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Abstract: In ground static target detection, polarimetric high-resolution radar can distinguish the
target from the strong ground clutter by reducing the clutter power in the range cell and providing
additional polarimetric features. Since the energy of a target is split over several range cells, the
resulting detection problem is called polarimetric range extended target (RET) detection, where all
target scattering centers should be considered. In this paper, we propose a novel polarimetric RET
detection method via adaptive range weighted feature extraction. Specifically, polarimetric features of
range cells are extracted, and a pretrained attention-mechanism-based module is used to adaptively
calculate range cells weights, which are used to accumulate the range cells features as detection
statistics. While calculating weights, both amplitude and polarimetric features are considered. This
method can make the most of polarization information and improve the accumulation effect, thus
increasing the discrimination between targets and clutter. The effectiveness of the proposed method
is verified compared to both popular energy-domain detection methods and existing feature-domain
detection methods, and the results show that our method exhibits superior detection performance.
Moreover, we further analyze our method on different target models and different clutter distributions
to prove that our method is suitable for different types of targets and clutter.

Keywords: polarimetric high-resolution radar; range extended target detection; attention mechanism

1. Introduction

Polarimetric high-resolution radar plays an important role in ground static target
detection. On the one hand, high resolution can reduce clutter energy per range cell [1,2].
On the other hand, polarization can provide different scattering characteristics information
between clutter and targets [3,4]. In polarimetric high-resolution radar, the energy of a
target splits in the resulting polarimetric high-resolution range profile (HRRP), leading to
the range extended target (RET, also known as range spread target or range distributed
target) detection problem [5–7].

Existing polarimetric high-resolution radar RET detection (hereinafter referred to
as polarimetric RET detection) methods mainly detect in the energy domain. In these
energy-domain detection methods, multi-polarization channels are fused into one channel
to suppress clutter [8–12], and then extended target detection methods are used on the
fused channel to determine whether a target exists [13–19]. However, in some scenes with
strong clutter, distinguishing targets from clutter by only energy information is challenging
and many false alarms may emerge in the outputs of these energy-domain detection
methods [20–24].

Recently, in RET detection, many methods exploiting the features of clutter have
been developed [25–28]. In these feature-domain detection methods, features are extracted
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from range cells as detection statistics, and then targets and clutter are distinguished in
the feature space. These methods exploit more scattering characteristics beyond energy,
resulting in better detection performance [29–31]. For example, in [32], waveform contrast
features were used in ground moving target detection and improved robustness to low
signal-to-noise ratio scenarios. In [33], cross time-frequency distribution features were used
in aircraft detection. Other studies mainly focus on maritime target detection. In [23], the
correlation feature was used to eliminate the negative effect of the nonstationary property
of sea clutter. Similarly, in [34], features about the consistency factor of speckle were used to
eliminate the negative effect of the nonstationary property of sea clutter. In [35], waveform
contrast features were used to eliminate the detrimental influence of range migration. In
addition, there are also fractal features [36], Hurst exponent features [37], etc., but there are
few detection methods using polarimetric information.

Inspired, we focus on extracting polarimetric features for target detection. Drawing
on other feature-domain detection methods, the process of using polarization features to
obtain detection statistics is mainly divided into two steps: first extract features for each
range cell, and then accumulate features of multiple range cells. For polarization feature
extraction, there has been a lot of research [38–42]. For feature accumulation of multiple
range cells, since the position of the target is unknown, either all range cells are considered
to have the same contribution and accumulated; or only high-amplitude range cells are
considered to have a contribution and accumulated. The former will accumulate too much
clutter, similar to the collapsing loss [43] faced by energy-domain detection methods. The
latter will lose weak scattering centers whose characteristics are significantly different from
clutter. Determining how to make range cells participate in accumulation to obtain better
feature-domain detection statistics (FDS) needs to be researched.

In this paper, we propose a novel feature-domain range extended target detection
method for polarimetric high-resolution radar via adaptive range weighted feature extrac-
tion. First, we extract multiple polarimetric features for each range cell. Then, a pretrained
attention mechanism network (AMN) is used to adaptively calculate the weight for each
range cell, which reflects the contribution of each range cell to the detection task. Next, fea-
tures of range cells are accumulated by these weights to achieve FDS. Especially, the AMN
is pretrained to obtain the ability to find the difference between targets and clutter and
adaptively calculating weights, and both amplitude and feature information are considered
in the training process to further improve the weights calculation performance.

The contributions of this paper can be summarized as follows:

• We propose a feature-domain polarimetric RET detection framework. There are two
branches in this framework; one extracts polarimetric features on each range cell and
the other calculates weight for each range cell. By using range cells weights to accu-
mulate features of range cells as FDS, the influence of clutter can be reduced while the
weak scattering centers can be preserved, thereby improving detection performance.

• An attention-based network is designed to adaptively calculate range cells weights
in the weight calculation branch. This AMN is pretrained on known target data to
obtain the adaptive weights calculation ability. At the same time, both amplitude
and feature information are used in the training process, which helps to obtain better
calculate performance.

• Numerous experiments are carried out to verify the effectiveness of the proposed
method as compared with both popular energy-domain detection methods and exist-
ing feature-domain detection methods.

The remainder of this paper is organized as follows: Section 2 introduces background
knowledge about polarimetric RET detection and the AMN. Section 3 describes the pro-
posed detection method in detail. Section 4 shows experimental results to demonstrate the
effectiveness of the proposed detection method. Finally, discussion and conclusions are
given in Sections 5 and 6.
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2. Background
2.1. Polarimetric Range Extended Target Detection

Polarimetric RET detection can be modeled as a binary hypothesis problem [44].
Assuming that the detection window is a segment of the radar echo, the task is to detect the
presence of the target in the detection window [45]. Specifically, we only consider the case
that only one target is in the detection window here, and the noise is ignored because the
ground clutter power is usually stronger than that of the noise [46,47]. In each range cell,
the received signal, the clutter signal, and the target signal can be, respectively, represented
as zn, cn, and sn, and the detection problem can be described as follows:{

H0 : zn = cn, n = 1, 2, ..., N

H1 : zn = sn + cn, n = 1, 2, ..., N
, (1)

where n represents the index of the range cell. Each zn, cn, and sn is a vector composed
of signals received by four polarization channels (HH, HV, VH, and VV). Assuming that
the target is spatially distributed across all the N range cells in some fashion, each range
cell could consist of the clutter plus target or clutter by itself. The following describes the
detection process of the two categories of detection methods mentioned in Section 1.

When detecting in the energy domain, first, zn of four polarization channels is fused
into ẑn of one channel. Then, the energy of RET scattered on multiple range cells is
accumulated, and a detection threshold Th is used to make the decisions:

exist target :
N

∑
n=1

wnẑn > Th

no target :
N

∑
n=1

wnẑn ≤ Th

, (2)

where wn represents the weight of the n-th range cell, and Th is related to the estimated
clutter power. The values of wn and Th are calculated differently in different methods, and
directly determine the detection performance.

When detecting in the feature domain, first, features are extracted from the received zn
as fn, and wn fn over range cells is accumulated. Then, a hyperspherical classifier is found
to classify targets and clutter in feature space. Detection result is determined by evaluating
which side of the hypersphere the ∑ wn fn falls on:

exist target : dist(
N

∑
n=1

wn fn − hc) > hr

no target : dist(
N

∑
n=1

wn fn − hc) ≤ hr

, (3)

where dist(x− y) means to calculate the distance between x and y, wn means the weight
of the n-th range cell, hc is a vector that means the center of the hypersphere, and hr is a
scalar that means the radius of the hypersphere. If ∑ wn fn falls within the hypersphere,
it is judged that there is no target, and if it falls outside the hypersphere, it is judged that
there is a target. The method used in this paper belongs to this category.

2.2. Attention Mechanism Network

The AMN originated from the study of human vision [48]. Human beings often selec-
tively ignore some information according to their cognition and only focus on specific parts
of the image to filter out valuable information. Inspired by this visual attention mechanism,
researchers tried to simulate this information selection and weight calculation process, thus
constructing the AMN. In recent years, the AMN has made important breakthroughs in the
fields of natural language processing [49], image recognition [50], target detection [51,52],
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etc. [53–55], and its advantages in improving the effectiveness of information processing
have been proven.

Figure 1 shows the structure of the AMN. The data source (Source) can be assumed to
consist of a series of key-value pairs 〈Key−Value〉, and the attention mechanism maps the
query (Query) to the attention representation (Attention) through Source [56]:

Attention(Query, Source) =
np

∑
i=1

similarity(Query, Keyi) ·Valuei, (4)

where np represents the number of key–value pairs. Query. Key and Value can be abbre-
viated as Q, K, and V. The computation of the attention representation mainly includes
three steps:

(1) Calculate the similarity between the Q and each K, and find the weight. The commonly
used calculation similarity functions include dot product similarity, stitching similarity,
cosine similarity, etc. We use dot product similarity here:

fdot(Q, Ki) = QKT
i . (5)

(2) Use softmax to normalize the weight to find the weight coefficient:

ai = softmax( fdot(Q, Ki)) =
e fdot(Q,Ki)

n
∑

j=1
e fdot(Q,Kj)

, (6)

where softmax() represents the softmax function which converts a vector of numbers
into a vector of probabilities, where the probabilities of each value are proportional
to the relative scale of each value in the vector. fdot(Q, K) represents dot product
similarity between Q and K as shown in (5).

(3) Use weight coefficient to sum V to obtain the final attention representation:

Z = Attention(Q, K, V) =
np

∑
i=1

aiVi. (7)

The information selection and weight calculation process of the AMN are consistent
with the idea of weighting range cells. Therefore, in this paper, we use the AMN to calculate
range cells weights in feature extraction.

Figure 1. The structure of the AMN.
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3. Methods
3.1. Structure and Composition
3.1.1. Overall Structure

In this paper, we propose a feature-domain RET detection method via adaptive range
weighted feature extraction. In the method, we first extract polarimetric features and
calculate weights of range cells to obtain FDS, and then use a classifier in the feature
domain to determine whether a target exists. The peculiarity of this method lies in the
design of obtaining FDS, which includes two sub-steps: extracting features of range cells
and adaptively calculating weights for range cells. In particular, the adaptive range cells
weights calculation is realized through the AMN, which is pretrained on known data with
supervision weights. The overall structure of our proposed detection method is shown in
Figure 2, which mainly includes four modules.

Figure 2. Overall structure of our proposed detection method. The symbol⊗ represents accumulating
features of range cells. (a) Range cells feature extraction module: extracting multiple polarimet-
ric features for each range cell. (b) Adaptive range cells weights calculation module: adaptively
calculating range cells weights, which are used for adaptive range weighted feature extraction.
(c) Supervision weights generation module: generating supervision weights of known data, which
are used for pretraining the adaptive range cells weights calculation module. (d) Classification
module: using a classifier in the feature domain to determine whether a target exists.

3.1.2. Range Cells Feature Extraction Module

This module extracts three kinds of polarimetric features for each range cell, including
Freeman decomposition features, Pauli decomposition features, and Krogager decomposi-
tion features. Below are brief descriptions of these features:

(1) Freeman decomposition features

Freeman decomposition [41] decomposes the total scattering of echo into three compo-
nents: surface scattering Ps, double-bounce scattering Pd, and volume scattering Pv. The
calculation formula is

Ps = fs

(
1 + |β|2

)
,

Pd = fd

(
1 + |α|2

)
,

Pv =
8 fv

3
,

(8)

where fs, fd, and fv are the surface, double-bounce, and volume scattering contributions. α
and β are two coefficients.
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(2) Pauli decomposition features

Pauli decomposition [42] decomposes the total scattering of echo into three compo-
nents: single-bounce scattering α, double-bounce scattering β, and volume scattering γ.
The calculation formula is

α =
1√
2
(SHH + SVV),

β =
1√
2
(SHH − SVV),

γ =
√

2SHV ,

(9)

where SHH , SVV , and SHV are elements on the polarization scattering matrix.

(3) Krogager decomposition features

The Krogager decomposition [38] decomposes the total scattering of echo into three
components: sphere scattering ks, dihedral scattering kd, and helix scattering kh. The
calculation formula is

ks = |SHV |,
kd = min(|SHH |, |SVV |),
kh = abs(|SHH | − |SVV |).

(10)

This module extracts M (here, M = 9) features of each range cell. For features with
complex values, we take the modulus. Finally, for a sample containing N distance cells, we
generate a feature matrix Fpol ∈ RM×N .

3.1.3. Adaptive Range Cells Weights Calculation Module

This module adaptively calculates range cells weights, which is realized by the AMN,
as shown in Figure 3. Based on the background knowledge introduced in Section 2.2, we
use the feature matrix Fpol as V, and multiply the input polarimetric HRRP with learnable
parameters WQ and WK to obtain Q and K. Through this design, we can obtain the adaptive
weights wada directly from the polarimetric HRRP. The formula is

wada = Softmax
(

fdot
(
WQX, WKX

))
=

e fdot(WQX,WKX)

n
∑

j=1
e fdot(WQX,WKX)

, (11)

where X represents the input polarimetric HRRP. Softmax(·) represents the softmax func-
tion. fdot(·, ·) represents dot product similarity, as shown in (5).

Figure 3. Structure of the adaptive range cells weights calculation module, and the process of adaptive
range weighted feature extraction. The symbol ⊗ represents matrix product.



Remote Sens. 2023, 15, 2929 7 of 20

It should be noted that the sizes of WQ and WK are related to the size of input HRRPs.
In order to adapt to the length of the input data, WQ and WK need to be set as a square
matrix whose side length is equal to the number of range cells in the input HRRPs.

3.1.4. Supervision Weights Generation Module

The supervision weights generation module is designed to facilitate the training of the
adaptive range cells weights calculation module. As the real weights cannot be obtained
directly, this module is used to provide the necessary supervision weights for the training
process, as shown in Figure 4. It should be noted that the supervision weights are calculated
on training data with known target positions, which ensures that the results are accurate
enough to be used as supervision information.

Figure 4. Framework of the supervision weights generation module. In W, 1 means marked as high
contribution and 0 means marked as low contribution.

In this module, we calculate range cells contributions to the detection task to obtain
supervision weights. In the process, each range cell is marked as high contribution and
low contribution through amplitude and feature information, respectively. Then, we
comprehensively consider these two factors to obtain the range cell’s total contribution, and
this total contribution is used as the supervision weights. The specific calculation process
mainly includes the following three steps:

(1) According to the amplitude, we calculate the amplitude-based marking vector T.
Specifically, we use the polarimetric whitening filter (PWF) to process the four polar-
ization channels into one single channel. Then, we consider the range cells where the
target locates as high contribution (marked with 1), and the other range cells as low
contribution (marked with 0). These markers together constitute the amplitude-based
marker vector T ∈ R1×N .

(2) According to the polarimetric features, we calculate the feature-based marking matrix
A. Specifically, each feature value in feature matrix Fpol is compared with this feature’s
upper and lower quantiles which are calculated on clutter data in advance. If the
feature value is between these two quantiles, the corresponding range cell is consid-
ered as low contribution and marked with 0, or the range cell is considered as high
contribution and marked with 1. These markers together constitute the feature-based
marking matrix A ∈ RM×N . The formula is
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A(t, n) =
{

0, Feadn
t < Fpol(t, n) < Feaup

t
1, others

, (12)

where t = 1, 2, ..., M represents the sequence number of the feature, n represents the
index of the range cell, Feadn

t and Feaup
t represent the lower and upper quantiles of

the t-th feature, and Fpol(t, n) represents the value of the t-th feature of the n-th range
cell in the feature matrix Fpol.

(3) According to the frequency of each range cell marked as high contribution, we obtain
supervision weights wsup. Specifically, vector T and matrix A are combined to obtain
the target range cells marking matrix W ∈ R(M+1)×N , and the W is summed by col-
umn and normalized to obtain the supervision weights wsup ∈ R1×N . The formula is

wsup(n) =

M+1
∑

i=1
W(i, n)

N
∑

j=1

M+1
∑

i=1
W(i, j)

, (13)

where wsup(n) represents the supervision weight of the n-th range cell.

After obtaining the supervision weights, the adaptive range cells weights calculation
module can be trained. During training, the object is to make the adaptive weights wada
and the supervised weights wsup as equal as possible, so mean square error is selected to be
loss function L in the training process, as shown in the following formula:

L =
∑num

idx=1
∥∥wada(idx)− wsup(idx)

∥∥2
2

num
, (14)

where num represents the number of samples, ‖·‖2 represents the calculation of 2-norm, and
wada(idx) and wsup(idx) represent the weights vector calculated by the adaptive range cells
weights calculation module and the supervision weights generation module, respectively,
for the idx-th sample.

It should be noted that, although the polarimetric features can help to find high-
contribution range cells other than those found by using the amplitude, in actual detection,
low signal-to-clutter ratio (SCR) makes it difficult to obtain the target position, which
will affect the effect of using the amplitude and polarimetric features at the same time.
Therefore, we do not directly use features to calculate weights in real data detection in this
paper. Instead, an AMN-based adaptive range cells weights calculation module pretrained
on known data is designed to adaptively calculate weights on real data. In order to make
the network robust to calculate weights under different SCRs, we obtain wsup on known
data with high SCR and use the same wsup for data with different SCRs generated by the
same target segment to train the AMN. By training with data of different SCRs, the adaptive
range cells weights calculation module can mine intrinsic rules of data that do not change
with SCR and calculate the weights for testing data with different SCRs more accurately.

3.1.5. Classification Module

The function of this module is inputting the FDS into a classifier to determine whether
a target exists. In radar target detection, the target is usually unknown, and only clutter data
can be used to construct classified hypersphere. Therefore, detection methods usually use
one-class classifiers to this situation [57,58]. Currently, one-class support vector machine
(OCSVM) is very popular in the field of radar detection [59–62], so we choose OCSVM to
determine whether a target exists.

OCSVM is a boundary learning algorithm in the field of machine learning. It maps
data to high-dimensional feature space, and finds a hypersphere that contains only positive
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samples in the space. Then, the hypersphere is used to distinguish negative samples.
Constructing the OCSVM can boil down to [37]:

min
ξ∈RL ,b∈R

1
2
‖w‖2 +

1
vL ∑

i
ξi

s.t.(w · ϕ(zi)) ≥ b− ξi, ξi ≥ 0
, (15)

where w and b are the weight parameters and offset of OCSVM, respectively. ‖w‖means to
take the norm of w. L is the number of training samples. ξi is a slack variable corresponding
to i-th feature vector zi. The parameter v indicates that v proportion of training samples
are considered outliers, which can be considered as the false alarm rate in radar target
detection. ϕ(·) is a nonlinear function that maps input space into a Hilbert space. We used
Gaussian kernel as ϕ(·) in this paper, and the calculation formula is

ϕ(zi) = e−
‖zi‖2

2σ2 , (16)

where σ is Gaussian root mean square width, which adjusts the smoothness. The above
formula describes finding a hypersphere that is as small as possible that contains all clutter
samples but does not include outliers.

In our method, OCSVM is trained on clutter features to obtain the hypersphere. For
the sample to be tested, by judging the relative position of its FDS with the hypersphere, the
target detection result can be obtained. This kind of method can realize detection without
estimating the clutter distribution.

3.2. Training and Testing Procedure

For our proposed detection method, pretraining is required before being used for real
data processing. Below, we will introduce the training and testing procedure, which can be
divided into three steps:

(1) First, the parameters of AMN in the adaptive range cells weights calculation module
need to be trained in advance to have the ability to adaptively calculate range cells’
weights. The known target data and clutter data are used in the training to let the
network learn to find the difference on the range cells between targets and clutter. The
dataset used in this step is denoted as Damn

tr .
(2) Then, the classification module needs to be trained in advance to find the hypersphere

that classifies clutter and targets. Since the targets are unknown in practice, here, we
only use the set of clutter features for training. The dataset used in this step is denoted
as Dcls

tr .
(3) Finally, when detecting, the polarimetric HRRPs are input, and the FDSs are obtained

through range cells feature extraction, weights calculation, and feature accumulation.
The FDSs are input into the classification module to obtain the detection results. The
dataset used in this step is denoted as Dte.

In summary, our method uses three datasets, two of which are used for training (Damn
tr

and Dcls
tr ) and one for testing (Dte). The distribution of clutter in these data is assumed to

be consistent.

4. Results
4.1. Experimental Settings

The data used in this paper are constructed on the basis of the Georgia Technology
Research Institute (GTRI) dataset [63,64]. In the GTRI raw data, HRRP data of T-72 target’s
full azimuth angles and different elevation angles are included. The range resolution is
about 0.3 m. Since HRRP has a strong aspect sensitivity, we use data from two different
elevation angles in GTRI to train and test, respectively. At each elevation angle, there are
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85 HRRPs for different azimuth angles. Based on the GTRI dataset, the details of the three
datasets, Damn

tr , Dcls
tr , and Dte, we used are shown in Table 1.

Table 1. Data statement.

Training Data Testing Data

Damn
tr Dcls

tr Dte

Data composition Target samples with different SCRs Clutter samples Target samples with different SCRs
Role in the method Training AMN Training OCSVM Testing the performance

Target elevation angles 27.99° - 29.99°
Target azimuth angles 0–360° (interval 4.25°) - 0–360° (interval 4.25°)

SCRs −9–10 dB (interval 1 dB) - −9–10 dB (interval 1 dB)
Monte Carlo times for each SCR 100 - 100

Total 170,000 a 168,000 170,000 a

a 170,000 = 85 × 20 × 100, i.e., number of target azimuth angles × number of SCRs × Monte Carlo times for
each SCR.

For Damn
tr , clutter is added to original data to generate data with SCR of −9–10 dB and

1 dB interval. For each SCR, 100 samples are generated by Monte Carlo. Thus, a total of
85 (number of target azimuth angles) × 20 (number of SCRs) × 100 (Monte Carlo times for
each SCR) = 170,000 samples are obtained.

For Dcls
tr , from the view of radar target detection, to train a detector with a false alarm

probability of p f a, at least 10/p f a data are required to be more reliable. In this paper,
the false alarm probability is set to 10−4, and the required data are greater than 100,000.
Considering the sizes of the other two datasets, nearly 170,000 clutter samples are used here.

For Dte, the target data come from a different elevation angle and the generation pro-
cess is the same as for Damn

tr . A total of 85 (number of target azimuth angles) × 20 (number
of SCRs) × 100 (Monte Carlo times for each SCR) = 170,000 samples are obtained.

Some generated data are shown in Figure 5. Considering the detection of ground
vehicle targets, we set the detection window to 10 m, and because the range resolution is
about 0.3 m, we set the samples to have 33 range cells.

At the same time, since the sizes of the WQ and WK in the AMN depend on the size of
HRRP, as mentioned in Section 3.1.3, we set the sizes of WQ and WK both to 33 × 33.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Generated HRRP data with different SCRs. (a) SCR = −5dB; (b) SCR = 0dB; (c) SCR = 5dB;
(d) SCR = 10dB.

4.2. Comparison with Other Detection Methods

To verify the detection performance of the proposed method, we compared our
proposed detection method with traditional popular detection methods such as M/N
detector [65], SDD-GLRT [15], and GLRT-DT [18]. Because the detection performance of
the M/N detector is related to the selection of the second threshold M and the value of M
is usually obtained by experimental attempts, here, we selected the value of M from 1 to 5.
For these methods, we used the PWF to fuse the multiple polarization channels into one
channel first. Meanwhile, feature-domain detection methods proposed in [25,37] are also
compared, which are referred to as FOCSVM and PRFSVM, respectively. The false alarm
probability was set to 10−4.

The detection probability (Pd) curve is shown in Figure 6. It is clear that the proposed
method achieves the best performance, and the feature-domain detection methods achieve
higher detection performance than the energy-domain detection methods, indicating that
the mining and use of features are conducive to detection. In addition, the improvement
effect is generally more obvious when the SCR is smaller than 2 dB: to achieve the detection
probability of 90%, the SCR required by our method is about 0.5 dB, which is about 0.5 dB
lower compared with the algorithm whose performance is second only to our method. The
results show that the proposed method can better adapt to scenes with strong clutter.

Figure 6. Detection probability curves compared with other detection methods.
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4.3. Analysis on Module Settings
4.3.1. Analysis on the Adaptive Range Cells Weights Calculation Module

We further evaluated the effectiveness of the proposed adaptive range cells weights cal-
culation module. Two comparison methods were set, which were averaging the features of
all range cells (AARC) and averaging the features of high amplitude range cells (AHARC).

The detection probability curve is shown in Figure 7. The results show that the pro-
posed method achieves a higher detection probability. At the same time, the detection
performance of AHARC is worse than the other two methods, which shows that it is
inappropriate to accumulate high-amplitude-range cells in feature-domain detection, be-
cause the range cells with low amplitude but with features obviously different from clutter
are much more useful in detection. Our proposed method can take advantage of these
range cells.

Figure 7. Detection probability curves of three feature accumulation methods.

In addition, to obtain insight into the cause of this result, we further analyzed the
adaptive weights and the separability between the clutter and the target.

(1) Visual analysis on adaptive weights

Figure 8 shows the visual analysis on adaptive weights. In the figure, the first line
shows the HH channel of different samples, and the second line presents heat diagrams of
their corresponding adaptive weights. The three target samples are generated by the same
target segment.

(a) (b) (c) (d) (e)

Figure 8. HRRPs of clutter and targets with different SCRs and heat diagrams of adaptive weights.
(a) Clutter; (b) SCR = −5dB; (c) SCR = 0dB; (d) SCR = 5dB; (e) colorbar. In the heat diagrams, the
values of weights of the range cells are normalized, and the color display settings are the same
for all heat diagrams. The colder colors correspond to lower weights and warmer colors indicate
higher weights.
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From the figure, it is evident that when the SCR was low, the range cells occupied by
the clutter had approximately the same amplitudes as the range cells containing the target.
As such, it was difficult to differentiate between these two kinds of range cells based on
their amplitude. However, in low-SCR conditions (−5 dB and 0 dB), our proposed method
calculated weights which were close to that of a relatively high SCR (5 dB). Specifically, the
15-th to 25-th range cells were given higher weights. For clutter, the heat diagram shows
that our proposed adaptive range cells weights calculation module did not find range
cells that were obviously useful for detection. The result demonstrates that our proposed
module can automatically identify range cells with target scattering centers under low-SCR
conditions, thereby achieving better range cells weights calculating performance.

(2) Separability analysis between clutter and target

In this paper, we propose to enhance the separability of targets and clutter FDS by
giving different weights to range cells. To assess the performance of our proposed method,
we analyzed the separability between clutter and target by computing the maximum mean
discrepancy (MMD) [66]. The calculation formula is

MMD2(X, Y) =

∥∥∥∥∥
(
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), (17)

where φ(·) denotes an element of a set of functions in the unit ball of a reproducing kernel
Hilbert space. X and Y represent two input sets, xi ∈ X, yi ∈ Y. In our calculations, X
represents the set of clutter features and Y represents the set of target features with a specific
SCR. K(·, ·) denotes the Gaussian kernel function, and the calculation formula is

K(x, y) = e−
‖x−y‖2

2σ2 , (18)

where σ is Gaussian root mean square width which adjusts the smoothness. The detailed
derivation process can be found in [67].

In Figure 9, the MMD curves are presented. The smaller the MMD value, the smaller
the difference. It can be observed that our method improved the separability. It can also
be seen that only accumulating the features of high-amplitude range cells is not beneficial
to improve the separability between clutter and targets. Our method considers both
amplitude and feature information to adaptively weight range cells, which can obtain more
discriminative FDS.

Figure 9. MMD curves of three feature accumulation methods.
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4.3.2. Analysis on Supervision Weights Calculation Module

To evaluate whether the joint use of amplitude and polarimetric features can increase
information utilization and enhance the weights calculation performance, we compared
the detection performance of three methods that only uses amplitude information, only
uses feature information, or jointly uses both. The distinction between these three methods
lies in the information used for obtaining supervision weights.

As depicted in Figure 10, the proposed method achieves a higher detection probability.
It is evident that training AMN using only amplitude or feature information is not optimal,
and combining amplitude and feature information can improve detection performance.

Figure 10. Detection probability curves of three methods using different dimensional information.

4.4. Analysis on Different Target Models

To further analyze the applicability of our proposed method on different target models,
we set up two target energy distributions for detection—targets with concentrated energy
distribution and targets with dispersed energy distribution. Here, due to the limitation of
data, we chose echo of frontal direction to simulate the target with relatively concentrated
energy and echo of head-on direction to simulate the target with more dispersed energy, as
shown in Figure 11.

(a) (b)

Figure 11. Targets with different energy distributions. (a) Target with concentrated energy distribu-
tion; (b) target with dispersed energy distribution.

In this experiment, due to the relatively high detection performance, the SDD-GLRT,
GLRT-DT, FOCSVM, and PRFSVM introduced in Section 4.2 and the AARC introduced
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in Section 4.3.1 were selected as comparison methods. As shown in Figure 12, it can be
observed that the proposed method achieved the highest detection probability. Moreover,
comparing results under both energy distributions, it is evident that targets with relatively
concentrated energy are more difficult to detect. This is because when the length of the
detection window is fixed, fewer range cells are occupied by the target and, thus, the
negative effects of clutter become more severe. The detection performance of AARC would
degrade obviously, while our proposed method was able to tackle this issue effectively
through adaptive weight calculation.

(a) (b)

Figure 12. Detection performance of targets with different energy distributions. (a) Target with
concentrated energy distribution; (b) target with dispersed energy distribution.

4.5. Analysis on Range Resolution

The influence of range resolution on detection performance was further analyzed.
Specifically, based on the original echoes of the GTRI dataset, we obtained HRRP data with
range resolutions of 0.3, 0.6, 0.9, and 1.2 m by changing the number of frequency-hopping
sub-pulses. The detection results are shown in Figure 13. As shown, the higher the range
resolution, the higher the detection probability. This result is expected because the key point
that our proposed method can improve the detection probability is to weight the range cells.
When the range resolution increases, multiple range cells that cannot be resolved under
low-resolution conditions can be resolved and be weighted separately, thereby improving
the detection performance.

Figure 13. Detection probability curves of different range resolutions.
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5. Discussion

The advantages of our method: In the present study, we propose a novel polarimetric
feature-domain RET detection method, which not only uses polarimetric features but also
proposes a feature accumulation method with adaptive weighting. For energy-domain
detection methods, extracting high-amplitude range cells and accumulating energy on
them is beneficial to avoid the problem of collapsing loss, but for feature-domain detec-
tion methods, the amplitude is not strongly correlated with features. Accumulating only
high-amplitude range cells will lose target weak scattering centers whose scattering charac-
teristics are significantly different from clutter, leading to a drop in detection performance,
which can be seen in Figure 7. We propose an AMN-based module to adaptively calculate
weights of range cells from the perspective of jointly using energy and feature information,
which can allow the range cells to participate better in accumulation. The above reasons
together lead to the better detection performance of our proposed method, which can be
seen in Figure 6.

Applicable conditions of our method: In order to see the adaptability of the proposed
method to different clutter distributions, in addition to the clutter used in Section 4 (denoted
as clutter A), we collected another kind of clutter data (denoted as clutter B) and conducted
experiments. The experimental results of different detection methods under clutter B
are shown in Figure 14a. It can be seen that the proposed method also achieves the
best detection performance in the new clutter background. This shows that our proposed
method is applicable to different clutter backgrounds, and theoretically, although we design
it for ground targets, it is also suitable for sea target detection. However, sea clutter has its
unique characteristics [68,69], such as strong time variability, and the distribution of training
and testing data may be different. Therefore, we additionally design experiments (as shown
in Table 2) to see the performance when the training and testing clutter distributions are
different. The results are shown in Figure 14b. When the training and testing data are
different, the detection performance will drop. This is expected since our approach is data-
driven. Despite the influence, we can train the detector with various clutter distributions,
and as long as the clutter to be tested is learned, good detection performance can be
achieved. As shown in the black line with circle markers (AB_tr_B_te) in Figure 14b,
training on various clutter can facilitate this problem.

Table 2. Experimental settings when the testing clutter distribution is different from the training data.

Case Training Clutter Distribution Testing Clutter Distribution

B_tr_B_te B B
A_tr_B_te A B

AB_tr_B_te A and B B

(a) (b)

Figure 14. Detection probability curves. (a) Under clutter B; (b) training and testing clutter distribu-
tions are different.
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Outlook: Although our proposed method is proposed for the problem of target
detection in one-dimensional (1D) radar using polarimetric features, it is also applicable
to other feature-domain detectors that extract features on range cells and even to two-
dimensional (2D) radar images. The proposed method can be adapted to 2D radar images
by extending the dimension of the network and extracting high-contributing range cells
along both the range and azimuth directions. Under 1D high-resolution radar, target
information is scattered in multiple range cells, and adaptively assigning different weights
to range cells is beneficial to improve detection performance. Two-dimensional radar
images can achieve high resolution from both distance and azimuth [70], and assigning
different weights to pixels in the image may improve detection performance compared to
1D. In addition, we will study modeling the RET detection problem as an anomaly detection
problem on a data flow and try other algorithms such as unsupervised drift detection in
the future.

6. Conclusions

A novel RET detection method that extracts polarimetric features and adaptively
assigns different weights for range cells during obtaining FDS is established. Polarimetric
features that reflect scattering properties are used to detect targets, and adaptive weighting
further increases the separability between targets and clutter. The proposed method was
compared with both traditional popular energy-domain detection methods and existing
feature-domain detection methods on ground target polarimetric HRRPs with azimuth
angles of 0–360° and achieved the highest detection probability. Moreover, we analyzed
the situation when the target model was different, and found that in the two cases of
targets with concentrated energy distribution and with dispersed energy distribution, there
are performance improvements for both. Further work will focus on situations when
the training clutter is different from that in real data processing to further increase the
robustness to clutter distribution changes.
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