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Abstract: This paper presents a target tracking algorithm based on 4D millimeter-wave radar point
cloud information for autonomous driving applications, which addresses the limitations of traditional
2 + 1D radar systems by using higher resolution target point cloud information that enables more
accurate motion state estimation and target contour information. The proposed algorithm includes
several steps, starting with the estimation of the ego vehicle’s velocity information using the radial
velocity information of the millimeter-wave radar point cloud. Different clustering suggestions are
then obtained using a density-based clustering method, and correlation regions of the targets are
obtained based on these clustering suggestions. The binary Bayesian filtering method is then used to
determine whether the targets are dynamic or static targets based on their distribution characteristics.
For dynamic targets, Kalman filtering is used to estimate and update the state of the target using
trajectory and velocity information, while for static targets, the rolling ball method is used to estimate
and update the shape contour boundary of the target. Unassociated measurements are estimated
for the contour and initialized for the trajectory, and unassociated trajectory targets are selectively
retained and deleted. The effectiveness of the proposed method is verified using real data. Overall,
the proposed target tracking algorithm based on 4D millimeter-wave radar point cloud information
has the potential to improve the accuracy and reliability of target tracking in autonomous driving
applications, providing more comprehensive motion state and target contour information for better
decision making.

Keywords: target tracking; 4D millimeter-wave radar; motion state estimation; autonomous driving

1. Introduction

For autonomous driving systems, accurately sensing the surrounding environment is
crucial. Among the various vehicle sensing sensors, millimeter-wave radar is capable of
obtaining position and speed information of targets, and can operate in complex weather
conditions such as rain, fog, and bright sunlight exposure [1].

Conventional 2 + 1D (x, y, v) millimeter-wave radar is effective in measuring the radial
distance, radial velocity, and horizontal angular information of a target. However, when
compared to cameras and LIDAR, which are the other major sensors used in autonomous
driving, traditional millimeter-wave radar has a lower angular resolution and cannot
provide height angle information of the target. In autonomous driving scenarios, where
vehicle or pedestrian targets are common, the small number of points and low angular
resolution of individual targets in the scene can result in large errors in size and location
estimation. To address this issue, high-resolution 4D (x, y, z, v) millimeter-wave radar
has been developed, which can provide height angle information of targets with higher
angular resolution. This enables more accurate edge information of targets and more
precise estimation of a target’s size and position.

Remote Sens. 2023, 15, 2923. https://doi.org/10.3390/rs15112923 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15112923
https://doi.org/10.3390/rs15112923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1652-1858
https://orcid.org/0000-0002-6060-5592
https://orcid.org/0000-0001-7850-1866
https://doi.org/10.3390/rs15112923
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15112923?type=check_update&version=2


Remote Sens. 2023, 15, 2923 2 of 20

Radar target tracking plays a critical role in millimeter-wave radar sensing. By provid-
ing a continuous position and velocity profile of a target, radar target tracking offers higher
accuracy and reliability compared to a single measurement from the radar. Furthermore, it
can effectively eliminate false detections.

Most conventional millimeter-wave radar tracking methods focus on point targets,
which provide target ID, position, and velocity information. However, 4D millimeter-wave
radar can measure multiple scattering centers per target, making direct application of
point cloud tracking methods unsuitable. In addition, contour information, such as target
size and orientation, is critical in autonomous driving environments. Therefore, accurate
estimation of target ID, position, size, direction, and velocity information is necessary for
4D millimeter-wave radar target tracking. Despite considerable research on point target
tracking using millimeter-wave radar, there is limited research on 4D millimeter-wave
radar-based target tracking methods. Dynamic target tracking using 4D millimeter-wave
radar presents several challenges, including variation in target size and multiple individual
target measurement points. Furthermore, 4D millimeter-wave radar can measure static
targets in the scene, while conventional millimeter-wave radar usually filters out static
targets due to the absence of altitude angle information, which can result in false positives.
Therefore, 4D millimeter-wave radar target tracking can also estimate the contour shape
information of static targets. This paper focuses on developing tracking methods for
multiple dynamic and static targets throughout a scene using 4D millimeter-wave radar.

The most commonly used multi-target tracking methods for millimeter-wave radar
based on point targets include nearest neighbor data association (NN) [2,3], global nearest
neighbor association (GNN) [4,5], multiple hypothesis tracking (MHT) [6,7], joint prob-
abilistic data association (JPDA) [8,9], and the random finite set method (RFS) [10–12].
The nearest neighbor association algorithm selects the observation point that falls within
the association gate and is closest to the tracking target as the association point. The
global nearest neighbor algorithm minimizes the total distance or association cost. The
joint probabilistic data association algorithm combines data association probabilities. The
multi-hypothesis tracking algorithm calculates the probability and likelihood for each track.
The RFS approach models objects and measurements as random finite sets.

In high-resolution millimeter-wave radar or 4D millimeter-wave automotive radar,
a road target often spans multiple sensor resolution units, which poses challenges for
tracking. In the extended target tracking problem for millimeter-wave radar, the position
of the target measurement point on the object is represented as a probability distribution
that changes with the sensor measurement angle, and the measurement point may appear
or disappear. Therefore, tracking extended targets using millimeter-wave radar presents a
significant challenge.

One approach to address the extended target tracking problem is to include a cluster-
ing process that reduces multiple measurements to a single measurement, which can then
be tracked using a point target tracking method. In extended target tracking, clustering
can be used to partition the point cloud. In automotive millimeter-wave radar target
tracking, the size and shape of the clustering clusters vary due to the different size and
reflection properties of the targets. Therefore, density-based spatial clustering of appli-
cations with noise (DBSCAN) [13] is commonly used to cluster radar points. However,
density-based clustering methods rely on fixed parameter values and may perform poorly
with targets of different densities. As a result, several methods that allow for different
clustering parameters have been proposed, such as ordering points to identify the cluster-
ing structure (OPTICS) [14], hierarchical DBSCAN (HSBSCAN) [15], and tracking-assisted
multi-hypothesis clustering [16].

Other approaches to extended target tracking involve designing object measurement
models. Some examples include the elliptic random matrix model [17], the random hy-
persurface model [18], and the Gaussian process model [19]. In millimeter-wave radar
vehicle target tracking, various vehicle target models have been proposed, such as a direct
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scattering model [20], a variational radar model [21], a B-spline chained ellipses model [22],
and the data-region association model [23].

Although several methods exist for extended target tracking using millimeter-wave
radar, many of them rely on simulation data for extended target tracking theory. In
practical scenarios, challenges such as varied point cloud probability distributions of
different extended targets, and diverse position relationships when different targets are
associated require further investigation on certain tracking algorithms. Moreover, some
algorithms focus on tracking vehicle targets, and thus it is essential to explore ways to
adapt tracking algorithms to different types of targets with varying sizes. Additionally,
there have been limited studies on 4D millimeter-wave radar target tracking, and, therefore,
the effectiveness of such methods on 4D millimeter-wave radar needs to be explored. This
paper presents an effective 4D millimeter-wave radar target tracking method with the
following contributions.

1. This paper proposes a 4D millimeter-wave radar point cloud-based multi-target
tracking algorithm for estimating the ID, position, velocity, and shape information of
targets in continuous time.

2. The proposed target tracking solution includes point cloud velocity compensation,
clustering, dynamic and static attribute update, dynamic target 3D border generation,
static target contour update, and target trajectory management processes.

3. To address the issue of the varying size and shape of dynamic and static targets, a
binary Bayesian filtering method [24] is utilized to extract static and dynamic targets
during the tracking process.

4. Kalman filtering is used for dynamic targets such as vehicles, pedestrians, bicycles,
and other targets, combined with the target’s track information and radial velocity
information to estimate the target’s 3D border information.

5. For static targets such as road edges, green belts, buildings, and other non-regular
shaped targets, the rolling ball method is employed to estimate and update the shape
contour boundaries of the targets.

The structure of this paper is organized as follows. Section 2 describes the tracking
problem. Section 3 presents the proposed solution to the tracking problem, which includes
compensating for target velocity, clustering point clouds, determining target associations,
identifying dynamic and static targets, updating contour shape states, and creating, retain-
ing, and deleting trajectories. Section 4 presents the experimental setup and results. Finally,
Section 5 summarizes the research.

2. Materials and Methods

The objective of this paper is to derive state estimates for both dynamic and static
targets within the field of view of 4D millimeter-wave radar, using the point cloud mea-
surement volume of the radar. This includes obtaining 3D edge information of dynamic
targets and contour shape information of static targets.

2.1. Measurement Modeling

4D millimeter-wave radar point cloud measurement includes information on the
position along the x, y, and z-axes as well as the radial velocity vr and intensity I. The radial
velocity information is obtained through direct measurement as the target point’s relative
radial velocity. Each measurement point can be expressed as:

zj = [ xj yj zj vr
j Ij ] (1)

where zj represents the measurement, j represents the j-th point, and vr
j represents the

relative radial velocity of the j-th point.
As shown in Figure 1, 4D millimeter-wave radar point clouds are utilized to measure

targets at three distinct time steps, revealing that the detected target points are dynamic and
can vary over time, possibly appearing or disappearing at different locations. This poses a
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significant challenge in accurately estimating the target’s location and shape. To account
for sensor noise and the inherent uncertainty in the measurement model, a probabilistic
model is often employed to describe the measurement process.
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Figure 1. Measurements of the same target at adjacent moments. (a) 3D view of the target point cloud
at moment t − 2. (b) 3D view of the target point cloud at moment t − 1. (c) 3D view of the target
point cloud at moment t. (d) Top view of the target point cloud at moment t − 2. (e) Top view of the
target point cloud at moment t − 1. (f) Top view of the target point cloud at moment t.

For multiple measurements of the expansion target, this can be expressed as:

Z =
{

zj
}n

j=1
(2)

where Z is the set of measurement quantities, zj is a single measurement quantity, j is the
number of measurements, and n is the total number of measurements.

The probability distribution of the measurements obtained from the target state can be
expressed as:

p(Zk|Xk) (3)

where Zk is the measurement at moment k for a target with target state Xk.

2.2. Target State Modeling

The aim of this paper is to estimate the states of both dynamic and static targets in the
4D millimeter-wave radar field of view using point cloud measurements. For the dynamic
targets, their states can be described as follows:

• Position state: The target’s position in three-dimensional space (x y z).
• Motion state: Since the target’s position in the z-axis direction remains relatively stable

in autonomous driving scenarios, the motion state can be simplified to the target’s
velocity in the x-axis and y-axis directions on the vehicle motion plane (vx vy).

• Profile shape state: This describes the shape and size of the target. For a 3D dynamic
target in a road environment, it can be modeled as a 3D cube ( l w h θ) since its shape
and size states do not change substantially. Its extended state contains the size and
rotation direction of the target.
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Therefore, the state estimation of a 3D dynamic target in a road environment at time
k can be represented as Xk, which consists of the position state (x y z), the motion state
(vx vy), and the profile shape state ( l w h θ).

Xd
k = [xk yk zk vxk vyk lk wk hk θk] (4)

The states of the static targets in this paper can be described as follows:

• Position state: The position of the target in the z-axis direction in space (z position).
• Motion state: For static targets, the absolute velocity is zero, and the relative velocity

can be estimated as the negative of the velocity of the ego vehicle’s motion (vxk vyk).
• The profile shape state of the target: For a 3D static target in a road environment, it

can be modeled as a target surrounded by an edge box, which is represented as a set
of n 2D enclosing points and their heights (h

{
xj yj

}n
j=1).

The state estimation of a 3D static target in a road environment can be expressed as:

Xs
d = [{xj yj}

n
j=1 vxk vyk hk zk] (5)

2.3. Method

The proposed solution in this paper is illustrated in Figures 2 and 3:
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In Figures 2 and 3, time is represented by t, the detection value is represented by D,
the trajectory is represented by T, the dynamic target is represented by d, and the static
target is represented by s.

The 4D radar data is input to generate point cloud data of the scene. The point cloud is
preprocessed to compensate for the velocity information and convert relative radial velocity
to absolute radial velocity. The static scene from the previous frame is matched with the
current frame to aid in associating static and dynamic targets. A clustering module is used
to classify the points into different target proposals. Data association is performed using
an optimal matching algorithm. For the clustered targets that are successfully associated,
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their dynamic and static attributes are updated using a binary Bayesian filtering algorithm.
For dynamic targets, the target state is updated using a Kalman filtering method to obtain
the 3D bounding box of the target. For static targets, the bounding box state is updated
using the rolling ball method. For unassociated clustered targets, trajectory initialization
is performed, historical trajectories that are not associated are retained or deleted, and
trajectories in overlapping regions are merged.

2.3.1. Point Cloud Preprocessing

Before feeding the millimeter-wave radar point cloud into the tracking framework,
several preprocessing steps are performed. Firstly, the relative radial velocity information
of the point cloud is compensated for absolute radial velocity, allowing for the extraction
of dynamic and static targets in the scene and the updating of their states based on radial
velocity information. Additionally, due to the motion of the radar, the world coordinate
systems of the front and back point clouds are different, and multi-frame point clouds are
matched to facilitate the association of dynamic and static targets. Further details on these
steps can be found in previous work [25].

After obtaining the ego vehicle’s speed vs, the compensation amount, v̂r
c, for the radial

velocity of the target can be calculated. Then, the absolute velocity of each target point, vr
a,

can be calculated as follows:
vr

a = vr
d − v̂r

c (6)

The radar point cloud conversion relationship can be expressed as:

H = [R, t] (7)

Yn
n−1 = Hn−1Pn−1 (8)

Yn
n−1 is the point set after the point cloud of the (n− 1)-th frame is registered to the

point cloud of the n-th frame. Pn−1 is the information of the n-th point.

2.3.2. Clustering and Data Association

• Radar Point Cloud Clustering

After preprocessing the point cloud data, the large number of points are grouped
into different targets using clustering techniques based on their position and velocity
characteristics. One commonly used clustering algorithm for radar point clouds is density-
based spatial clustering of applications with noise (DBSCAN) [13], which can automatically
detect clustering structures of arbitrary shapes without requiring any prior knowledge.
DBSCAN determines clusters by calculating the density around sample points, grouping
points with higher density together to form a cluster, and determining the boundary
between different clusters by the change in density. The DBSCAN algorithm takes spatial
coordinates (x, y, z) and radial distance (vr

a) of the data points as input. Specifically, the
DBSCAN algorithm can be executed in the following steps:

• Calculation of the number of data points N(p) in the neighborhood of a data point p:

N(p) = {q ∈ Z : dist(p, q) ≤ ε} (9)

Here, Z is the dataset, dist(p, q) is the Euclidean distance between the data points p
and q, and ε is the radius of the neighborhood.

• Determination of whether a data point p is a core point: If N(p) ≥ MinPts, then p is a
core point.

• Expanding the cluster: Starting from any unvisited core point, find all data points
that are density-reachable from the core point, and mark them as belonging to the
same cluster.
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• Determination of whether a data point is density-reachable: A data point p is density-
reachable from a data point q if there exists a core point c such that both c and p are in
the neighborhood of q and the distance between c and p is less than ε.

• Marking noise points: Any unassigned data points are marked as noise points.

By executing the above steps, the DBSCAN algorithm can complete the clustering
process and assign the data points to different clusters and noise points.

After clustering the k targets, the features of the j-th target are represented as:

f j =
{

xj yj zj vr
j I j

}
(10)

where ( xj yj zj vr
j I j ) are calculated as the averages of the point cloud features

within each target. The features of all clustering targets can be expressed as:

F =
{

f j
}n

j=1 (11)

• Data Association

For the j-th trajectory, its features are denoted as:

gj =
{

x̃j ỹj z̃j ṽj Ĩj

}
(12)

The features of all trajectories can be expressed as:

G =
{

gj
}n

j=1 (13)

The purpose of data correlation is to select which measurements are used to update the
state estimate of the real target and to determine which measurements come from the target
and which come from clutter. In this paper, it is necessary to correlate all clustered targets
F and all trajectories G. One of the most widely used algorithms for target association is
the Hungarian algorithm, which is a classical graph theoretic algorithm that can be used to
maximize the matching of bipartite graphs. It can be used in a variety of target association
algorithms for radar or images, and in target tracking it can be used to match point clouds
in target clusters at different time steps to achieve target association. Assuming that there
are radar historical trajectories and clustered targets, where the clustered targets contain
m targets and the radar trajectories contain n targets, a cost matrix can be defined where
Cost(i, j) denotes the cost between the i-th point in the trajectory and the j-th point in
the clustered targets. Depending on the needs of the target tracking, the cost function
can be calculated from factors such as target clustering centroids, average velocity, and
intensity characteristics. The Hungarian algorithm finds the optimal matching solution
with the minimum cost by converting the bipartite graph into a directed complete graph
with weights and by finding the augmented paths in the graph.

The substitution matrix is calculated using the cost function, which is a combination
of the position cost and the velocity/intensity cost. The cost function is defined as:

Cost(i, j) = α1 × PositionCost(i, j) + α2 ×VelocityIntensityCost(i, j)) (14)

where α1 is the weight of the position cost and α2 is the weight of the velocity/intensity
cost. The position cost can be calculated based on the distance between the target centroid
and the trajectory prediction at the current time step, while the velocity/intensity cost can
be calculated based on the difference in velocity and intensity between the target and the
trajectory prediction.

Once the cost function has been calculated, the Hungarian algorithm can be used to
find the optimal matching solution with the minimum cost. The resulting substitution
matrix C is a binary matrix, where C(i, j) = 1 if target i is matched to the trajectory j, and
C(i, j) = 0 otherwise.
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2.3.3. Target Status Update

• Target Dynamic Static Property Update

By integrating the absolute velocity information of a target with a binary Bayesian
filter, its static and dynamic attributes can be updated. To estimate the target’s dynamic
probability at a given moment, the ratio of points with a speed greater than a given value
to the total number of points in the target’s point cloud is calculated. Bayes’ theorem is
used in the binary Bayesian filter to update the state of the target, which can be either static
or dynamic, represented by a binary value of 0 or 1, respectively, at time t.

Applying Bayes’ theorem:

p(x|z1:t) =
p(zt|x, z1:t−1)p(x|z1:t−1)

p(zt|z1:t−1)
=

p(zt|x)p(x|z1:t−1)

p(zt|z1:t−1)
(15)

The Bayes’ rule is applied to the measurement mode p(zt|x):

p(zt|x) =
p(x|zt)p(zt)

p(x)
(16)

Then,

p(x|z1:t) =
p(x|zt)p(zt)p(x|z1:t−1)

p(x)p(zt|z1:t−1)
(17)

For the opposite event ¬x,

p(¬x|z1:t) =
p(¬x|zt)p(zt)p(¬x|z1:t−1)

p(¬x)p(zt|z1:t−1)
(18)

Then,

p(x|z1:t)

p(¬x|z1:t)
=

p(x|zt)p(x|z1:t−1)p(¬x)
p(¬x|zt)p(¬x|z1:t−1)p(x)

=
p(x|zt)

1− p(x|zt)

p(x|z1:t−1)

1− p(x|z1:t−1)

1− p(x)
p(x)

(19)

The log odds belief at time t is:

lt(x) = log
p(x|zt)

1− p(x|zt)
− log

p(x)
1− p(x)

+ lt−1(x) (20)

And,

l0(x) = log
p(x)

1− p(x)
(21)

Then,

lt(x) = lt−1(x) + log
p(x|zt)

1− p(x|zt)
− l0 (22)

In dynamic and static attribute updates, p(x|zt) is calculated as the ratio of the number
of points with a velocity greater than a given value vd to the total number of points in the
target point cloud.

• Dynamic Target State Update

The state estimation of a 3D dynamic target in a road environment at time k can be
represented as Xd

k by Equation (4), which consists of the position state (x y z), the motion
state (vx vy), and the profile shape state (l w h θ).

To update the state of a target, it is necessary to perform additional calculations on the
existing clustered targets to obtain measurements of its current state. These calculations
may involve analyzing the shape and center position of the target, as well as estimating its
velocity. Once these calculations are completed, the status of the target can be updated based
on the latest information available, allowing for more accurate tracking and prediction of
the target’s movement.
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When computing measurements of clustered targets for dynamic targets, it is necessary
to obtain the rectangular box enclosing the target. The height of the rectangular box can
be calculated from the maximum and minimum height of the point cloud, while the other
parameters of the rectangular box can be obtained from the enclosing rectangular box in
the x and y planes.

However, calculating the rotation angle of the rectangular box is the most challenging
part of target shape estimation, especially in imaging millimeter-wave radar, where the
number of point clouds is limited and the contours of the point clouds are not well-defined.
To address this issue, this paper proposes a method for calculating the rotation angle based
on the combination of point cloud position and velocity information and trajectory angle.
This approach provides a more accurate and robust estimate of the rotation angle, leading
to improved target tracking and prediction.

The rectangular box of the point cloud is fitted using the L shape fitting method [26].
When working with points on a 2D plane, the least squares method is a common approach
to finding the best-fitting rectangle for these points.

minimize
P,θ,c1,c2

∑
i∈P

(xi cos θ + yi sin θ − c1)
2 + ∑

i∈Q
(−xi sin θ + yi cos θ − c2)

2

subject to P ∪Q = {1, 2, . . . , m} c1, c2 ∈ R 0
◦ ≤ θ ≤ 90

◦
(23)

The above optimization problem can be approximated by using a search-based al-
gorithm to find the best-fitting rectangle. The basic idea is to iterate through all possible
directions of the rectangle. At each iteration, a rectangle is found that points in that direc-
tion and contains all scanned points. The distances from all points to the four edges of
the rectangle are then obtained, based on which the points can be divided into two sets,
p and q, and the corresponding squared errors are calculated as the objective function in
the above equation. After iterating through all directions and obtaining all corresponding
squared errors, the squared errors can be plotted as a function of the angle variation trend.
Algorithm 1 is as follows.

Algorithm 1

• Input: data points X = (x, y)
• Output: criterion Qp

1. For θ = 0 to π/2− δ step δ do
2. ê1 = (cos θ, sin θ)
3. ê2 = (− sin θ, cos θ)

4. C1 = X · êT
1

5. C2 = X · êT
2

6. q = CalculatecriterionX(C1, C2)
7. Qp(θ) = q
8. end for

The algorithm for defining the calculate criterion, CalculatecriterionX(C1, C2), using
the minimum rectangular area method as described in this paper, is as follows:

cmax
1 = max{C1}, cmin

1 = min{C1} (24)

cmax
2 = max{C1}, cmin

1 = min{C2} (25)

α = −(cmax
1 − cmin

1 )(cmax
2 − cmin

2 ) (26)
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After calculating to obtain Qp(θ), the probability Pp(θ) is calculated as:

Pp(θ) =
max(Q(θ))−Qp(θ) + min(Qp(θ))

∑
θ

Qp(θ)
(27)

For a target on a two-dimensional plane, if the velocities of the point clouds on the
target are assumed to be approximately equal, the orientation of the velocities can be
estimated. Since millimeter-wave radar has different radial velocities at different points,
this estimated velocity orientation can be used as an approximation for the rotation angle
of the estimated rectangle for the calculation of the rotation angle, as follows.

The radial velocity measured by millimeter-wave radar can be expressed as

vr
d = vd,x

x
R
+ vd,y

y
R

(28)

vr
d = vd,x(

x
R
+ tan θ

y
R
) (29)

Similar can be achieved by using a search-based algorithm to find the right angle,
where the criterion is calculated as the variance. Algorithm 2 is as follows.

Algorithm 2

• Input: X = ( x
Rvr

d
, y

Rvr
d
)

• Output: criterion Qv

1. For θ = 0 to 2 ∗ π − δ step δ do
2. ê = (1, tan θ)

3. C = X · êT

4. q = variance{C}
5. Qv(θ) = q
6. end for

After calculating to obtain Qv(θ), the probability Pv(θ) is calculated as:

Pv(θ) =
max(Qv(θ))−Qv(θ) + min(Qv(θ))

∑
θ

Qv(θ)
(30)

Calculating the historical trajectory angle as θl and the probability as a Gaussian
distribution with center at θl and variance at δl :

Pt(θ) = N(θ, σ2) + Pt (31)

Ph(θ) =
Pt(θ)

∑
θ

Pt(θ)
(32)

Angular probabilities estimated from the point cloud position and velocity information
and trajectory angles are fused using a weighted average.

P(θ) = α1Pp(θ) + α2Pv(θ) + α1Ph(θ) (33)

The theta value that maximizes P(θ) is chosen as the measured value, and the rectan-
gular boundary {aix + biy = ci|i = 1, 2, 3, 4} is calculated as:

C∗1 = X · (cos θ∗, sin θ∗)T , C∗2 = X · (− sin θ∗, cos θ∗)T (34)
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a1 = cos θ∗, b1 = sin θ∗, c1 = min{C∗1} (35)

a2 = − sin θ∗, b2 = cos θ∗, c2 = min{C∗2} (36)

a3 = cos θ∗, b3 = sin θ∗, c3 = max{C∗1} (37)

a4 = − sin θ∗, b4 = cos θ∗, c4 = max{C∗2} (38)

From the process described above, the following parameters of the clustered target
can be calculated: the centroid coordinates in three-dimensional space (x, y, z), the length,
width, and height of the rectangular box enclosing the target, and the rotation angle (θ) of
the rectangular box.

The velocity information of the target can be calculated by Equation (32).
Then, the measurement can be expressed as:

Zt,k = [xk yk zk vxk vyk lk wk hk θk] (39)

The state transfer model of the target motion can be modeled as:

Xt = FXt−1 + ξt (40)

where ξt is the system white Gaussian noise with covariance η(ξ; 0, R).
The sensor’s observation model is described as:

zt = Hxt−1 + ζt (41)

where ζt is the measurement white Gaussian noise with covariance η(ζ; 0, Q).
Based on Equations (40) and (41), since the state and measurement equations of the

target can be expressed in linear forms, the state can be updated by the Kalman filter.

• Static Target State Update

The state estimation of a 3D static target in a road environment can be expressed as
Equation (5)

When calculating measurements for clustered target detection in static scenarios,
obtaining the enclosing box of the target is necessary. The height of the enclosing box can
be determined by computing the maximum and minimum heights of the point cloud, while
the other parameters of the enclosing box can be obtained from the enclosing concave hull
in the x and y planes.

The specific steps of the algorithm are as follows:

1. For any point p and rolling ball radius a, search for all points within a distance of 2a
from p in the point cloud, denoted as the set Q.

2. Select any point p1(x, y) from Q and calculate the coordinates of the center of the
circle passing through p and p1 with a radius of alpha. There are two possible center
coordinates, denoted as p2 and p3.

3. Remove p1 from the set Q and calculate the distances between the remaining points
and the points p2 and p3. If all distances are greater than a, the point p is considered a
boundary point.

4. If all distances are not greater than a, iterate over all points in Q as the new p and
repeat steps (2) and (3). If a point is found that satisfies the conditions in steps (2)
and (3), it is considered a boundary point and the algorithm moves on to the next
point. If no such point is found among the neighbors of p, then p is considered a
non-boundary point.
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Through Formula (7) of the radar point cloud velocity compensation part, vxk and vyk
of the static target can be calculated, and the vehicle speed can be updated through the
Kalman filter.

2.3.4. Track Management

In multi-object tracking, the number of targets is typically unknown and can vary as
targets and clutter appear and disappear from the scene. Therefore, effective management
of target trajectories is essential. For associated detections and trajectories, their states are
preserved and updated over time. In cases where detections cannot be associated with
any existing trajectory, new trajectories are generated and released as visible trajectories if
their lifespan exceeds a predefined threshold Tr. For unassociated trajectories, their states
are also preserved and updated. However, if their unassociated time exceeds a second
threshold Tu, the trajectories are deleted to avoid unnecessary computational load.

3. Results
3.1. Experiment Setup

To verify the proposed algorithm, data from a 4D radar in road conditions were
acquired using a data acquisition platform. The platform includes a 4D radar, LIDAR,
and camera sensors, as shown in Figure 4. The 4D radar is installed in the middle of the
front ventilation grille, and the LIDAR collects 360◦ of environmental information. The
camera and 4D radar capture information within the field of view. The true value frame
of the tracking target was labeled using the LIDAR and camera sensors. The performance
parameters of the 4D radar sensor are shown in Table 1. The TJ4DRadSet [27] dataset
was collected and is used for the algorithm analysis. As shown in Figure 4, the collection
platforms of the dataset are displayed.
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Table 1. Performance parameters of millimeter-wave radar in experimental data acquisition.

Sensors
Resolution FOV

Range Azimuth Elevation Range Azimuth Elevation

4D radar 0.86 m <1◦ <1◦ 400 m 113◦ 45◦

3.2. Results and Evaluation

In order to investigate the impact of velocity errors on the angle estimation under
different distances and angles, the graphs shown in Figures 5–10 were plotted.
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From Figures 5–10, it can be observed that when the radial velocity error is small, the
estimation of the rotation angle can be made using velocity measurements from multiple
points, and a shorter distance is more favorable for estimating the rotation angle based on
the velocity.

Due to the limited number of millimeter-wave radar points, the rotation angle estima-
tion of the dynamic target is fused by different methods. As shown in Figures 11 and 12,
the rotation angle of the dynamic target can be better estimated.
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Figures 13–15 show the state estimation of dynamic targets and static targets in a 4D
millimeter-wave radar scenario. Different estimated dynamic targets, static targets, and
true bounding boxes of dynamic targets have been labeled.
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Figure 13. Results of 4D millimeter-wave radar point cloud and target tracking for a single vehicle,
where the green box represents a dynamic target, the red box represents a static target, and the blue
box represents the true box of a dynamic target.

Remote Sens. 2023, 15, 2923 18 of 21 
 

 

 

Figure 14. Results of 4D millimeter-wave radar point cloud and target tracking for a single vehicle , 

including an incorrect dynamic detection, where the green box represents a dynamic target, the red 

box represents a static target, and the blue box represents the true box of a dynamic target. 

 

Figure 15. Results of 4D millimeter-wave radar point cloud and target tracking for multiple objects, 

where the green box represents a dynamic target, the red box represents a static target, and the blue 

box represents the true box of a dynamic target. 

Figure 16 shows the effects of different performance parameters in the target tracking 

scene. 

Figure 14. Results of 4D millimeter-wave radar point cloud and target tracking for a single vehicle,
including an incorrect dynamic detection, where the green box represents a dynamic target, the red
box represents a static target, and the blue box represents the true box of a dynamic target.
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Figure 15. Results of 4D millimeter-wave radar point cloud and target tracking for multiple objects,
where the green box represents a dynamic target, the red box represents a static target, and the blue
box represents the true box of a dynamic target.

Figure 16 shows the effects of different performance parameters in the target track-
ing scene.
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4. Discussion

The proposed 4D radar object tracking method based on radar point clouds can
effectively estimate the position and state information of radar targets. This provides more
accurate information for perception and planning in autonomous driving. By utilizing
radar point clouds, the method improves the tracking and prediction of surrounding objects,
enabling autonomous vehicles to make informed decisions in real time. Precise localization
and tracking of radar targets enhance situational awareness, allowing autonomous vehicles
to navigate complex environments with greater reliability and safety. Overall, this method
significantly enhances the perception and planning capabilities of autonomous driving
systems, contributing to the development of safer and more efficient autonomous vehicles.

5. Conclusions

In summary, this paper presents a 4D radar-based target tracking algorithm framework
that utilizes 4D millimeter-wave radar point cloud information for autonomous driving
awareness applications. The algorithm overcomes the limitations of conventional 2 + 1D
radar systems and utilizes higher resolution target point cloud information to achieve more
accurate motion state estimation and target profile information. The proposed algorithm
includes several steps, such as ego vehicle speed estimation, density-based clustering, and
binary Bayesian filtering to identify dynamic and static targets, as well as state updates
of dynamic and static targets. Experiments are conducted using measurements from
4D millimeter-wave radar in a real-world in-vehicle environment, and the algorithm’s
performance is validated by actual measurement data. The algorithm can improve the
accuracy and reliability of target tracking in autonomous driving applications. This method
focuses on the tracking framework for 4D radar. However, further research is needed to
investigate the details of certain aspects such as motion models, filters, and ego-vehicle
pose estimation.
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