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Abstract: Autonomous localization without local wireless facilities is proven as an efficient way
for realizing location-based services in complex urban environments. The precision of the cur-
rent map-matching algorithms is subject to the poor ability of integrated sensor-based trajectory
estimation and the efficient combination of pedestrian motion information and the pedestrian in-
door network. This paper proposes an autonomous multi-floor localization framework based on
smartphone-integrated sensors and pedestrian network matching (ML-ISNM). A robust data and
model dual-driven pedestrian trajectory estimator is proposed for accurate integrated sensor-based
positioning under different handheld modes and disturbed environments. A bi-directional long
short-term memory (Bi-LSTM) network is further applied for floor identification using extracted
environmental features and pedestrian motion features, and further combined with the indoor net-
work matching algorithm for acquiring accurate location and floor observations. In the multi-source
fusion procedure, an error ellipse-enhanced unscented Kalman filter is developed for the intelligent
combination of a trajectory estimator, human motion constraints, and the extracted pedestrian net-
work. Comprehensive experiments indicate that the presented ML-ISNM achieves autonomous and
accurate multi-floor positioning performance in complex and large-scale urban buildings. The final
evaluated average localization error was lower than 1.13 m without the assistance of wireless facilities
or a navigation database.

Keywords: autonomous localization; data and model dual-driven; trajectory estimator; floor identification;
error ellipse; unscented Kalman filter

1. Introduction

Accurate localization within indoor environments is considered a crucial component
of intelligent urban infrastructure. Due to the intricate and multifaceted nature of indoor
spaces, it is imperative to develop autonomous and cost-effective indoor positioning
services. A variety of existing indoor positioning systems (IPSs), including Wireless Fidelity
(Wi-Fi) [1], Bluetooth Low Energy (BLE) [2], ultra-wideband (UWB) [3], sound source [4],
and integrated sensors [5], have been developed to provide indoor positioning with varying
degrees of precision. However, further advancements are necessary to ensure optimal
performance in complex indoor environments, which are typical of modern smart cities.
Among IPSs, at this stage, the existing positioning systems mostly rely on local facilities or
wireless signals, and meter-level localization precision can be achieved with a combination
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of external signals and smartphone-integrated sensors, which is labor-consuming and high
cost. A comparison between existing IPSs is shown in Table 1.

Table 1. Comparison of existing positioning technologies.

Location Sources Accuracy Robustness Complexity Scalability Cost

Wi-Fi [1]
Fingerprinting: 2~5 m;

RTT ranging:
1~3 m

Affected by environmental factors and
human bodies

Time-consuming for
database generation Easy No additional cost

Bluetooth/BLE [2]
Fingerprinting: 2~5 m

AOA array:
<1 m

Limited by the changeable
environments

Time-consuming to
construct the database Easy High cost of

antenna array
UWB [3] Centimeter level Good Medium Medium High

Sound Source [4] Meter level Affected by NLOS factor Medium Good Medium

Integrated Sensors [5] Cumulative error exists Good Medium Good Low

NFC [6]
Centimeter level,

short effective
distance

Good Low Easy A large number of NFC
tags are required

Cellular Network [7]
Ten meters to tens

of meters Affected by environments Medium Good High
RFID [8] 1~5 m Affected by environments Medium Medium Medium

Infrared Ray [9] Meter level LOS required Medium Low Medium, additional
transceivers are required

Visible Light [10] 1~5 m Medium Medium Good Low

Ultrasound [11] Centimeter level Good Low Low Medium, additional
transceivers are required

Magnetic Field
[12] 2~5 m Affected by environments High Good Low

Computer Vision
[13]

Camera rendezvous:
centimeter level; others:

meter level

Medium, affected by the ambient light
and quality of the image Very high Good Medium

The autonomous localization system (ALS) is advanced by its autonomy characteristics
because no additional facilities or pre-collected fingerprinting database are required in
the positioning phase, and the efficacy of the ALS is hindered by the imprecise nature
of the trajectory data obtained from smartphones. This inaccuracy may be attributed to
the varied ways in which users hold their devices [14], and the accumulation of errors
within the sensors integrated into mobile terminals [15]. As a result, the accuracy of the
ALS could be significantly improved through the development of more precise trajectory
data collection methods and optimization of the sensor technology in mobile devices. The
existing problems include complex human motion modes [16] and a lack of an efficient
combination of built-in sensor-based location sources and an existing indoor map or
pedestrian network information [17], which are the main factors that affect the accuracy
of ALS.

Numerous research studies have been conducted to address the aforementioned issues.
For instance, Yan et al. [18] proposed a robust smartphone-based RIDI system that esti-
mates walking speed and localization information accurately, even with varying handheld
positions. Their approach yielded more efficient and similar accuracy than the traditional
visual inertial odometry (VIO) method. Additionally, they developed the RoNIN network
to enhance the precision and stability of inertial odometry using a new dataset comprising
more than 40 h of data from smartphone-integrated sensors under complex pedestrian mo-
tion modes [19]. Guo et al. [20] proposed a machine learning-based classification approach
to estimate walking speed under complex pedestrian motion modes by incorporating
a handheld mode awareness strategy. Various mobile data were collected, and model
training processes were conducted to evaluate the accuracy of the proposed speed esti-
mator. Similarly, Zhang et al. [21] developed the SmartMTra framework, which leverages
feature extraction and motion detection techniques, along with handheld mode classifi-
cation, to achieve robust dead reckoning performance. Furthermore, Poulose et al. [22]
comprehensively evaluated the heading calculation precision using different multi-sensor
fusion algorithms—namely the Kalman filter (KF), extended Kalman filter (EKF), unscented
Kalman filter (UKF), particle filter (PF), and complementary filters (CF). Their evaluation
results demonstrated that the UKF realized much better heading estimation accuracy, while
PF showed the lowest accuracy, which is not suitable for heading calculation. These studies
have highlighted the importance of developing robust and accurate solutions for indoor
positioning and tracking in complex urban environments.
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Indoor mapping information is essential for generating and updating crowdsourced
databases with high accuracy. To improve map-matching precision while reducing calcu-
lation complexity, Wu et al. [23] proposed the HTrack system, which takes into account
pedestrian heading and geospatial data. Xia et al. [24] combined the pedestrian dead
reckoning model with BLE-based distance measurement and map constraints. The par-
ticle filter was applied to enhance localization robustness and precision, resulting in an
RMSE of 1.48 m. Li et al. [25] introduced a fingerprinting precision-level predictor that can
autonomously evaluate the performance of Wi-Fi- and magnetic field-provided locations
based on wireless indexes, map information, and database-related characteristics. This
approach significantly increases the precision of integrated positioning based on the crowd-
sensing trajectories. The importance of accurate and efficient indoor mapping approaches
has been demonstrated by these studies, as they are critical for achieving reliable indoor
tracking and positioning.

Detecting the correct floor level is crucial for enhancing the effectiveness and accuracy
of classifying trajectory data collected through crowd-sourcing, as well as for generating
comprehensive databases. In a study by Zhao et al. [26], they proposed an HYFI system
that estimates the initial floor level based on the distribution of local wireless access points
(APs). To minimize the effects of environmental factors, the system also integrated pressure
information into its approach. The authors reported an accuracy rate exceeding 96.1% when
compared to using only a single source. Similarly, Shao et al. [27] introduced an adaptive
algorithm for detecting floors using wireless technology, which is especially suitable for
large-scale indoor areas with multiple floors. Their method involves analyzing the Wi-
Fi radio signal strength indicator (RSSI) and spatial similarity features and segmenting
local environments using block models, and achieved an average accuracy rate of 97.24%.
These studies have demonstrated the importance of developing robust and accurate floor
detection approaches to ensure reliable indoor tracking and positioning in complex indoor
environments. Thus, it is crucial to continue the research on improving floor detection
algorithms to enhance the overall performance of indoor positioning systems.

The classical smartphone-based indoor mapping and trajectory optimization structures
include Walkie-Markie [28], PiLoc [29], and MPiLoc [30], among others. In Walkie-Markie,
the indoor pathway is generated using the basis of the detection of Wi-Fi AP-based land-
marks and trajectory matching. The limitation is that the collected RSSI value is subjected
to changeable indoor environments and the absolute location of the generated pathway
cannot be acquired. PiLoc classifies similar crowdsourced trajectories by their shapes and
the similarity of collected Wi-Fi RSSI information and merges the similar trajectories using
point-to-point fusion. MPiLoc further extends the floor plan from 2D to 3D and uses the
sparsely acquired GNSS-reported locations as the absolute points. The disadvantage is that
both PiLoc and MPiLoc rely on the accurate estimation of heading information, while the
precise absolute heading may not be available all the time. Li et al. [31] presented the In-
doorWaze system, using the crowdsourced Wi-Fi fingerprinting data and POI information
collected by shopping mall employees to generate a robust and marked floor plan. The
final experiments showed that the designed IndoorWaze framework can accurately mark
the pathways and location of the store for indoor navigation purposes.

Integrated navigation technology has become more and more popular due to its im-
proved robustness and precision compared to single-location sources in complex indoor
environments. Several fusion methods, such as the Kalman filter (KF) [32], extended
Kalman filter (EKF) [33], unscented Kalman filter (UKF) [34], and particle filter (PF) [35], are
applied as the typical integration methods for multi-source fusion-based indoor localiza-
tion. Huang et al. [36] developed a cost-effective and user-convenient indoor localization
technique that utilizes existing Li-Fi lighting and Wi-Fi infrastructure to achieve signifi-
cantly improved positioning accuracy. Their technique involves Li-Fi-assisted coefficient
calibration and was experimentally verified. Chen et al. [37] developed an indoor dynamic
positioning method that utilizes the symmetrical characteristics of human motion to quickly
define the basis of the human motion process and address existing issues. They introduced
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an ultra-wideband (UWB) method and applied an unscented Kalman filter to fuse iner-
tial sensors and UWB data. Inertial positioning compensated for UWB signal obstacles,
while UWB positioning overcame the error accumulation of the inertial positioning. Chen
et al. [38] proposed an INS and Wi-Fi integration model that utilizes multi-dimensional
dynamic time warping (MDTW) to calculate the distance between the measured signals and
fingerprints in a database. They also introduced an MDTW-based weighted least squares
(WLS) method for fusing multiple fingerprint localization results, resulting in improved
positioning accuracy and robustness.

To further enhance the performance of smartphone-integrated sensor-based pedestrian
trajectory estimation and optimization, and indoor network extraction and trajectory
matching, this paper proposes an ML-ISNM framework, which realizes accurate multi-floor
positioning performance without the assistance of local facilities. The main contributions
of this work are summarized as follows:

(1) This paper proposes a robust data and model dual-driven pedestrian trajectory esti-
mator for accurate integrated sensor-based positioning in complex motion modes and
disturbed environments. The proposed approach considers factors such as handheld
modes, lateral errors, and step-length constraints while updating the location based
on a period of observations rather than solely relying on the last moment;

(2) A new floor detection algorithm based on Bi-LSTM is implemented to offer floor index
references for estimated trajectories. This involves extracting hybrid features from
wireless signals, human motion, and map-related data to improve the recognition
precision, leading to a more accurate initial location and floor information provided
to users;

(3) This work models an extracted pedestrian indoor network, formulates it as the com-
bination of a matrix, and develops a grid search algorithm for network matching
and further walking route calibration with the reference of the initial location and
floor detection results. The matched network information is further applied as the
observation under the fusion phase;

(4) Using the outcomes of trajectory estimation, floor recognition, and indoor network
matching, an error ellipse-supported unscented Kalman filter (EE-UKF) is suggested
to robustly combine data from integrated sensors, pedestrian motion, and indoor
network information. This approach can achieve meter-level positioning accuracy
without requiring additional local facilities for assistance.

The following content is outlined in the sections of this article. Section 2 provides
an overview of the trajectory estimator based on a data and model dual-driven approach.
Section 3 describes the developed Bi-LSTM-based floor recognition, trajectory matching, cal-
ibration, and error ellipse-supported UKF-based intelligent integration. Section 4 discusses
the evaluation results of the developed ML-ISNM. Finally, Section 5 presents a conclusion
of this work.

2. Data and Model Dual-Driven Trajectory Estimator

This research introduces an ML-ISNM framework, which combines trajectory estima-
tion, multi-level observations, and indoor network information to enable the autonomous
detection of the user’s location and floors without requiring local facilities, while also
facilitating accurate multi-source fusion. The proposed trajectory estimator integrates
sensor data from tri-gyroscopes, tri-accelerometers, tri-magnetometers, and barometers
to obtain the raw 3D location, speed, and attitude vectors. Next, Bi-LSTM-based floor
detection and pedestrian indoor network matching are applied to provide an accurate
initial reference location and floor indexes for the proposed trajectory estimator. In addition,
non-holonomic constraints, a quasi-static magnetic field, and an indoor network reference
are generated as the multi-level observations and combined with the trajectory estimator
by an enhanced EE-UKF, and the forward trajectory is further calibrated by the backward
EE-UKF after obtaining the network’s extracted landmark points. The overall structure
of the developed ML-ISNM framework is described in Figure 1. This part presents an
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accurate data and model dual-driven trajectory estimator under complex handheld modes
and disturbed indoor environments, and the estimated trajectory information is further
integrated with other observations in order to realize much more accurate and robust
positioning performance.
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2.1. Hybrid Deep-Learning Model Enhanced Walking Speed Prediction

When it comes to achieving inertial odometry for mobile devices that depend on indoor
pedestrian localization, INS and PDR mechanisms are viewed as viable solutions. However,
conventional approaches using INS/PDR have limited precision because of the varied hand-
held modes of these devices and accumulated errors in their inertial sensors. Furthermore,
relying solely on the previous moment for location updates through these methods may result
in missing crucial motion information during the chosen walking period.

To address these limitations, this work proposes a novel data and model dual-driven
trajectory estimation approach that leverages advanced machine learning techniques to
enhance the accuracy and robustness of inertial odometry. This approach considers factors
such as handheld positioning, lateral error, and step-length constraints while updating the
location based on a period of observations rather than solely relying on the last moment.
By incorporating these techniques into INS/PDR-based systems, the resulting inertial
odometry is significantly more accurate and reliable, making them ideal for deployment in
complex indoor environments.

This research addresses the limitations of the existing dead reckoning (DR) methods
by proposing an enhanced deep learning-based walking velocity estimator. The aim was to
realize precise speed observation for PDR mechanization, taking into account the varied
handheld modes of mobile terminals and overcoming cumulative errors that can limit
accuracy. To detect the different handheld modes of existing smartphones, this approach
leverages MLP models that consider period-specific acceleration vectors, the angular speed
vector, and related modeled characteristics. Additionally, the Bi-LSTM structure is used
to predict pedestrians’ continuous walking speed using similar inputs. Figure 2 depicts
the whole framework of the developed deep-learning-based approach for walking velocity
prediction. By utilizing these advanced machine learning techniques, the resulting PDR
mechanism achieves significantly higher accuracy and robustness in indoor tracking and
positioning, which makes it ideal for deployment in challenging indoor environments
where signal interference and other environmental factors can pose significant challenges.
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The above diagram depicts the structure of the proposed walking speed estimator,
which relies on deep learning. The model comprises several components, with the MLP
serving as the initial element to detect handheld modes. The detected modes and generated
features are then input into the Bi-LSTM model, which provides precise estimates of
pedestrian walking speed-originated features. Lastly, a fully-connected layer is utilized
for final-result modeling to deliver real-time estimations of pedestrian moving velocity
information. By integrating these advanced machine learning techniques into the design
of the PDR mechanism, the resulting system achieves higher accuracy and robustness
in indoor tracking and positioning. This can substantially improve the user experience,
particularly in complex indoor environments where traditional dead reckoning methods
can result in significant inaccuracies due to cumulative errors and signal interference.

To correspondingly estimate walking speed and detect handheld modes, the accelerom-
eter and gyroscope’s smoothed data are employed as input features in the MLP. The de-
tected handheld modes derived from these features are then utilized to train a Bi-LSTM
framework that can predict walking velocity information under different handheld modes.
For increasing the speed estimation precision, an input vector of 3 s in overall length is
chosen from a dataset sampled at a rate of 50 Hz. These enhanced input features can then
be used to generate more precise estimates of walking speed while also detecting handheld
modes with greater accuracy.

Finally, the MLP network MLP() is applied as the first layer of the developed deep-
learning model, the raw sensor data are extracted as the input vector of MLP, and the four
different handheld modes are adopted as the output vector of the MLP network [39]:

βi = MLP(αi) (1)

where βi indicates the output vector of the MLP, which contains four different handheld
modes of smartphones, and αi is the input vector of the sensor data.
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Next is the Bi-LSTM layer. The input vector of the Bi-LSTM model is the pre-processed
sensor data and the detected handheld mode of the smartphones. The relationships among
the different Bi-LSTM parameters are presented as follows [40]:

ft = σ · (W f · [ht−1, Xt] + b f )
it = σ · (Wi · [ht−1, Xt] + bi)

C̃t = tanh · (WC · [ht−1, Xt] + bC)
ot = σ · (Wo · [ht−1, Xt] + bo)
ht = ot · tanh(Ct)

(2)

In the following equation it, ft, and ot denote the input, forget, and output units of the
Bi-LSTM network, respectively. Xt represents the input vector of the Bi-LSTM layer under
each time period, and ht denotes the hidden state vector, which is considered the output
of the Bi-LSTM layer and is further applied as the input of the full connection layer. The
sigmoid function is denoted by σ, while Ct is the candidate vector that is merged with the
output vector to form the memorized state under the recorded time.

In our deep learning-based speed estimator framework, we utilize walking velocity as
the expected output vector of the model training procedure. It is important to note that
the initial predicted walking speed lacks real-world geospatial reference and can only be
considered as the forward velocity. This forward speed is defined as follows:

ωb =
[
ωb

f orward 0 0
]T

(3)

where ωb
f orward is presented according to the step-length calculation result.

To obtain the pedestrian’s forward speed, it is necessary to transform the estimated
walking speed according to the results obtained from handheld mode detection. The
calculation for obtaining the forward velocity under the n-frame follows the formula
outlined in [7]. This step ensures that the final output accurately reflects the pedestrian’s
true forward speed and takes into account any identified variations in handheld modes
during the data collection:

ωn = χn
e χe

e1
χe1

b ωb (4)

In the above equation, ωn represents the NHC-based speed that has been converted.
The attitude matrix calculated between the b-frame and the ENU frame is denoted by χe1

b .
The translation matrix related to handheld modes, denoted by χe

e1
, converts the axis related

to heading into the reading mode-based heading-related axis in accordance with the results
of the handheld mode recognition. Finally, the translation matrix from the ENU coordinate
system to the NED coordinate system is indicated by χn

e .
The estimated location of the pedestrian can be determined by combining both the

heading and walking velocity values in a time period.

ri = ri−1 +

t=i∫
t=i−1

ωn
i (5)

In the above equation, ωn
i represents the walking velocity value provided in a recog-

nized step period and needs to be converted into the n-frame. The real-world position ri is
then calculated according to the formal location information.

2.2. Data and Model Dual-Driven Trajectory Estimator

INS mechanization is proposed for inertial sensor-based localization. The information
of the acceleration and angular rate acquired from MEMS sensors are integrated by INS
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mechanization for the estimation of the 3D position, velocity, and attitude of the moving
object with a high update rate, which is shown below [5]:

.
pn

.
vn

.
C

n
b

 =

 v−1vn

Cn
b fb − (2ωn

ie + ωn
en)vn + gn

Cn
b (ω

b
ib −ωb

in)

 (6)

In the following equation, pn = [pN pE pD]
T denotes the real-time 3D location of

the pedestrian. The 3D velocity is represented by vn = [vN vE vD]
T , while Cn

b indicates
the rotation matrix of the b-frame and n-frame. gn represents the collected local gravity
vector, and ωn

ie denotes the rotation angular rate between the ECEF frame and i-frame.
Additionally, ωn

en indicates the rotation angular rate between the navigation coordinate
system and the ECEF coordinate system. A 3 × 3 matrix related to the latitude and the
ellipsoidal altitude of the selected object is denoted by v−1.

Due to the low precision of MEMS sensors, the Earth-related angular rate error vectors,
ωn

ie and ωn
en, can be ignored. Hence, the simplified error model of INS can be described as

follows [5]: 

δ
.
pn

= −ωn
en × δpn + δvn

δ
.
vn

= −(2ωn
ie + ωn

en)δvn + fn ×ψ + Cn
b (εa + wba).

ψ = −(ωn
ie + ωn

en)×ψ− Cn
b (εg + wbg).

εg = εg/τbg + wbg.
εa = −εa/τba + wba

(7)

In the following equation, δpn, δvn, and ψ denote the measured errors of the 3D
position, velocity, and attitude information, respectively. εg and εa represent the biases
of the gyroscope and accelerometer, respectively. fn indicates the converted acceleration
data in the n-frame, while τbg and τba represent the parameters related to sensor noise.
Additionally, wbg and wba are the measured noises of εg and εa, respectively.

Using the INS error model presented above, the state vector can be described in the
AUKF as follows:

δx =
[
(δpn)1×3 (δvn)1×3 ψ1×3 (εg)1×3 (εa)1×3

]T
(8)

The discrete-time EE-UKF system equation and observation equation are:{
δxt = Ft−1,tδxt−1 + νt
δ
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t represent the state vector and observed vector at the moment t; Gt
indicates the observation matrix at the moment t. νt and ςt indicate the state noise and
measurement noise at the timestamp t; Ft−1,t indicates the 15× 15 state transition matrix,
which is shown below:

Ft−1,t =


I3×3 I3×3 × ∆t 03×3 03×3 03×3
03×3 I3×3 (fn

k×) · ∆t 03×3 03×3
03×3 03×3 I3×3 −Cn

b,k · ∆t 03×3
03×3 03×3 03×3 I3×3 03×3
03×3 03×3 03×3 03×3 I3×3

 (10)

In the above equation, ∆t represents the update interval of the INS mechanization,
while fn

k represents the collected accelerometer vector under the n-frame.
To address the influence of the indoor artificial magnetic fields added to the accuracy

of the heading calculation, a pseudo-observation is extracted to constrain the heading
divergence error. This observation is obtained by calculating the heading deviation from
the straightforward motion mode during the quasi-static magnetic field (QSMF) periods [5].
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Incorporating this observation helps to reduce any interference caused by indoor magnetic
fields and improves the overall precision of the heading estimation.

θ̃k − θ̂0 = δθk + nθ (11)

In the above equation, θ̂0 and θ̃k denote the heading observation extracted from the
detected QSMF period data for the first epoch and other epochs, respectively. nθ represents
the measurement noise.

The observation model for the calculated walking speed under the n-frame in the deep
learning model is modeled as follows:

δ
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In the above equation, rn
INS denotes the position cumulated by INS mechanization,

while rn
DL

denotes the results of the location update based on the deep learning model.

3. Floor Detection, Network Matching, and Intelligent Fusion

To enhance the efficiency and precision of indoor network information extraction and
intelligent integration, a deep-learning approach was developed. This framework aims to
achieve autonomous floor recognition, indoor network matching, and calibration, as well
as the EE-UKF-based integration of indoor network and MEMS sensors.

3.1. Bi-LSTM-Enhanced Floor Recognition

To utilize useful observations obtained from daily-life trajectory data and local indoor
environments, a time-continuous approach for detecting floors is proposed in this work.
This method employs a Bi-LSTM network that considers a period of trajectory data to
enhance the precision of floor recognition. The input vector for the Bi-LSTM network is
constructed by combining features from Wi-Fi, barometer, and magnetic sources:

(1) To capture the wireless features of the selected floor, the modeled RSSI values obtained
from some representative Wi-Fi access points (APs) are utilized as a part of the input
vector in the training procedure of the Bi-LSTM model. These collected RSSI values are
deemed to be the most representative and are critical for ensuring accurate predictions:{

φ1
RSSI

φ2
RSSI

· · · φk
RSSI

}
≥ ThRSSI (14)

In the following description, φk
RSSI

represents the collected RSSI vector of a selected
Wi-Fi access point, while ThRSSI denotes the set standard for RSSI filtering.

(2) The mean RSSI value of the selected representative RSSI values: In order to capture the
overall description index of the RSSI collection, the mean RSSI value is also computed
and included as an input value for the developed Bi-LSTM model. This additional
input helps to provide a more comprehensive understanding of the RSSI vector,
enabling the model to make more accurate predictions based on both individual
signal strengths and the overall average signal strength:

φAve
RSSI

=
k

∑
i=1

φi
RSSI

(15)

In the above description, φAve
RSSI

denotes the calculated mean RSSI value.
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(3) Deviation between the collected representative RSSI values: The calculated deviation
in the scanned RSSI vector can significantly capture the dynamic changes in the
surrounding buildings and is therefore considered a crucial feature. By utilizing this
feature, the proposed model can better adapt to variations in the environment and
provide more accurate estimations as a result. Incorporating real-time differences
between the scanned RSSI vectors enhances the model’s ability to detect subtle changes
in the signal strength over time, allowing it to generate more reliable predictions:

φDi f f
RSSI

=
∣∣∣φk

RSSI
− φk−1

RSSI

∣∣∣ (16)

where φ
Di f f
RSSI represents the RSSI deviation vector.

(4) The norm vector of the extracted local magnetic data is calculated as follows:

MNorm =
√

mx2 + my2 + mz2 (17)

where mx, my, and mz represent the magnetometer outputted data.
(5) The barometric pressure increment values based on the initial data are calculated

as follows:
∆ϕi

Baro = ϕi
Baro − ϕ0

Baro (18)

where ∆ϕi
Baro indicates the pressure increment compared to the initial data, and ϕ0

Baro
and ϕi

Baro are the real-world acquired pressure values.
(6) The deviation between the adjacent collected pressure data is calculated as follows:

ϕDi f f
Baro

=
∣∣∣ϕk

Baro
− ϕk−1

Baro

∣∣∣ (19)

where ϕk
Baro

and ϕk−1
Baro

represent the pressure outputs obtained at two consecutive
timestamps, and their variation can indicate changes in the elevation during a pedes-
trian’s movement. This information is crucial for indoor positioning systems that
estimate the user’s vertical displacement and determine their current floor level, with
applications in wayfinding, asset tracking, and environmental monitoring.

3.2. Indoor Network Matching and Trajectory Calibration

Pedestrian network information extracted from an indoor map can provide effective
location references in the procedure of pedestrian walking. The principle of indoor network
matching is to find the optimal reference point in the network to provide accurate location
observation to the data and model dual-driven trajectory estimator, which can effectively re-
duce the cumulative error of the integrated sensor-based positioning approach. Compared
to the traditional map-matching approach, network matching can significantly reduce the
calculation complexity and provide effective location references. This research focuses
on the representation of indoor pedestrian networks from multiple floors in the form of
matrices. The network is extracted by marking intersection points as matrix elements,
with each element containing information on the heading and the length between two
intersections. This approach allows for an accurate depiction of the entire indoor network,
enabling efficient navigation and localization. Moreover, this method enables the creation
of a corresponding network matrix, which provides a clear visual representation of the
indoor network’s topology and facilitates further analysis. Figure 3 presents a detailed
illustration of the extracted indoor network and its corresponding matrix, highlighting the
usefulness of this representation method.



Remote Sens. 2023, 15, 2933 11 of 25

Remote Sens. 2023, 15, 2933 11 of 25 
 

 

3.2. Indoor Network Matching and Trajectory Calibration 
Pedestrian network information extracted from an indoor map can provide effective 

location references in the procedure of pedestrian walking. The principle of indoor net-
work matching is to find the optimal reference point in the network to provide accurate 
location observation to the data and model dual-driven trajectory estimator, which can 
effectively reduce the cumulative error of the integrated sensor-based positioning ap-
proach. Compared to the traditional map-matching approach, network matching can sig-
nificantly reduce the calculation complexity and provide effective location references. This 
research focuses on the representation of indoor pedestrian networks from multiple floors 
in the form of matrices. The network is extracted by marking intersection points as matrix 
elements, with each element containing information on the heading and the length be-
tween two intersections. This approach allows for an accurate depiction of the entire in-
door network, enabling efficient navigation and localization. Moreover, this method ena-
bles the creation of a corresponding network matrix, which provides a clear visual repre-
sentation of the indoor network’s topology and facilitates further analysis. Figure 3 pre-
sents a detailed illustration of the extracted indoor network and its corresponding matrix, 
highlighting the usefulness of this representation method. 

8L

1

11
10

3

9

5

2

4

7
6

8

O
θ Error Ellipse

A

 
Figure 3. Presentation of pedestrian network and error ellipse. 

Figure 3 demonstrates the division of the indoor pedestrian network into a combina-
tion of straight lines and turning points. Each straight line is characterized by two features: 
heading and gait length, which serve as the feature-matching parameters for comparing 
with the results provided by the deep-learning-based trajectory estimator. By utilizing the 
described approach, we can accurately estimate the user’s position in the indoor environ-
ment and determine their trajectory. In the network matrix generated from this represen-
tation, adjacent turning points are marked as 1, while non-adjacent turning points are 
identified as 0. This allows for an efficient and intuitive representation of the indoor net-
work’s topology, which can facilitate path-planning and navigation tasks. Overall, this 
method provides a comprehensive and reliable solution for indoor localization and posi-
tioning, with potential applications in various fields such as logistics, security, and 
healthcare. 

Figure 3. Presentation of pedestrian network and error ellipse.

Figure 3 demonstrates the division of the indoor pedestrian network into a combi-
nation of straight lines and turning points. Each straight line is characterized by two
features: heading and gait length, which serve as the feature-matching parameters for
comparing with the results provided by the deep-learning-based trajectory estimator. By
utilizing the described approach, we can accurately estimate the user’s position in the
indoor environment and determine their trajectory. In the network matrix generated from
this representation, adjacent turning points are marked as 1, while non-adjacent turning
points are identified as 0. This allows for an efficient and intuitive representation of the
indoor network’s topology, which can facilitate path-planning and navigation tasks. Over-
all, this method provides a comprehensive and reliable solution for indoor localization
and positioning, with potential applications in various fields such as logistics, security,
and healthcare.

ψ =



1 1 0 0 0 0 0 0 0 0 1
1 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 1 1
1 0 0 0 0 0 0 0 0 1 1



(20)

The above equation describes the relationship between each pair of turning points,
which is divided as connected-1 and non-connected-0. The network matrix generated
from the indoor pedestrian network extraction process has dimensions equivalent to the
amount of turning points in the network. For each pair of adjacent turning points, the
related characteristics are recorded, including the heading and gait length during a normal
walking period. This information can be utilized for various applications, such as path
planning, navigation, and localization. By representing the indoor environment as a matrix,
we can efficiently capture and process data, facilitating real-time decision making and
improving the user’s experience. The grid search algorithm is proposed for network
matching and compares the extracted reference network information in Equation (20) and
the real-time collected and divided trajectory. Overall, this approach offers a comprehensive
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and reliable solution for indoor positioning and navigation that can be applied in diverse
settings from healthcare to logistics:

ψ(i, j) = [1, θij, ξij] (21)

In which θij and ξij denote the heading and distance between each pair of adjacent in-
tersection points, calculated based on the user’s normal walking trajectory between the two
turning points. This information is crucial for accurately representing the indoor pedestrian
network and facilitating indoor positioning and navigation. By utilizing this approach, we
can efficiently capture and process data, enabling real-time decision making and improving
the user’s experience. Furthermore, this representation provides a comprehensive solution
for various applications, such as asset tracking, security, and emergency response. Overall,
this method offers a reliable and versatile approach for indoor localization and positioning.

In this study, a grid search algorithm was developed to perform trajectory matching
and calibration of the estimated trajectory and the extracted network information from a
constructed network matrix. By utilizing this approach, the model can effectively identify
optimal matches between the two datasets, allowing for more accurate localization and
tracking of pedestrians within indoor environments. By leveraging the insights gained
from the constructed network matrix, the proposed approach can help to improve the
overall accuracy of trajectory matching and calibration, making it a valuable tool for indoor
navigation and location-based services. This method utilizes the information contained in
the network matrix to accurately estimate the user’s position and trajectory in real-time.
By implementing this technique, we can enhance the precision and reliability of IPSs,
improving the user’s experience and facilitating various applications, such as asset tracking
and emergency response. Overall, this approach offers a comprehensive and practical
solution for indoor localization and navigation tasks:

(1) To detect turning points during pedestrian movement, a hybrid deep-learning frame-
work is utilized to detect changeable handheld modes and determine the walking
direction. This approach is particularly useful in complex environments where pedes-
trians may adopt various postures or holding positions. After identifying the forward
direction, the turning points are calculated by peak recognition, similar to a step
detection method proposed previously [1]. By incorporating these techniques, we
can accurately estimate the user’s position and trajectory in indoor environments,
facilitating effective navigation and positioning tasks. Moreover, this approach can be
applied in diverse settings, such as healthcare, logistics, and security, enhancing the
overall performance of indoor positioning systems;

(2) To reduce the incidence of false matching, we exclusively considered the results
provided by the trajectory estimator that contained more than three turning points,
which can be further applied for network matching purposes. This algorithm was
proven to significantly increase the precision of trajectory matching;

(3) To effectively match trajectories with the existing indoor network, the proposed ap-
proach employs both the correlation coefficient value and the dynamic time warping
(DTW) index. These two techniques are used in tandem to provide a more comprehen-
sive understanding of the similarities and differences between different trajectories,
enabling the model to identify optimal matches with greater accuracy. By incorporat-
ing both the correlation coefficient index and the DTW index, the proposed approach
can enhance the overall performance of trajectory matching, paving the way for more
precise location-based services within indoor environments. These indices enable
us to identify similar trajectories by analyzing the detected turning points in each
trajectory [14]. By employing this method, we can enhance the overall performance of
indoor positioning systems, making them suitable for various applications such as
logistics, security, and healthcare.
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DTW(βτ−1, βτ)
= Dist(pj, sk) + min[D(sj−1, pk), D(sj, pk−1), D(sj−1, pk−1)]

(22)

where DTW(δre f er, δk) represents the cumulated distance covered between two turn-
ing points vectors, while Dist(qn, cm) represents the Euclidean distance calculated by
each pair of points within these distributions.

ρcor(x, y) = ρcor(xτ−1, xτ) + ρcor(yτ−1, yτ)

=
∑M

i=1(xi
τ−1−xτ−1)(xi

τ−xτ)√
∑M

i=1(xi
τ−1−xτ−1)

2
√

∑2m+1
i=1 (xi

τ−xτ)
2

+
∑M

i=1(yi
τ−1−yτ−1)(yi

τ−yτ)√
∑M

i=1(yi
τ−1−yτ−1)

2
√

∑2m+1
i=1 (yi

τ−yτ)
2

(23)

where ρcor(xτ−1, xτ) and ρcor(yτ−1, yτ) indicate the results of the correlation coefficient
on the x- and y-axes, respectively.

(4) Following the map-matching phase, the matched turning points on the extracted
pedestrian network are utilized as absolute references for the trajectory calibration
phase of straight lines. This approach enables us to accurately estimate the user’s
position and trajectory, improving the overall performance of indoor positioning
systems. By incorporating this method, we can facilitate various applications, such as
asset tracking, navigation, and emergency response. Overall, this technique achieves
a robust and practical approach for indoor localization tasks:

x̂k−1|k = x̂k−1 + Pk−1φT
k (P

−
k−1

)
−1

(x̂k − x̂k
−) (24)

Pk−1|k = Pk−1 − (Pk−1φT
k (Pk

−)
−1

)(Pk − Pk
−) · (Pk−1φT

k (Pk
−)
−1

)
T

(25)

where xk and
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To utilize useful observations obtained from daily-life trajectory data and local in-

door environments, a time-continuous approach for detecting floors is proposed in this 

work. This method employs a Bi-LSTM network that considers a period of trajectory data 

k indicate the state and measurement vectors presented in Equation (8).

3.3. Error Ellipse-Enhanced UKF for Intelligent Fusion

In this section, the error ellipse-enhanced unscented Kalman filter (EE-UKF) is used to
integrate all of the results provided by the integrated sensors, pedestrian indoor network
matching, and floor detection for achieving meter-level indoor localization precision. The
error ellipse is generated based on the previous integration result of the indoor network
observation and data and model dual-driven trajectory estimator.

First, the INS mechanization applied in the data and model dual-driven trajectory
estimator is applied as the state equation of the final EE-UKF, described in Equation (6).
Then, the deep-learning-based walking speed prediction results, multi-level human motion
constraints, and reference location and floor information provided by the network matching
and floor detection are adopted as the observations in order to decrease the cumulative
error of the INS mechanization and maintain the positioning accuracy under complex
human motion and handheld modes and in disturbed indoor environments.

Furthermore, the enhancement of the localization performance involves implementing
constraints on the indoor grid and mapping. Initially, the algorithm identifies the closest
pair of adjacent turning points of observation using the current location data acquired
through the integration of the sensory inputs and indoor network information. The segment
of the indoor network is then represented in the model as follows:

λ1x + λ2y + λ3 = 0 (26)
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Hence, the current coordinates (x1, y1) can be utilized to compute the closest point
of observation in the indoor network. Consequently, the resulting representation of the
indoor network is defined as follows:{

δ
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n
ω = ωn

network −ωn
MEMS

(27)

where rn
network and ωn

network represent the indoor network-provided location and walking
velocity values, rn

MEMS
and ωn

MEMS
denote the trajectory estimator-provided location and

velocity prediction results.
Lastly, with respect to the characterization of confidence ellipses in engineering [41],

the focal point of the error ellipse is designated as the origin of the major semi-axis of the
ellipse, which can be expressed as follows:

ς1 = se ·
√

0.5(σ2
N + σ2

E) +
√

0.25(σ2
E − σ2

N)
2
+ σ2

NE
(28)

The minor semi-axis of the error ellipse is calculated as:

ς2 = se ·
√

0.5(σ2
N + σ2

E)−
√

0.25(σ2
E − σ2

N)
2
+ σ2

NE
(29)

The azimuth of the major semi-axis of the error ellipse is described as:

κ = 0.5 tan−1
4 (2σNE/(σ2

E − σ2
N)) (30)

Following the error ellipse-assisted network constraint check, eligible observations
will be automatically incorporated into the UKF (unscented Kalman Filter) update pro-
cedure. This step helps to improve the overall accuracy of the filter by allowing it to
integrate new observations into its predictions with greater precision. By incorporating
eligible observations after the error ellipse-assisted network constraint check, the proposed
approach can help to minimize errors and improve the quality of location estimates within
indoor environments.

4. Experimental Results of ML-ISNM

This section outlines a series of comprehensive experiments devised to assess the
efficacy of ML-ISNM. To this end, one publicly available dataset and a multi-floor in-
door environment representative of real-world scenarios were chosen as experimental
sites. Google Pixel 3 and Google Pixel 4 were applied as the experimental terminals,
and Samsung Galaxy A7 was adopted for data collection in a public dataset. The pro-
posed techniques, including trajectory estimator Bi-LSTM-based floor recognition, network
matching, calibration, and EE-UKF, were tested and compared with state-of-art approaches
or frameworks.

In configuring the model setting, the Adam optimizer was utilized due to its efficiency
in handling large amounts of training data. Specifically, the learning rate was set at 0.002
for optimal performance. Additionally, the deep-learning-based speed estimator module
employed an input vector dimension of 11, consistent with that of the integrated sensor
data. The output hidden state from the Bi-LSTM layer was set at a dimension of 30, while
the dimension of the input vector remained at 11. These settings were carefully selected to
ensure optimal performance in the subsequent evaluations.

For the model training of the proposed data and model dual-driven trajectory esti-
mator, a daily-life dataset containing a time period of more than 56 h of trajectory data
provided by a number of 30 users under 4 different handheld modes (reading, phoning,
swaying, and pocket) was collected with the reference of a Lidar-based positioning system
(LPS) as the benchmark trajectory. For the accuracy evaluation, the trajectories estimated
by the data and model dual-driven estimator were compared with the LPS for positioning



Remote Sens. 2023, 15, 2933 15 of 25

error calculation, and then compared with the state-of-art algorithms based on the same
test route and handheld modes. In our experiments, a public dataset was first applied to
evaluate the long-term performance of the proposed trajectory estimator, and the existing
state-of-the-art algorithms were also applied for the robustness and significance compari-
son of ML-ISNM. In addition, a real-world scene was further adopted for evaluation and
comparison purposes.

4.1. Performance Evaluation of Trajectory Estimator

To assess the efficacy of the proposed data and model dual-driven trajectory estimator,
a public dataset from the IPIN-2018 competition [42] was utilized to estimate the accuracy
with changeable handheld modes. For this purpose, different indoor environments contain-
ing multiple floors were selected, as illustrated in Figure 4. The evaluation process involved
starting at point A and conducting tests over an extended duration of approximately 20 min
to evaluate the long-term performance of the proposed estimator. The chosen experimental
setup allowed for a thorough assessment of the algorithm’s ability to accurately estimate
the trajectories across varying conditions. The use of a publicly available dataset ensured
that the results obtained were reproducible and could be compared with those of other
studies conducted using the same dataset. Furthermore, the selection of a multi-floor
environment enabled the evaluation of the proposed technique’s effectiveness in accurately
estimating trajectories in complex indoor settings.
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Figure 4. Ground-truth walking route of public dataset.

In order to assess the trajectory estimator’s long-term performance, a comparison was
conducted with an enhanced INS-PDR framework [5], utilizing identical smartphone data
and a shared walking route. High-precision control points were utilized to evaluate the
positioning errors. The respective estimated trajectories produced by the two algorithms
were then compared, with the results presented in Figure 5.
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Figure 5. Estimated trajectory of inertial odometry.

Based on the data presented in Figure 5, it is apparent that the suggested inertial
odometry achieved noticeably superior and accurate long-term location determination
in comparison to the lone PDR mechanism. In order to obtain a more comprehensive
evaluation of the positioning precision of both algorithms, a group of ten individuals
retraced the same walking path multiple times, and their calculated positioning errors are
depicted in Figure 6.
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The results described in Figure 6 illustrate that the developed trajectory estimator
maintained a long-term error of no more than 5.95 m in 75% of cases, which is superior
to the INS-PDR approach, which had an error of up to 9.73 m in 75% of cases. This
improvement can be attributed to the hybrid observations and constraints utilized by the
proposed estimator.

To further assess the performance of the data and model dual-driven trajectory estima-
tor under varying handheld modes, we compared it with the state-of-the-art 3D navigation
framework (3D-NF) [14]. The mean positioning inaccuracies were computed for four dis-
tinct portable modes utilizing the identical pedestrian pathway specified in the reference
material [14], and the resultant mean positioning inaccuracies were contrasted.

According to Figure 7, the proposed path estimator attained notably superior position-
ing precision across all four distinct portable modes, with mean positioning inaccuracies
of 1.02 m (reading), 1.15 m (calling), 1.78 m (swaying), and 1.21 m (pocket) along the
prolonged test pathway. This stands in contrast to the 3D-NF algorithm, which registered
mean positioning inaccuracies of 1.25 m (reading mode), 1.32 m (calling mode), 2.08 m
(swaying mode), and 1.35 m (pocket mode).
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4.2. Performance Evaluation of Floor Recognition

This manuscript addresses the issue of lacking an initial floor observation in raw
estimated trajectories. To overcome this limitation, a Bi-LSTM network was implemented
to improve floor recognition precision on multiple floors in a contained building by incor-
porating data from local wireless signals and environment-related characteristics before
the map-matching phase. To ensure comprehensive coverage of the indoor scenes, a 2.5 h
trajectory dataset from five different floors was collected for training purposes, while a 0.5 h
trajectory dataset was utilized for accuracy evaluation. The developed Bi-LSTM-based floor
recognition model was compared with the classical 1D-CNN model [16] and the classical
MLP model [1], with the accuracy comparison results presented in Figure 8.
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As shown in Figure 8, the Bi-LSTM-based floor recognition model proposed in this
study demonstrated superior accuracy compared to the 1D-CNN and MLP algorithms.
The test dataset achieved an average accuracy of over 98.7% using the proposed approach,
whereas the 1D-CNN-based approach and MLP-based approach resulted in average accu-
racies of 97.2% and 95.98%, respectively.

4.3. Precision Evaluation of Error Ellipse-Assisted UKF

In order to assess the efficacy of map-matching and the fusion of the trajectory estima-
tor and pedestrian indoor network, a multi-floor 3D indoor environment comprising four
distinct floors with corresponding pedestrian indoor networks (as depicted in Figure 9)
was selected for evaluation. In this scenario, the indoor networks collected from different
floors were modeled as a combination of nodes and segments and applied for trajectory
matching, as illustrated in Figure 10:

As illustrated in Figure 10, the extracted indoor network comprehensively covers
all pedestrian walking route and turning point information within multi-floor contained
indoor building environments. Therefore, this study proposes an indoor network matching
algorithm to enable absolute turning point references for optimizing and calibrating raw
trajectory estimator results, while the floor recognition algorithm is employed to achieve
dynamic floor indices of the trajectory estimator.

To evaluate the efficacy of the final ML-ISNM structure, a 3D indoor environment
containing four adjacent floors was selected. The evaluator proceeded with uninterrupted
walking from the 6th floor to the 9th floor, following the explicit pedestrian path delineated
in Figure 9. In this setting, an EE-UKF-driven amalgamation algorithm was suggested to
astutely merge diverse location origins, involving MEMS sensors integrated into smart-
phones and indoor pedestrian network data. To refine the path estimator, the error ellipse
was utilized to delimit the exploration range of the indoor network and to correlate rel-
evant indoor network data. A comparison between the single trajectory estimator (TE),
EE-UKF-based TE, and the indoor network integration model was conducted by examining
the estimated trajectories.
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As shown in Figure 11, despite the multi-level based constraints and observations, the
trajectory estimator remained susceptible to cumulative errors. However, the integration
model of the pedestrian indoor network and trajectory estimator significantly enhanced
single TE performance, while the integration of pedestrian network data further reduced
the TE localization error and brought the estimated trajectory closer to the ground-truth
reference. A localization error comparison between the two different combinations of
location sources is presented below.

As depicted in Figure 12, the amalgamation of indoor networks achieved indoor
positioning accuracy at the meter level, with a positioning inaccuracy of less than 1.35 m in
75% of cases, outperforming the single trajectory estimator, which acquired a precision of
2.73 m in 75% of cases.
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Lastly, to ensure impartiality, the proposed multi-source fusion algorithm based on
EE-UKF was compared with two cutting-edge systems: the HTrack system [23] and the
map-assisted particle filter (MA-PF) [43], utilizing the same pedestrian path. A comparison
of the 3D positioning inaccuracies among these three distinct algorithms is presented in
Table 2.

Table 2. Positioning error comparison.

Models Maximum Error 75th Percentile Average Error

EE-UKF 2.39 m 1.35 m 1.13 m
MA-PF 2.87 m 1.62 m 1.31 m
HTrack 3.42 m 2.07 m 1.68 m

In accordance with Table 2, the proposed EE-UKF technique attained superior integra-
tion performance of multi-sourced data in contrast to the MA-PF and HTrack methodolo-
gies, thanks to the error ellipse-oriented UKF amalgamation strategy. The realized average
positioning inaccuracy was lower than 1.13 m, which was remarkably lower compared
to the MA-PF and HTrack schemes (which registered average inaccuracies of 1.31 m and
1.68 m, respectively).

5. Conclusions

To improve the positioning ability in complex and changeable urban buildings, this
paper presents an autonomous multi-floor localization framework using smartphone-
integrated sensors and pedestrian network matching (ML-ISNM). A robust data and model
dual-driven pedestrian trajectory estimator is proposed for accurate integrated sensor-based
positioning under different handheld modes and disturbed environments. The Bi-LSTM
network was further developed for floor recognition using extracted environmental features
and pedestrian motion features, and further combined with the indoor network matching
algorithm for acquiring accurate location and floor observations. In the multi-source fusion
phase, an error ellipse-enhanced unscented Kalman filter is presented to realize the multi-
source fusion of the trajectory estimator, human motion constraints, and indoor network
information. The empirical outcomes validate that the proposed ML-ISNM achieves self-
directed and accurate 3D indoor localization performance in intricate and extensive indoor
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settings, with an average estimated positioning inaccuracy below 1.13 m, and without any
reliance on wireless amenities.

The advantages of the proposed ML-ISNM contain the following aspects. Firstly,
no additional local facilities are required for positioning purposes. The proposed ML-
ISNM framework uses only smartphone-integrated sensors and extracted indoor network
information for accurate multi-floor localization. Secondly, the proposed ML-ISNM has
proven accurate and stable positioning performance under complex human motion and
handheld modes and in disturbed indoor environments based on the EE-UKF fusion model.
Thirdly, the proposed ML-ISNM can acquire precise initial location and floor information
according to network matching and floor detection results, which is more autonomous
than the existing approaches and applicable to providing universal location-based services.

The proposed ML-ISNM also has some limitations. The human trajectory is usually
disordered and complex, which decreases the performance of pedestrian network matching.
Thus, a more robust network matching algorithm is expected to enhance the matching
accuracy for disordered trajectories. In addition, more complex human motion and hand-
held modes need to be considered to improve the robustness and precision of the data and
model dual-driven method, which is more suitable for real-world applications.

The future work of this research includes the enhancement of the current ML-ISNM
framework, improving the adaptability to more complex human motion and handheld
modes, and developing more robust network matching and floor detection algorithms,
which can be applied for the fast calibration of initial location/floor information and for
providing more accurate observation information to the trajectory estimator. In addition,
other advanced deep-learning frameworks [44] can also be attempted for human trajec-
tory prediction and estimation using multi-sensor data, for instance, a new automatic
pruning method—sparse connectivity learning (SCL)—proposed by Tang et al. [45], a
channel-pruning method via class-aware trace ratio optimization (CATRO) proposed by
Hu et al. [46], and the weight-quantized SqueezeNet model developed by Huang [47].
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