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Abstract: A high-resolution population distribution map is crucial for numerous applications such 
as urban planning, disaster management, public health, and resource allocation, and it plays a piv-
otal role in evaluating and making decisions to achieve the UN Sustainable Development Goals 
(SDGs). Although there are many population products derived from remote sensing nighttime light 
(NTL) and other auxiliary data, they are limited by the coarse spatial resolution of NTL data. As a 
result, the outcomes’ spatial resolution is restricted, and it cannot meet the requirements of some 
applications. To address this limitation, this study employs the nighttime light data provided by the 
SDGSAT-1 satellite, which has a spatial resolution of 10 m, and land use data as auxiliary data to 
disaggregate the population distribution data from WorldPop data (100 m resolution) to a high res-
olution of 10 m. The case study conducted in Guilin, China, using the multi-class weighted dasy-
metric mapping method shows that the total error during the disaggregation is 0.63%, and the ac-
curacy of 146 towns in the study area is represented by an R2 of 0.99. In comparison to the WorldPop 
data, the result’s information entropy and spatial frequency increases by 345% and 1142%, respec-
tively, which demonstrates the effectiveness of this approach in studying population distributions 
with high spatial resolution. 

Keywords: population distribution; SDGSAT-1 nighttime light data; multi-class dasymetric  
mapping; Guilin 
 

1. Introduction 
The 2030 Agenda for Sustainable Development, which was adopted by all Member 

States of the United Nations in 2015, provides a comprehensive framework towards peace 
and prosperity for all humankind through the accomplishment of 17 Sustainable Devel-
opment Goals (SDGs) [1]. High-resolution population distribution information is of criti-
cal importance for evaluation and decision-making in relation to the achievement of sev-
eral of these SDG indicators at a fine resolution, such as those pertaining to traffic plan-
ning referring to SDG 11.2.1 [2,3], public health facilities construction referring to SDG 
3.8.1 [4,5], and disaster prevention and response planning referring to SDG 11.5.1/11.5.2 
[6–9]. 

Currently, there are two types of widely used population distribution data. The first 
is based on census statistics that are aggregated over administrative units, e.g., provinces, 
counties, townships, census tracts, or block groups [10]. However, these population data 
do not accurately represent the true spatial distribution of the population because spatial 
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homogeneity exists in the census results of the administrative units of each region [11]. 
The second type of data is the disaggregated population product derived from remote 
sensing nighttime light (NTL) data and other auxiliary data [12–15], such as the Gridded 
Population of the World (GPW), WorldPop datasets, the Oak Ridge National Laboratory’s 
LandScan Population data, the European Commission Joint Research Centre (JRC) and 
CIESIN’s Global Human Settlement Population Layer (GHS-POP), ESRI’s World Popula-
tion Estimate (WPE), Facebook and CIESIN’s High Resolution Settlement Layer (HRSL), 
JRC’s European GHS Population Grid, and the U.S. Census Bureau’s country grids (De-
mobase) [16]. Most of the current population distribution products were inversed from 
the DMSP/OLS or NPP/VIIRS data with spatial resolution around 1 km and 500 m, respec-
tively [17–20]. Although several studies have tried adding other auxiliary data to improve 
the population data resolution and have formed some mature products (up to 100 m res-
olution so far) [21,22], spatial resolution is still limited due to the limited spatial resolution 
of NTL data. As a result, the current disaggregated population products may be insuffi-
cient to meet the demand for some applications, such as precise public resource allocation 
management and intelligent urban governance. 

This paper focuses on developing a high spatial resolution population distribution 
dataset based on new satellite data, namely SDGSAT-1 NTL data, with a 10 m spatial res-
olution and land use data. The methods used for this task are generally divided into two 
categories [23]: top-down and bottom-up [24]. The bottom-up method involves using NTL 
data, ancillary data such as high-resolution imagery and land cover data, and sample sur-
vey or micro-census survey population data to predict the population of grids within non-
surveyed areas. The objective of this method is to establish the quantitative relationship 
between survey population data, NTL data, and ancillary data which will enable it to cre-
ate an accurate model for calculating the population of each grid [18]. Nonetheless, be-
cause of regional disparities in economic level and social environment, the population 
distribution data vary significantly and necessitate an extensive sample size to achieve the 
desired model accuracy [25]. Furthermore, using a single linear model may not meet the 
requirements of the entire study area, resulting in substantial errors in the final population 
spatial distribution map. Therefore, this method is commonly used to map population 
distribution in large regions with a low spatial resolution. The top-down method involves 
using mathematical models to convert population statistical data from irregular adminis-
trative units into regular grids such as cells or pixels. Population disaggregation is another 
term for this process. In disaggregation methods, population statistical data and adminis-
trative boundaries serve as the fundamental input data. Disaggregation methods fall into 
three categories: binary dasymetric, multi-class dasymetric, and intelligent dasymetric 
mapping [23]. Binary dasymetric mapping divides source zones into two sub-zones [26], 
typically populated and unpopulated areas, through the use of ancillary data. However, 
this method lacks the accuracy and precision necessary for accurately and thoroughly 
mapping population distribution. Intelligent dasymetric mapping, on the other hand, uses 
complex models, particularly machine learning, to create spatialized population distribu-
tion. Deep learning is a recent development in the mapping of population distribution and 
has shown promising results [27,28]. However, practical applications of this method can 
be challenging due to the large number of required training datasets. As a result, there are 
limits to the utilization of this method. Mennis (2003) [29] proposed the multi-class 
weighted dasymetric mapping method based on binary dasymetric mapping. The multi-
class weighted dasymetric mapping method divides population areas into additional sub-
categories based on their different population densities, assigning different weights to 
each subcategory to determine the regional population density. In this paper, we apply 
the multi-class weighted dasymetric mapping method and use SDGSAT-1 NTL data with 
a 10 m spatial resolution and land use data to disaggregate the existing WorldPop 100 m 
population dataset to a 10 m spatial resolution, focusing on the study area of Guilin, 
China. 
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The remainder of this paper is structured as follows: Section 2 provides an introduc-
tion to the study area of Guilin, China, elaborates on the dataset utilized, the methodology 
employed, and the evaluation indicators. Section 3 proceeds with the analysis and discus-
sion of the experimental results. Finally, Section 4 summarizes the findings of this study. 

2. Materials and Methods 
2.1. Study Area 

In this study, we selected Guilin city, which is situated in the northeast of Guangxi 
Zhuang Autonomous Region in South China, as our study area. The city’s coordinates are 
109°36’50”E to 111°29’30”E and 24°15’23”N to 26°23’30”N. It is 236 km long from north to 
south and 189 km wide from east to west (Figure 1). Guilin comprises six administrative 
districts, namely Xiufeng, Duocai, Xiangshan, Qixing, Yanshan, and Linggui, and ten 
counties (autonomous counties), including Yangshuo, Lingchuan, Quanzhou, Xing’an, 
Yongfu, Guanyang, Longsheng, Ziyuan, Pingle, Gongcheng, and Lipu City. 

 
Figure 1. The location of Guilin and SDGSAT-1 NTL RGB true color image. (GX: Guangxi Zhuang 
Autonomous Region, China; GL: Guilin City; XF: Xiufeng District; DC: Duocai District; XS: Xiang-
shan District; QX: Qixing District; YS: Yanshan District; Linggui District; YS: Yangshuo County; LC: 
Lingchuan County; QZ: Quanzhou County; XA: Xing’an County; YF: Yongfu County; GY: Guan-
yang County; LS: Longsheng Various Nationalities Autonomous County; ZY: Ziyuan County; PL: 
Pingle County; GC: Gongcheng Yao Autonomous County; LC: Lipu City). 
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2.2. Data Sources 
NTL and land use data are introduced as auxiliary data to disaggregate the existing 

coarse population product in this study. The basic information of these data is shown in 
Table 1.  

Table 1. Basic information of usage data. 

Data Type Data Time Spatial Resolution Data Format 
Population data WorldPop 2018 100 m Raster 

NTL data SDGSAT-1 
(Pan band) 

13 April 2022 13:54:56 (UTC) 10 m Raster 
23 April 2022 14:05:47 (UTC) 

Land use data 
E-China 2018 \ Vector 

FROM-GCL10 2017 10 m Raster 
OSM 2018 \ Vector 

2.2.1. Population Products 
Population data suitable for fine-scale applications are developed by WorldPop us-

ing a large amount of ancillary data layers. The dataset is global in scope and covers the 
years 2010 to 2020, making it highly accessible for subsequent studies. The WorldPop da-
taset provides products with resolutions of 1 km and 100 m, as depicted in Figure 2 for 
Guilin, China. 

 
Figure 2. WorldPop population data of Guilin, China, in 2018. (The upper picture is 1 km spatial 
resolution, and the lower picture is 100 m spatial resolution.). 
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2.2.2. Nighttime Light Data 
At present, there are three primary types of NTL data available in the global scale: (1) 

DMSP/OLS data, which span 1992 to 2013 with 1km spatial resolution; (2) NPP/VIIRS 
data, covering 2013 to 2019 at 500 m spatial resolution; and (3) Luojia-01 NTL data, 
launched on 2 June 2018, with 130 m spatial resolution. 

The Chinese Academy of Sciences (CAS) launched the Sustainable Development 
Goals Satellite-1 (SDGSAT-1) into orbit on November 5, 2021. It is the first satellite de-
signed specifically to implement the United Nations 2030 Agenda for Sustainable Devel-
opment and the first earth science satellite developed by the CAS. Table 2 displays the 
main parameters of the satellite. The satellite’s NTL data comprise four bands, including 
three visible light bands and one panchromatic band with a maximum spatial resolution 
of 10 m. 

Table 2. Technical specifications of Glimmer sensor in SDGSAT-1 satellite. 

Type Index Specifications 

Orbit 
Type sun-synchronous orbit 

Altitude 505 km 
Inclination 97.50 

Glimmer Im-
ager 

Swath Width 300 km 
Bands of Glimmer 

Imager 
P: 450~900 nm B: 430~520 nm G: 520~615 nm R: 

615~690 nm 
Spatial Resolution of 

Glimmer Imager P: 10 m, RGB: 40 m 

SDGSAT-1 data products consist of Level 1, Level 2, and Level 4 data. Level 1 data 
products are generated by processing relative radiation correction, band registration, 
HDR fusion, and RPC on the basis of level 0 products, resulting in standard products. 
Level 2 data products are the geometrically corrected versions of the Level 1 standard 
products. Level 4 data products result from thorectifying the Level 1 standard products 
using ground control points, digital elevation models, and in accordance with format 
specifications. We used only Level 4 products in this study since they are currently the 
only products available to users. Figure 3 shows that a true-color synthesis image allows 
us to clearly distinguish the contour of roads and buildings as well as the color of ground 
neon lights. 
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Figure 3. Guilin SDGSAT-1 NTL data in 2021 (The upper part is the true color image, and the lower 
part is the panchromatic band image). 

2.2.3. Land Use Data 
In this study, we used three auxiliary land use datasets: EULUC-China data, FROM-

GCL10 data, and road network data. The EULUC-China dataset, generated by Tsinghua 
University, utilizes 10-meter resolution satellite imagery (Sentinel-2A/B) from 2018, Open-
StreetMap, night lights (Luojia1-01), POI (Amap, POI category and quantity), and Tencent 
mobile-phone locating-request (MLP) data (i.e., 8-h mean trajectories of the active 
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population during weekdays and weekends) to produce a dataset containing 440,798 plots 
labeled with five primary and twelve subcategory feature labels in major Chinese cities 
[30]. It is not feasible to use the same classification scheme for both urban and rural areas 
due to their different environments. Hence, we employed FROM-GCL10, developed by 
Tsinghua University, which is the world’s first 10-meter resolution global surface coverage 
product with 72.76% overall accuracy [31]. This product uses a random forest classifier on 
the Google Earth Engine platform to map global land cover at a 10-meter resolution by 
transferring the 30-meter resolution sample set from 2015 to the Sentinel-2 imagery ac-
quired in 2017. The surface features include cropland, forest, grassland, shrubland, wet-
land, water, tundra, impervious, barren, and snow/ice. Notably, in our study, impervious 
ground in rural areas is considered as villages. The road network data of the study area 
were obtained from OpenStreetMap (www.openstreetmap.org, OSM) (accessed on 6 
March 2018 ), an open-source map which includes road layers such as highways, urban 
expressways, main roads, secondary roads, branch roads, country roads, bicycle roads, 
pedestrian roads, and internal roads. 

The EULUC-China dataset furnishes a sound classification of functional area in ur-
ban areas but fails to include data pertaining to types of roads. As a result, the OSM data 
were utilized to create a 20 m buffer zone, which was then superimposed on the EULUC-
China data to augment the latter. The EULUC-China and road network data (both as vec-
tors) are transformed into 10 m raster data to comply with the experimental requirements. 
As the road network is not the main area of population distribution, we opted not to di-
vide the various roads. Figure 4 illustrates the EULUC-China, FROM-GCL10, and road 
network data layers were stacked together using the ArcGIS 10.3 software to form a com-
prehensive land use data set for the study area. Three typical areas characterized as urban, 
rural, and urban–rural interface were chosen for comparison, with SDGSAT-1 multispec-
tral data to confirm the accuracy of land use data. Figure 5 reveals a high level of agree-
ment between each area type and the remote sensing data. 
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Figure 4. Guilin land use data (overlay of EULUC-China Data, FROM-GCL10 Data, and China Road 
Network. The numbers in the legend represent different land use types. For the specific correspond-
ences, please refer to Table 3). 

Table 3. Calculated results of distribution coefficient for each data use type. 

Land Use Type Number of Grid Population Population Den-
sity 

Distribution Coeffi-
cient 

0 Roads 16,627 167,355 10.07 0.0249 
1 Cropland 606,419 1,435,796 2.37 0.0058 

2 Forest 2,664,744 1,741,610 0.65 0.0016 
3 Grassland 111,893 163,295 1.46 0.0036 
4 Shrubland 52,894 80,696 1.53 0.0038 
5 Wetland 189 479 2.53 0.0063/0 

6 Water 10,793 50,069 4.64 0.0115/0 
8 Impervious 46,162 216,364 4.69 0.0116 

9 Barren 290 568 1.96 0.0048 
101 Residential 11,559 519,723 44.96 0.1110 

201 Business office 39 2523 64.70 0.1598 
202 Commercial service 1903 91,158 47.90 0.1183 

301 Industrial 15,493 364,577 23.53 0.0581 
402 Transportation stations 21 485 23.08 0.0570 

403 Airport facilities 675 19,704 29.19 0.0721 
501 Administrative 155 3806 24.56 0.0606 
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502 Educational 812 19,397 23.89 0.0590 
503 Medical 81 5624 69.43 0.1714 

504 Sport and cultural 44 554 12.60 0.0311 
505 Park and greenspace 278 3125 11.24 0.0278 

In the first round of disaggregation, land use data are incorporated. 

 
Figure 5. Land use data validation. (a,b) Urban areas; (c,d) rural areas; (e,f) urban–rural fringe areas. 
(The legend of each color in the right figure is consistent with Figure 4). 

2.3. Multi-Class Weighted Dasymetric Mapping 
In this study, we employed a multi-class weighted dasymetric mapping method for 

population disaggregation. This method was first named by Semenov-Tian-Shansky in 
1928 [32] and developed by many scholars [25,29]; it subdivides populated areas into sub-
categories based on factors such as land use and infrastructure density, reflecting different 
population densities. By applying different weighting factors to each category, we ob-
tained a more realistic population distribution [25]. This method is widely utilized in pop-
ulation disaggregation and often regarded as the most effective approach [33]. The flow 
diagram of this method is shown in Figure 6. Our initial premise was that a square area 
contains 144 individuals and that the optimal representation of their distribution is indi-
vidual points, as shown in Figure 6 a. Nonetheless, it is arduous and expensive to obtain 
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data on individuals, so we divided the study area into grids of uniform size to approxi-
mate the practical situation as closely as possible. In the absence of additional auxiliary 
data, we assumed that the population in an area is evenly distributed. However, as evi-
denced in Figure 6(1), this approach led to a considerable deviation from the actual pop-
ulation distribution. Additionally, the grids varied in their level of deviation from one 
another, indicating the presence of spatial heterogeneity in population distribution.  

To account for regional disparities, we integrated land use data, as illustrated in Fig-
ure 6b. The quantity of individuals in distinct land use categories varied, and we allocated 
each land use type a corresponding distribution coefficient. We then employed these co-
efficients to ascertain the population distribution in each land use type (Formula (1)). Con-
sequently, the total number of individuals in each grid was determined by proportioning 
the individuals across land use types calculated to be in each grid (Formula (2)). As Figure 
6(2) demonstrates, incorporating land use data considerably reduced the number of grids 
that deviated from the actual population distribution, demonstrating the effectiveness of 
our approach in reflecting regional differences in population distribution. 

Wj = Dj

D
 (1)

where Wj is the population distribution coefficient of the jth land use type, Dj is the pop-
ulation density of the jth land use type, and D is the total population density. 

Pij =  Pi × Wj∑ Wj
n
j=1

 (2)

where Pi is the population of the ith disaggregation unit, Pij is the population of the jth 
land use type in the ith decomposition unit, and Wj is the population distribution coeffi-
cient of the jth land use type 

Despite considering land use type, varying degrees of deviation still existed, indicat-
ing persistent spatial heterogeneity. To address this issue, we introduced NTL data, as 
shown in Figure 6c. NTL data can sensitively capture and record human activities [30], 
and a significant positive correlation between nighttime lights and population has been 
demonstrated in numerous countries and regions [19]. In this paper, we leveraged NTL 
data to redistribute the population of the same land use type within each disaggregation 
unit (Formula (3)) to replace the previous average distribution. Nevertheless, it was vital 
to note that nighttime lights can be influenced by numerous factors, including the econ-
omy, culture, climate, season, government management system, and more. For instance, 
in some less developed areas, low nighttime light intensity does not necessarily indicate a 
small population distribution. To minimize deviations between the population disaggre-
gation results and reality caused by such fluctuations, we aimed to minimize the disaggre-
gation units’ size. Figure 6(3) displays the final outcome, demonstrating a further reduc-
tion in the number of grids that deviated from the actual population distribution com-
pared to Figure 6(2).  

Pij = Pi × Lj∑ Lj
n
j=1

 (3)

where Pi is the population of the ith land use type in each disaggregation unit, Pij is the 
population of the jth pixel in the ith land use type in each decomposition unit, and Lj is 
the brightness value of the jth pixel in the ith land use type in each disaggregation unit. 
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Figure 6. Multi-class weighted dasymetric mapping flow diagram. ((a) is the real population spa-
tial distribution, (1) is the uniform population spatial distribution grids, (b) is the real population 
spatial distribution in various land use types, (2) is the population spatial distribution grids after 
using land use data, (c) is the NTL data, (3) is the population spatial distribution grids after using 
NTL data) 

2.4. Evaluation Indicators 
Accuracy verification has always been a challenging task in population distribution 

studies. Currently, three primary methods can ascertain model accuracy. The first in-
volves comparing disaggregation results with census data [18]. The second method uti-
lizes geospatial measures such as relative error and root mean square error (RMSE) to 
assess population disaggregation results and existing population products’ differences in 
spatial structure and correlation between [34]. In our study, the WorldPop products are 
used as the input data for population disaggregation to generate higher spatial resolution 
population data than the original product. The accuracy of the disaggregation results re-
lies heavily on the quality of the population products. Therefore, to a certain extent, accu-
racy can be guaranteed. The third method involves field sampling surveys, which are only 
applicable for small-scale research. In conclusion, the first and third methods are not es-
sential in this study, and the relative error is used as the evaluation indicator (Formula (4)) 
to assess the model’s accuracy.  
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Error = ( pop − pop /pop)  (4)

where pop is the population of the disaggregation result, and pop is the population of 
the existing population products. 

Additionally, another two objective indicators were introduced to evaluate the fine-
ness of the disaggregation result in our study, namely, information entropy (IE) and spa-
tial frequency (SF). IE of an image measures its statistical characteristics, indicating the 
average amount of information present in the image and representing the aggregation 
feature of image gray distribution (Formula (5)). IE is used to verify the improvement of 
the disaggregation result in the amount of information it contains. SF reflects the rate of 
change in raster data value (Formula (6,7,8)) and can be used to evaluate the spatial reso-
lution of the data. At the same scale, a higher IE represents a greater the amount of infor-
mation, and a higher SF indicates higher spatial resolution and a clearer image. 

H X  = Pi X log2 Pi X
m

i=1

 (5)

where H X  is information entropy, and Pi X  is the probability of occurrence of each 
gray level. 

SF F  = RF2 + CF2  (6)

RF = 
1

MN  H i,j − H i,j − 1
N

j=1

M

i=1

 (7)

CF = 
1

MN  H i,j − H i − 1,j
N

j=1

M

i=1

 (8)

where M and N are the width and height of the image, respectively, and H i,j  is the 
pixel value of the i,j coordinates. 

3. Results 
3.1. Result of the Disaggregation 

The coefficient of population distribution for each land use type was calculated using 
the WorldPop 100 m population data and Formula (1). Subsequently, adjustments to the 
coefficient values were made based on actual conditions. Table 3 reveals that the coeffi-
cients in urban areas are higher than those in rural areas. Due to the high brightness false 
information caused by the specular reflection of bodies of water during the acquisition 
process of satellite nighttime lighting data, we manually adjusted the weight of water and 
wetland values to 0. 

Each 100m grid is disaggregated into multiple land use types, serving as an inde-
pendent disaggregation unit. Using distribution coefficients, the disaggregation unit’s 
population is redistributed among different land use types within the unit. Figure 7 dis-
plays the outcome of the initial disaggregation. By incorporating land use data, the distri-
bution pattern of the population in the disaggregation unit varying with socioeconomic 
activities has been accurately captured. The population is predominantly concentrated in 
urban areas. In addition, the population density varies within the different functional ar-
eas of urban areas. For example, residential areas, commercial areas, and hospitals have 
high population density, whereas industrial areas have comparatively low population 
density. Generally, the population density in rural areas is lower than that in urban areas. 
It is primarily concentrated in villages. Lake and river areas do not have a population 
distribution owing to subjective correction.  
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Following the initial disaggregation, we discover that the population within areas of 
the same land use type is uniformly distributed, causing significant deviation. To improve 
the uniformity of population distribution in areas of the same land use type within each 
disaggregation unit, NTL data will be incorporated. SDGSAT-1 NTL data provides a 10 m 
resolution that can sensitively capture and record human activities. Nighttime light 
brightness reflects the degree of population concentration, and the brighter areas of the 
same land use type indicate denser population distribution. Figure 7 depicts the outcome 
of the disaggregation. In comparison to Figure 2, the population distribution pattern 
shown in the Figure is a closer approximation to the real population distribution, provid-
ing a more detailed insight. Regardless of the land use type, the population is typically 
clustered, particularly in urban areas. However, variations exist within different blocks 
due to the restrictions imposed by social, economic, and cultural factors.  

 
Figure 7. Guilin population grid data using multi-class weighted dasymetric mapping (the upper 
part is the result of the first round, and the lower part is the result of the second round). 
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3.2. Accuracy Evaluation 
For validating the effectiveness of the proposed method, it is crucial to assess the 

disaggregation results’ accuracy. For the analysis, 17 districts and counties within the 
study area were taken as units for analysis. The population of each district or county in 
the WorldPop data and disaggregation result of the study area were counted, and then 
the relative error was calculated using Formula (4). Table 4 shows that except for a few 
individual districts and counties, the relative error is less than 2%, with a total relative 
error of only 0.63%. Furthermore, to assess the reliability further, 146 towns in the study 
area were analyzed, and the population of each town in the WorldPop data and the dis-
aggregation result of the study area were counted. As shown in Figure 8, all points are in 
close proximity to the trend line with minimal error and an R2 value of 0.99. The high 
degree of consistency between the disaggregation results’ accuracy and that of the dis-
aggregation data validates the proposed method, confirming that it does not undermine 
the accuracy of the results.  

Table 4. Calculation result of error. 

Districts or Counties WorldPop 100 m 
Data 

Disaggregation 
Result 

Error (%) 

Xiufeng District 251,802  252,785  0.39  
Diecai District 84,472  85,467  1.18  
Xiangshan District 238,192  242,596  1.85  
Qixing District 248,196  249,327  0.46  
Yanshan District 79,175  81,022  2.33  
Lingui District 507,945  509,689  0.34  
Yangshuo County 279,971  281,560  0.57  
Lingchuan County 412,393  413,141  0.18  
Quanzhou County 651,855  656,391  0.70  
Xing’an County 338,658  341,345  0.79  
Yongfu County 240,579  241,112  0.22  
Guanyang County 241,877  244,137  0.93  
Longsheng Various Na-
tionalities Autonomous 
County 

158,806  159,934  0.71  

Ziyuan County 151,768  152,718  0.63  
Single County 377,957  378,577  0.16  
Gongcheng Yao Autono-
mous County 258,842  261,244  0.93  

Lipu City 364,608  366,977  0.65  
Total 4,887,096  4,918,023  0.63  
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Figure 8. Analysis of WorldPop data and disaggregation result. 

Following the confirmation of the accuracy of the disaggregation result, we intro-
duced objective indicators to evaluate the refinement of the result. We selected four urban 
areas in Guilin with a significant population distribution that were then adjusted to the 
same size for evaluation purposes. Histogram statistics were then performed on the se-
lected areas, and the values of IE and SF were calculated for each area (see Figure 9 and 
Table 5). As a result, the information entropy increased by 345%, and the spatial frequency 
rose by 1142%, as depicted in Figure 10. 
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Figure 9. Population grid data comparison. (a) WorldPop 1 km grid data; (b) WorldPop 100 m data; 
(c) the first round of grid disaggregation result; (d) the second round of grid disaggregation result. 
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Table 5. Evaluation indicators of disaggregation data and result. 

Data 
Area 1 Area 2 Area 3 Area 4 

IE SF IE SF IE SF IE SF 
WorldPop (1 km) 0.49 1.21 1.58 2.01 2.03 1.32 1.83 0.71 
WorldPop (100 m) 5.5 5.43 5.18 2.13 5.37 2.2 5.71 4.02 

Disaggregation result 1 6.38 16.24 6.1 11.41 5.9 8.14 6.38 15.53 
Disaggregation result 2 6.69 19.28 6.65 16.12 6.54 11.52 6.52 18.3 

A subjective evaluation was carried out by scaling up the four types of population 
grid data to 1:10,000 in four different areas. At this scale, a strong mosaic phenomenon 
was observed, regardless of whether it was the WorldPop population grid data with a 
spatial resolution of 1 km or 100 m. Nevertheless, the two disaggregation results gener-
ated by this study substantially ameliorated this issue. Notably, the outcome of the first 
disaggregating land use data could clearly identify the distinct distribution of population 
across diverse functional locations of the city. Furthermore, utilizing SDGSAT-1 NTL data 
to disaggregate the population grid data led to the emergence of numerous bright spots 
in multiple functional areas, signifying the dense concentration of population in those ar-
eas. Figure 9 depicts population grid data for the four areas ranging from 1km to 100 m in 
the first round of disaggregation, and later in the final disaggregation, respectively. The 
information entropy (IE) value and spatial frequency (SF) value both increased monoton-
ically, which was consistent with our subjective visual evaluation results. Based on the 
significance of the numerical values of IE and SF, the effectiveness of this study in address-
ing the problem of improving the spatial resolution of population grid data was further 
objectively verified. 
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Figure 10. Variation trend of IE value and SF value of four kinds of population grid data (a: 
WorldPop 1 km grid data; b: WorldPop 100 m data; c: the first round of grid disaggregation result; 
d: the second round of grid disaggregation result). 

4. Conclusions and Discussion 
In this study, we focused on Guilin, China, as the study area and used the WorldPop 

population data as the input data, supplemented by SDGSAT-1 NTL data and land use 
data to generate a population distribution grid with a spatial resolution of 10 m using the 
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multi-class dasymetric mapping method. SDGSAT-1 NTL data were introduced for the 
first time in the context of population disaggregation. Based on the results of disaggrega-
tion and accuracy verification, we found that the spatial resolution of the output was sig-
nificantly improved while maintaining accuracy, and the output had better performance 
in detail. This demonstrates the effectiveness of this approach in studying population dis-
tributions with high spatial resolution. 

However, the ground accuracy of the disaggregation results heavily relies on the ac-
curacy of the input data (WorldPop data in this study). In general, the accuracy and spatial 
resolution of the disaggregation results increase with higher accuracy of input data and 
auxiliary data. Although WorldPop has been widely used, the total population statistics 
are not always consistent with the census data, particularly at the small local administra-
tive scale. We utilized the WorldPop 100 m data because it is the highest spatial resolution 
population distribution data available in the study area. To generate a population dis-
aggregation model at a higher spatial resolution (10 m), a large number of samples at small 
spatial units were required. Unfortunately, the census data in the study area did not pro-
vide sufficient support for this purpose. As this paper mainly focuses on the disaggrega-
tion method of high spatial resolution population distribution, the WorldPop population 
grid data product is finally selected as the input source data for our model. Future studies 
may explore generating high resolution population grid data disaggregation models 
based on the ground truth data. On the other hand, WorldPop’s grid values are not con-
tinuously changing; there are varying degrees of abruptness in these discrete values which 
result in obvious boundaries in the disaggregation results. Additionally, in this study, 
only NTL data and land use data were utilized as auxiliary data, while other data such as 
building footprints [15], building volume [35], points of interest (POI) [14,36], and GPS 
tracking data [37] could reflect the spatial heterogeneity of population distribution and 
contribute to fine population disaggregation. In the study of population distribution with 
high spatial resolution, improving the accuracy of the model remains a challenge due to 
the lack of more precise population samples.  
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