and prediction time are
significantly reduced.

Figure 10 illustrates the prediction results of different classification methods on the San
Francisco image. According to the predicted image in Figure 10a, the CV-FCN method is
the only one with prediction errors at the outer boundary. It is difficult to clearly distinguish
the specific shape of the boundary between water and land. In addition, its prediction of
the developed urban category is too aggressive, resulting in a wider distribution of this
category. The prediction results in Figure 10b are not pure for each category. Figure 10e has
relatively poor prediction results. It has more prediction errors at the boundary of water
and land, where vegetation at the edge is misclassified as water or the opposite. There
is too much of the phenomenon of being predicted as another category in each category
area. The predicted results in Figure 10c,d,f are relatively good. Among them, the image
in Figure 10d is purer with fewer classification errors in each category. Figure 10c,f are
slightly inferior to Figure 10d. However, the difference is not significant. In summary,
subjective visual evaluation of the predicted image leads to the same conclusion as the
objective evaluation, which again confirms the feasibility of the proposed method.

On the AIRSAR Flevoland dataset, CV-3D-CNN outperforms other comparative meth-
ods when all factors are considered. The proposed method achieves a remarkable increase
of approximately 5 times in training speed and 85 times in prediction speed compared with
the CV-3D-CNN. Meanwhile, it exhibits some minor decrease of 1.11%, 0.97%, and 1.21%
in terms of OA, AA, and Kappa, respectively. Similarly, on the RADARSAT-2 San Francisco
dataset, the SViT performs best among other comparative methods. The proposed method
shows a respective decrease of 1.21%, 1.92%, and 1.75% in OA, AA, and Kappa compared
to the SViT. However, there is an acceleration of about 9 times in training speed and 4 times
in prediction speed.

The experimental results on both datasets demonstrate that the proposed method
achieves good test accuracy and prediction performance with relatively small amounts of
training data. There is a significant reduction in training and prediction time in comparison
to other methods. Sacrificing a slightly lower accuracy for considerably improved training
and prediction speed leads to excellent time efficiency in practical applications. However,
when other methods use the same amount of data as the proposed methods, some methods
cannot be trained well and fail to learn useful features that cause a decrease in classification
accuracy. Some other methods are slower and have longer training time and prediction time.

4. Discussion
4.1. Ablation Experiments

To verify the effectiveness of each mechanism introduced in the proposed method,
ablation experiments are performed on the AIRSAR Flevoland dataset. Experimenting
with the three mechanisms will generate many control experiments. Due to time and space
constraints, only two mechanisms, mixed depthwise convolution tokenization and parallel
encoder, will be discussed here. In the ablation experiments, five metrics are chosen as the
judging standard, namely, overall accuracy (OA), training time, prediction time, number of
Floating Point Operations (FLOPs), and number of parameters (Params). The first three
of the metrics are the same as used in the above comparison experiments to visualize the
actual effect of each control group in the ablation experiments. FLOPs is used to measure
the model computational complexity and can indirectly measure the model speed. Params
is the total number of parameters to be trained in the network model, which is used to
measure the size of the model. Table 3 shows the results of the ablation experiments.

To facilitate the description of the experimental results, each experiment is numbered
in the table. Experiment (1) is first performed on the original ViT, and the results of this ex-
periment are used as the baseline for the overall ablation experiments. As can be seen from
Table 3, the original ViT can achieve a high level of OA on the PolSAR image classification.
However, its training time and prediction time are longer, which can also be seen from its
FLOPs and Params corresponding to the correlation. The FLOPs of the original ViT is as



Remote Sens. 2023, 15, 2936 15 of 21

high as 1703.363 M and the Params also reaches 85.241 M, indicating that its computational
and parametric quantities are large. Thus, its direct application to PolSAR image classifi-
cation has problems such as model complexity and parameter redundancy. Experiment
(2) shows a slight decrease in OA after replacing the ViT tokenization process with the
mixed depthwise convolution tokenization mechanism introduced in this paper. However,
the training time and prediction time are dramatically reduced, and the number of computa-
tions and parameters are significantly reduced. The results of this experiment demonstrate
the effectiveness of the mixed depthwise convolution tokenization mechanism, which is
consistent with the theory described in the previous section. Experiment (3) changes the
encoder to the parallel encoder used in the proposed method on the basis of ViT. From the
experimental results, it can be seen that adding only the parallel encoder has a large impact
on the OA of the model, reducing the accuracy by 2.51%. It is due to the fact that the width
network shows a weaker learning ability at a shallower network level compared to the
depth network. However, as the number of network levels increases, the width network
will have the same model performance as the depth network, and it is easier to optimize
than the depth network. The addition of parallel encoder is also able to significantly reduce
the training time and prediction time, and the reduction is slightly larger compared to
experiment (2). Moreover, the number of computations and parameters are significantly
reduced. Experiment (3) shows that the introduction of parallel encoder can effectively
reduce the training time and prediction time, as well as the computational and parametric
quantities, in accordance with the above theory. Experiment (4) introduces both mixed
depthwise convolution tokenization and parallel encoder mechanisms. From the results, it
can be seen that the accuracy has improved compared to experiment (3) where only parallel
encoder is introduced, and basically reaches the same level as ViT. The training time and
prediction time are between experiment (2) and experiment (3), and the computation and
the number of parameters are the same as those in experiment (2), which are in accordance
with the theoretical requirements. For experiment (5), i.e., the test results of the proposed
method MCPT are basically the same as experiment (4) with slight optimization. It shows
that the overall impact of GAP on the proposed method is smaller than the other two
mechanisms. Therefore, it is not discussed in detail here.

Table 3. Results of the proposed method for ablation experiments on AIRSAR Flevoland dataset.

Method OA Training Time (s) Prediction Time (s) FLOPs (M) Params (M)

(1) ViT 97.96 4615.73 284.09 1703.363 85.241
(2) ViT + Mixed Depthwise Convolution
Tokenization 97.48 465.93 24.42 74.919 4.103

(3) ViT + Parallel Encoder 95.45 436.99 22.08 74.014 4.118
(4) ViT + Mixed Depthwise Convolution
Tokenization + Parallel Encoder 97.84 458.14 23.24 74.919 4.103

(5) MCPT 97.82 457.53 23.09 74.919 4.103

In conclusion, the results of the ablation experiments demonstrate the effectiveness
of the three mechanisms introduced in this paper. It is further verified that the proposed
method is able to maintain a high level of accuracy while significantly improving the
training speed and prediction speed, reducing the model complexity, and enabling ViT to
be better applied to PolSAR image classification tasks.

4.2. Impact of Training Data Amount

In deep learning methods, the size of the training data plays an important role in
the final effect of the model. Figure 11a shows the amount of training data used by all
comparison methods and the proposed method, where the numbers represent the weight
of the amount of training data used by the different methods on the two datasets relative to
all labeled data. As can be seen from Figure 11a, the training data used by the comparison
methods are more than those of the proposed method. Among them, the CV-FCN method



Remote Sens. 2023, 15, 2936 16 of 21

even uses 80% of the labeled data for training, which enables it to achieve good test results,
but also raises the problem of poor prediction of such unlabeled regions as the ones shown
in Figure 9a.
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Figure 11. Impact of data amount. (a) The amount of training data for the comparison methods.
(b) Overall accuracy of comparison methods on two datasets using the same data amount of the
proposed method. (c) Training and predicting time of comparison methods on AIRSAR Flevoland
dataset using the same data amount of the proposed method. (d) Training and predicting time of
comparison methods on RADARSAT-2 San Francisco dataset using the same data amount as in the
proposed method.

When all comparison methods are trained according to the amount of data used in
this paper, the results are unsatisfactory. Figure 11b–d present the results of different
comparison methods trained on the two datasets according to the amount of data used
in this paper. Where Figure 11b shows the OA of the test on the two datasets. It can be
seen that after reducing the amount of training data, the OA of the comparison methods
for testing on both datasets is lower than that of the proposed method. The results show
that the reduction in the amount of training data affects the accuracy performance of
the comparison methods. Meanwhile, it is demonstrated that the proposed method can
achieve a high level of accuracy performance when using a small amount of training data.
Figure 11c,d shows the training time and prediction time performance on the AIRSAR
Flevoland and RADARSAT-2 San Francisco datasets, respectively. From the two figures,
it is observed that the proposed method in this paper still shows a strong advantage in
training time and prediction time when the same amount of data is used.

The impact of the amount of training data on the different methods can be illustrated
in the figures above. Although the degree of impact varies, more or less all bring about
a loss of accuracy. The effectiveness of the proposed method can be verified by the fact
that the proposed method can achieve a high level of overall accuracy with fewer training
data and less training time and prediction time. While using the same amount of training
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data as the proposed method, the results of the comparison methods all become worse to
different degrees, which further verifies the effectiveness of the proposed method.

4.3. About PolSAR Image Classification Metrics

The commonly used evaluation metrics in PolSAR image classification are overall
accuracy (OA), average accuracy per class (AA), and kappa coefficient (Kappa). OA
indicates the ratio of the number of correctly classified samples to the number of all
samples, and it is used to evaluate the overall performance of the model. AA represents the
ratio between the number of correct predictions in each category and the overall number in
each category, and ultimately then averages the accuracy of each category for measuring the
performance of the model on a given land cover type. The Kappa coefficient is a measure
of classification accuracy for consistency testing and is calculated based on the confusion
matrix. Its value usually ranges from 0 to 1. Larger values indicate higher consistency and
better model classification performance. OA, AA, and Kappa are calculated as follows,
respectively:

OA =
TP + TN

TP + FN + FP + TN
(11)

AA =
∑ Recalli

Ni
(12)

Recall =
TP

TP + FN
(13)

Kappa =
po − pe

1− pe
(14)

where TP denotes true positive, FN denotes false negative, FP denotes false positive,
and TN denotes true negative; i denotes the category and Ni denotes the number of
categories; Recall denotes the recall rate, i.e., the ratio of the number of correctly classified
positive samples to the number of positive samples; po denotes the overall classification
accuracy, a1, a2, . . . , ac denotes the number of true samples per class, b1, b2, . . . , bc denotes
the number of predicted samples per class, and n denotes the total number of samples, then
pe can be expressed as:

pe =
a1 × b1 + a2 × b2 + · · ·+ ac × bc

n2 (15)

From the above three metrics, it can be seen that AA contains the meaning represented
by recall, and recall is mostly used for binary classification. However, this paper mainly
focuses on multi-classification tasks, so recall is not a good measure of the effect of the model
used in this paper. As for Kappa, it is calculated from the confusion matrix and its result
already contains the information about the confusion matrix. Therefore, the performance
of the PolSAR image classification effect can be basically evaluated completely using these
three metrics.

5. Conclusions

By investigating the limitations of CNN application on PolSAR image classification
and exploring in depth the different implementations of ViT for the tasks, this paper
proposes an MCPT model based on ViT for PolSAR image classification. The proposed
model employs a mixed depthwise convolution for tokenization and parallel encoders to
learn representations of PolSAR images. In addition, the class enbedding is replaced by a
GAP operation and the position embedding is removed. All of these improvements reduce
the need for extensive training data and computational complexity. Moreover, the model
significantly enhances training and prediction speed while maintaining a high level of
accuracy. The experimental results on both datasets demonstrate that the proposed method
achieves good test accuracy and prediction performance with relatively small amounts of
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training data. This results in sacrificing a slightly lower accuracy for considerably improved
training and prediction speed. Future research will focus on proposing a more reasonable
ViT-based classification method that improves classification accuracy while maintaining
the existing training and prediction speed. In addition, it is also a good research direction
to better combine CNN with ViT to extract both local and global features in PolSAR images.
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Abbreviations
The following abbreviations are used in this manuscript:

ViT Vision transformer
MCPT Mixed convolutional parallel transformer
SAR Synthetic aperture radar
PolSAR Polarimetric synthetic aperture image
CNN Convolutional neural network
NLP Natural language processing
SA Self-attention
MixConv Mixed depthwise convolution
GAP Global average pooling
MHSA Multi-head self-attention
MLP Multi-layer perceptron
LN Layer normalization
GELU Gaussian error linear unit
FFN Feed-forward network
FC Fully connected
OA Overall accuracy
AA Average accuracy

References
1. Chan, Y.K.; Koo, V.C. An introduction to synthetic aperture radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [CrossRef]
2. Bamler, R. Principles of Synthetic Aperture Radar. Surv. Geophys. 2000, 21, 147–157. [CrossRef]
3. Pasmurov, A.; Zinoviev, J. Radar Imaging Application. In Radar Imaging and Holography; IET Digital Library: London, UK, 2005;

pp. 191–230. [CrossRef]
4. Ulander, L.; Barmettler, A.; Flood, B.; Frölind, P.O.; Gustavsson, A.; Jonsson, T.; Meier, E.; Rasmusson, J.; Stenström, G. Signal-to-

Clutter Ratio Enhancement in Bistatic Very High Frequency (VHF)-Band SAR Images of Truck Vehicles in Forested and Urban
Terrain. IET Radar Sonar Navig. 2010, 4, 438. [CrossRef]

5. Zhang, X.; Jiao, L.; Liu, F.; Bo, L.; Gong, M. Spectral Clustering Ensemble Applied to SAR Image Segmentation. IEEE Trans.
Geosci. Remote Sens. 2008, 46, 2126–2136. [CrossRef]

https://airsar.jpl.nasa.gov/
https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
http://doi.org/10.2528/PIERB07110101
http://dx.doi.org/10.1023/A:1006790026612
http://dx.doi.org/10.1049/PBRA019E_ch9
http://dx.doi.org/10.1049/iet-rsn.2009.0039
http://dx.doi.org/10.1109/TGRS.2008.918647


Remote Sens. 2023, 15, 2936 19 of 21

6. Chai, H.; Yan, C.; Zou, Y.; Chen, Z. Land Cover Classification of Remote Sensing Image of Hubei Province by Using PSP Net.
Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1224–1232. [CrossRef]

7. Zhang, L.; Duan, B.; Zou, B. Research Development on Target Decomposition Method of Polarimetric SAR Image. J. Electron. Inf.
Technol. 2016, 38, 3289–3297. [CrossRef]

8. West, R.D.; Riley, R.M. Polarimetric Interferometric SAR Change Detection Discrimination. IEEE Trans. Geosci. Remote Sens. 2019,
57, 3091–3104. [CrossRef]

9. Holm, W.; Barnes, R. On Radar Polarization Mixed Target State Decomposition Techniques. In Proceedings of the 1988 IEEE
National Radar Conference, Ann Arbor, MI, USA, 20–21 April 1988; pp. 249–254. [CrossRef]

10. Cameron, W.; Leung, L. Feature Motivated Polarization Scattering Matrix Decomposition. In Proceedings of the IEEE International
Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 549–557. [CrossRef]

11. Cloude, S. Target Decomposition Theorems in Radar Scattering. Electron. Lett. 1985, 21, 22–24. .:19850018. [CrossRef]
12. Cloude, S.; Pottier, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci.

Remote Sens. 1997, 35, 68–78. [CrossRef]
13. Krogager, E. New Decomposition of the Radar Target Scattering Matrix. Electron. Lett. 1990, 26, 1525. .:19900979. [CrossRef]
14. Parikh, H.; Patel, S.; Patel, V. Classification of SAR and PolSAR Images Using Deep Learning: A Review. Int. J. Image Data Fusion

2020, 11, 1–32. [CrossRef]
15. Wang, H.; Xu, F.; Jin, Y.Q. A Review of Polsar Image Classification: From Polarimetry to Deep Learning. In Proceedings of the

IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019;
pp. 3189–3192. [CrossRef]

16. Chua, L.; Roska, T. The CNN Paradigm. IEEE Trans. Circuits Syst. I 1993, 40, 147–156. [CrossRef]
17. Zhou, Y.; Wang, H.; Xu, F.; Jin, Y. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE

Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [CrossRef]
18. Chen, S.; Tao, C. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network. IEEE

Geosci. Remote Sens. Lett. 2018, 15, 627–631. [CrossRef]
19. Lee, H.; Kwon, H. Going Deeper With Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017,

26, 4843–4855. [CrossRef] [PubMed]
20. Chen, S.; Li, Y.; Wang, X.; Xiao, S.; Sato, M. Modeling and Interpretation of Scattering Mechanisms in Polarimetric Synthetic

Aperture Radar: Advances and Perspectives. IEEE Signal Process. Mag. 2014, 31, 79–89. [CrossRef]
21. Chen, S.; Wang, X.; Sato, M. Uniform Polarimetric Matrix Rotation Theory and Its Applications. IEEE Trans. Geosci. Remote Sens.

2014, 52, 4756–4770. [CrossRef]
22. Yang, C.; Hou, B.; Ren, B.; Hu, Y.; Jiao, L. CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image

Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8796–8812. [CrossRef]
23. Shang, R.; He, J.; Wang, J.; Xu, K.; Jiao, L.; Stolkin, R. Dense Connection and Depthwise Separable Convolution Based CNN for

Polarimetric SAR Image Classification. Knowl.-Based Syst. 2020, 194, 105542. [CrossRef]
24. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
25. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,

G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the
International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

26. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [CrossRef]

27. Dong, H.; Zhang, L.; Zou, B. Exploring Vision Transformers for Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 1–15. [CrossRef]

28. Wang, H.; Xing, C.; Yin, J.; Yang, J. Land Cover Classification for Polarimetric SAR Images Based on Vision Transformer. Remote
Sens. 2022, 14, 4656. [CrossRef]

29. Jamali, A.; Roy, S.K.; Bhattacharya, A.; Ghamisi, P. Local Window Attention Transformer for Polarimetric SAR Image Classification.
IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

30. Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR
Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [CrossRef]

31. Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical Image Classification with Convolutional Neural Network. In
Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12
December 2014; pp. 844–848. [CrossRef]

32. Qin, J.; Pan, W.; Xiang, X.; Tan, Y.; Hou, G. A Biological Image Classification Method Based on Improved CNN. Ecol. Inform. 2020,
58, 101093. [CrossRef]

33. Sultana, F.; Sufian, A.; Dutta, P. Advancements in Image Classification Using Convolutional Neural Network. In Proceedings of
the 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN),
Kolkata, India, 22–23 November 2018; pp. 122–129. [CrossRef]

34. Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ben Ayed, I. HyperDense-Net: A Hyper-Densely Connected CNN
for Multi-Modal Image Segmentation. IEEE Trans. Med. Imaging 2019, 38, 1116–1126. [CrossRef]

http://dx.doi.org/10.13203/j.whugis20190296
http://dx.doi.org/10.11999/JEIT160992
http://dx.doi.org/10.1109/TGRS.2018.2879787
http://dx.doi.org/10.1109/NRC.1988.10967
http://dx.doi.org/10.1109/RADAR.1990.201088
http://dx.doi.org/10.1049/el:19850018
http://dx.doi.org/10.1109/36.551935
http://dx.doi.org/10.1049/el:19900979
http://dx.doi.org/10.1080/19479832.2019.1655489
http://dx.doi.org/10.1109/IGARSS.2019.8899902
http://dx.doi.org/10.1109/81.222795
http://dx.doi.org/10.1109/LGRS.2016.2618840
http://dx.doi.org/10.1109/LGRS.2018.2799877
http://dx.doi.org/10.1109/TIP.2017.2725580
http://www.ncbi.nlm.nih.gov/pubmed/28708555
http://dx.doi.org/10.1109/MSP.2014.2312099
http://dx.doi.org/10.1109/TGRS.2013.2284359
http://dx.doi.org/10.1109/TGRS.2019.2922978
http://dx.doi.org/10.1016/j.knosys.2020.105542
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/TGRS.2021.3137383
http://dx.doi.org/10.3390/rs14184656
http://dx.doi.org/10.1109/LGRS.2023.3239263
http://dx.doi.org/10.1109/TGRS.2017.2743222
http://dx.doi.org/10.1109/ICARCV.2014.7064414
http://dx.doi.org/10.1016/j.ecoinf.2020.101093
http://dx.doi.org/10.1109/ICRCICN.2018.8718718
http://dx.doi.org/10.1109/TMI.2018.2878669


Remote Sens. 2023, 15, 2936 20 of 21

35. Liu, F.; Lin, G.; Shen, C. CRF Learning with CNN Features for Image Segmentation. Pattern Recognit. 2015, 48, 2983–2992. [CrossRef]
36. Mortazi, A.; Bagci, U. Automatically Designing CNN Architectures for Medical Image Segmentation. In Proceedings of the

Machine Learning in Medical Imaging, Granada, Spain, 16 September 2018; Shi, Y., Suk, H.I., Liu, M., Eds.; Lecture Notes in
Computer Science; Springer: Cham, Switzerland, 2018; pp. 98–106. ._12. [CrossRef]

37. Chandrasegaran, K.; Tran, N.T.; Cheung, N.M. A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images
Detection. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville,
TN, USA, 20–25 June 2021; pp. 7196–7205. [CrossRef]

38. Chattopadhyay, A.; Maitra, M. MRI-based Brain Tumour Image Detection Using CNN Based Deep Learning Method. Neurosci.
Inform. 2022, 2, 100060. [CrossRef]

39. Chauhan, R.; Ghanshala, K.K.; Joshi, R. Convolutional Neural Network (CNN) for Image Detection and Recognition. In
Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 278–282. [CrossRef]

40. Zhou, Z.; Wu, Q.M.J.; Wan, S.; Sun, W.; Sun, X. Integrating SIFT and CNN Feature Matching for Partial-Duplicate Image Detection.
IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 593–604. [CrossRef]

41. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision:
History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [CrossRef]

42. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and Segmentation of Overlapped Fruits Based on Optimized
Mask R-CNN Application in Apple Harvesting Robot. Comput. Electron. Agric. 2020, 172, 105380. [CrossRef]

43. Ravanbakhsh, M.; Nabi, M.; Mousavi, H.; Sangineto, E.; Sebe, N. Plug-and-Play CNN for Crowd Motion Analysis: An Application
in Abnormal Event Detection. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV),
Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1689–1698. [CrossRef]

44. Xie, W.; Zhang, C.; Zhang, Y.; Hu, C.; Jiang, H.; Wang, Z. An Energy-Efficient FPGA-Based Embedded System for CNN
Application. In Proceedings of the 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC),
Shenzhen, China, 6–8 June 2018; pp. 1–2. [CrossRef]

45. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

46. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In
Proceedings of the Computer Vision—ECCV, Munich, Germany, 8–14 September 2018; Springer: Cham, Switzerland, 2018;
pp. 122–138. [CrossRef]

47. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8697–8710. [CrossRef]

48. Tan, M.; Le, Q.V. MixConv: Mixed Depthwise Convolutional Kernels. arXiv 2019, arXiv:1907.09595.
49. Hassani, A.; Walton, S.; Shah, N.; Abuduweili, A.; Li, J.; Shi, H. Escaping the Big Data Paradigm with Compact Transformers.

arXiv 2022, arXiv:2104.05704.
50. Chen, X.; Xie, S.; He, K. An Empirical Study of Training Self-Supervised Vision Transformers. In Proceedings of the 2021 IEEE/CVF

International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9620–9629. [CrossRef]
51. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2020, arXiv:1606.08415.
52. Chen, C.F.R.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. In Proceedings

of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021;
pp. 347–356. [CrossRef]

53. Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the Design of Spatial Attention in
Vision Transformers. In Proceedings of the Advances in Neural Information Processing Systems 34, Online, 7 December 2021;
Curran Associates, Inc.: New York City, NY, USA, 2021; pp. 9355–9366.

54. Heo, B.; Yun, S.; Han, D.; Chun, S.; Choe, J.; Oh, S.J. Rethinking Spatial Dimensions of Vision Transformers. In Proceedings
of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021;
pp. 11916–11925. [CrossRef]

55. Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. MaxViT: Multi-axis Vision Transformer. In Computer
Vision—ECCV 2022. ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2022; pp. 459–479. [CrossRef]

56. Yang, R.; Ma, H.; Wu, J.; Tang, Y.; Xiao, X.; Zheng, M.; Li, X. ScalableViT: Rethinking the Context-Oriented Generalization
of Vision Transformer. In Computer Vision—ECCV 2022. ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; pp. 480–496. [CrossRef]

57. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

58. Goyal, A.; Bochkovskiy, A.; Deng, J.; Koltun, V. Non-Deep Networks. In Proceedings of the Advances in Neural Information
Processing Systems 35, New Orleans, LA, USA, 28 November–9 December 2022.

http://dx.doi.org/10.1016/j.patcog.2015.04.019
http://dx.doi.org/10.1007/978-3-030-00919-9_12
http://dx.doi.org/10.1109/CVPR46437.2021.00712
http://dx.doi.org/10.1016/j.neuri.2022.100060
http://dx.doi.org/10.1109/ICSCCC.2018.8703316
http://dx.doi.org/10.1109/TETCI.2019.2909936
http://dx.doi.org/10.3390/electronics10202470
http://dx.doi.org/10.1016/j.compag.2020.105380
http://dx.doi.org/10.1109/WACV.2018.00188
http://dx.doi.org/10.1109/EDSSC.2018.8487057
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1109/ICCV48922.2021.00950
http://dx.doi.org/10.1109/ICCV48922.2021.00041
http://dx.doi.org/10.1109/ICCV48922.2021.01172
http://dx.doi.org/10.1007/978-3-031-20053-3_27
http://dx.doi.org/10.1007/978-3-031-20053-3_28
http://dx.doi.org/10.1109/CVPR.2016.90


Remote Sens. 2023, 15, 2936 21 of 21

59. Zhou, J.; Wei, C.; Wang, H.; Shen, W.; Xie, C.; Yuille, A.; Kong, T. Image BERT Pre-training with Online Tokenizer. In Proceedings
of the International Conference on Learning Representations, Virtual, 25–29 April 2022.

60. Touvron, H.; Cord, M.; El-Nouby, A.; Verbeek, J.; Jégou, H. Three Things Everyone Should Know About Vision Transformers. In
Proceedings of the 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Avidan, S., Brostow, G., Cissé, M., Farinella,
G.M., Hassner, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; pp. 497–515. ._29. [CrossRef]

61. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. In Proceedings of the 30th International
Conference on Machine Learning (PMLR), Atlanta, GA, USA, 17–19 June 2013; pp. 1319–1327.

62. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

63. Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400.
64. Liu, F. PolSAR Image Classification and Change Detection Based on Deep Learning. Ph.D. Thesis, Xidian University,

Xi’an, China, 2017.
65. Liu, X.; Jiao, L.; Liu, F.; Zhang, D.; Tang, X. PolSF: PolSAR Image Datasets on San Francisco. In Proceedings of the IFIP Advances

in Information and Communication Technology, Xi’an, China, 28–31 October 2022; Shi, Z., Jin, Y., Zhang, X., Eds.; Springer:
Cham, Switzerland, 2022; pp. 214–219. ._23. [CrossRef]

66. Cao, Y.; Wu, Y.; Zhang, P.; Liang, W.; Li, M. Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued Deep Fully
Convolutional Network. Remote Sens. 2019, 11, 2653. [CrossRef]

67. Ronny, H. Complex-Valued Multi-Layer Perceptrons—An Application to Polarimetric SAR Data. Photogramm. Eng. Remote Sens.
2010, 76, 1081–1088. [CrossRef]

68. Tan, X.; Li, M.; Zhang, P.; Wu, Y.; Song, W. Complex-Valued 3-D Convolutional Neural Network for PolSAR Image Classification.
IEEE Geosci. Remote Sens. Lett. 2020, 17, 1022–1026. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-031-20053-3_29
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-031-14903-0_23
http://dx.doi.org/10.3390/rs11222653
http://dx.doi.org/10.14358/PERS.76.9.1081
http://dx.doi.org/10.1109/LGRS.2019.2940387

	Introduction
	The Proposed Method
	Mixed Depthwise Convolution Tokenization
	Parallel Encoder
	Global Average Pooling

	Experimental Analysis and Results
	Datasets Description
	Experimental Setup
	Classification Results
	Experimental Results on The AIRSAR Flevoland Dataset
	Experiment Results on The RADARSAT-2 San Francisco Dataset


	Discussion
	Ablation Experiments
	Impact of Training Data Amount
	About PolSAR Image Classification Metrics

	Conclusions
	References

