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Abstract: Infrared small target detection is a crucial technology in both military and civilian applica-
tions, including surveillance, security, defense, and combat. However, accurate infrared detection
of small targets in real-time is challenging due to their small size and similarity in gray level and
texture with the surrounding environment, as well as interference from the infrared imaging systems
in unmanned aerial vehicles (UAVs). This article proposes a weighted local contrast method based
on the contrast mechanism of the human visual system. Initially, a combined contrast ratio is defined
that stems from the pixel-level divergence between the target and its neighboring pixels. Then, an
improved regional intensity level is used to establish a weight function with the concept of ratio
difference combination, which can effectively suppress complex backgrounds and random noise.
In the final step, the contrast and weight functions are combined to create the final weighted local
contrast method (WRDLCM). This method does not require any preconditioning and can enhance
the target while suppressing background interference. Additionally, it is capable of detecting small
targets even when their scale changes. In the experimental section, our algorithm was compared with
some popular methods, and the experimental findings indicated that our method showed strong
detection capability based on the commonly used performance indicators of the ROC curve, SCRG,
and BSF, especially in low signal-to-noise ratio situations. In addition, unlike deep learning, this
method is appropriate for small sample sizes and is easy to implement on FPGA hardware.

Keywords: IR small target; human visual system; local contrast; improved regional intensity
level (IRIL)

1. Introduction

The use of unmanned aerial vehicles (UAVs) has become widespread and poses a sig-
nificant threat to densely populated areas, as well as restricted areas such as airdromes [1,2].
Thermal infrared (IR) imaging allows remote monitoring of drones in all weather circum-
stances. Thus, the anti-unmanned-drone technique based on a thermal infrared imaging
system has received increasing attention from investigators [3,4], while the infrared acquisi-
tion of small targets is also an essential technology in military, civil, and other fields [5–7].
This technology plays a crucial part in UAV target detection [8], control, and defense [9].
Quick and exact identification and tracing of targets in each frame is crucial in infrared
detection [10]. However, it is challenging to correctly detect the genuine target without
false alarms mainly because of the following reasons: (a) In images obtained by the infrared
imaging machinery, the small target takes up only a handful of pixels in the entire image.
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The distance between the infrared imaging system and the actual target is usually large,
making the small target less noticeable in the overall image with no distinct features or tex-
ture [11]. (b) Detecting small IR targets in infrared imaging is challenging due to irregular
motion, occlusion, and blurring. The target may only occupy a couple of pixels, making it
difficult to tell apart from the background [12]. (c) Complex background edges and high
brightness noise with single pixels in the image can often resemble small targets, leading to
false positive detection results [13]. Therefore, achieving accurate real-time detection of
small IR targets continues to be a challenging task.

There are several existing methods for small IR target detection, including those based
on the spatial domain [14], frequency domain [15], morphology [16], and background esti-
mation [17]. While traditional algorithms have been widely used, there is now an increasing
interest in deep-learning-based techniques, both supervised [18] and unsupervised [19].
The spatial local contrast formula employs the principle of human vision to prioritize
the correlation between the target and its surroundings. It computes the local contrast
between the target area and its neighboring background to detect the target. Examples of
this method include the combination of filtering and morphology [20], the sub-block and
contrast approach [21], the difference stemming from the Gaussian bandpass filter [22], the
multi-scale local contrast method [23], the local contrast measure map [24], the minimum
mean square means for backdrop estimation [25], and the matched filtering and three-layer
windows [26]. Three classifications can be applied to these methods: ratio, differential,
and ratio–differential methods. From the discussion in the references, it is evident that
ratio-based approaches can enhance the real target but cannot remove a prominent back-
ground. Difference-based methods can eliminate a prominent background, but they do not
provide an effective way to strengthen the target. Ratio–differential methods can amplify
the target while eliminating a high-brightness background. Complex backgrounds can
lead to false alarms when using local basic contrast algorithms for detection. However,
local contrast algorithms with weighting functions can improve detection performance
by suppressing clutter. Some researchers have used local statistics, such as variance or
similarity measures, as weighting functions. For example, in [27], a weighting function is
created to address cloud edges; in [28], the variance of the central cell is utilized; in [29],
the similarity of the target’s pixels is combined with the differences between real objectives
and their surrounding neighborhood; in [30], the higher signal-to-clutter ratio is applied.
On the flip side, some researchers have preferred to design and compute the weighting
function themselves. For example, Qi et al. [31] employed the differences between the real
object and its neighborhood to create the weight in small image areas. Chen et al. [32]
recommended a methodology based on top hat filtering and contrast. Bai et al. [33] im-
proved the entropy formula and proposed a target measurement method of contrast. Nasiri
et al. [34] introduced a target area model based on three-layer patches, which utilizes the
variance difference between layers. Gao et al. [35] also utilized differences in variance. Liu
et al. [36] considered the number of bright pixels in the surroundings. Lv et al. [37] defined
a weight function using the regional intensity level between the target and its surrounding
neighborhood. Weighted local contrast algorithms typically rely on either a ratio-based
or a difference-based approach. While effective, these algorithms have certain limitations
as they only consider the difference operation in their weighting function calculation,
neglecting the ratio operation, which can result in weak enhancement of the true target.
Additionally, some weighting functions may be overly sensitive to random noise, which
can lead to the incorrect identification of random noise in a sub-block as a true target, even
if it has the highest value. Therefore, a combination of ratio-based and difference-based
approaches, known as the ratio–difference combined type, may be more effective.

Over the past decade, deep learning has witnessed remarkable advancements across
various domains such as biology, images, speech, language, and more. Numerous re-
searchers have endeavored to synergize local contrast algorithms with neural networks
to attain enhanced detection outcomes. Dai and Wu [38] leveraged the scarcity of the
target and the self-correlation of the background to effectively segregate the target from the
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surroundings, employing a tensor structure to design a weight function. In [39], the authors
integrated partial tensors and kernel norms to jointly weigh the l1 norm. Gupta et al. [40]
introduced a computationally efficient CNN framework and integrated lightweight net-
works for small target detection. Dai et al. [41] incorporated contrast features into the
network feature layer and fused shallow and deep features to achieve target detection.
In [42], the authors proposed a framework that combines handcrafted features and convo-
lutional features to extract target features. Similarly, Du et al. [43] devised small anchors
for capturing targets based on the shallow layer of the ResNet50 framework. Despite these
advancements, FPGA implementation of deep-learning-based methods encounters chal-
lenges due to model complexity. Even if deep learning approaches are deployed on FPGA,
ensuring real-time performance becomes arduous, thereby impeding the system’s ability
to provide prompt feedback. Furthermore, training neural network models necessitates
substantial data volumes, and a multitude of parameters, and entails high time complexity,
resulting in limited generalization capabilities. Considering these factors, the practical
utilization of deep learning algorithms in real-world product applications remains limited.
Consequently, this study primarily focuses on parsing algorithms that facilitate subsequent
hardware processing.

Based on the human visual contrast mechanism, we propose a weighted contrast local
contrast method. This algorithm effectively eliminates various clutter and point noise,
making it suitable for detecting small targets amidst different background noises. It demon-
strates robustness even when the size of the target changes. Furthermore, this algorithm
does not require preprocessing and exhibits good robustness. It does not rely on extensive
data for a specific network model and possesses the ability for parallel execution. This
allows for real-time feedback in target detection systems and facilitates easy productization
to address industry needs.

In summary, the main objectives of this study are as follows: (1) to design a contrast
method that combines ratio and difference operations to inhibit background noise and
enhance target detection; (2) to introduce a novel weighting function, to further restrain
random noise; and (3) to design multi-scale operations to accommodate targets with
varying sizes.

2. Proposed Method

We begin by analyzing the traits of the target and the different background types
depicted in Figure 1. Subsequently, leveraging these characteristics, we present a weighted
ratio–difference local contrast method, termed WRDLCM.
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2.1. The Characteristics of the Target and Other Different Types of Backgrounds

An IR image containing a small dim target [44] is depicted in Figure 1, encompassing
various components: True small target (TT), normal large area background (NB), back-
ground with relatively high brightness across the entire image (HB), background with an
edge shape (EB), and pixel-sized noises with high brightness (PNHB). The 3D distributions
provide a comprehensive visualization of the detailed pixel information for each component.
Based on the characteristics observed in both the two-dimensional and three-dimensional
images depicted in Figure 1:

(1) A genuine infrared target typically exhibits a concentrated region where pixel values
gradually diminish from the center outwards, with a relatively finite number of
pixels distributed across the entire image. Leveraging the principles of thermal
infrared images, moving targets tend to have higher pixel values compared to the
stationary background.

(2) In an infrared image, a normal background typically appears in large quantities,
characterized by relatively low pixel values. Conversely, the target pixels exhibit a
significantly larger value, rendering it more prominent when contrasted with the
normal background.

(3) A high-brightness background often manifests as a largely connected area with sub-
stantial pixel values. While these pixel values may exceed those of the real target,
the differences in pixel values between highlighted backgrounds are relatively small.
Consequently, it becomes easier to distinguish the genuine target from the high-
lighted backdrop.

(4) When dealing with backgrounds that contain edges, a significant difference is usually
noticeable in a particular direction. However, real targets differ from their neighboring
elements in all surrounding directions.

(5) The pixel value of PNHB may closely resemble that of a real target. However, PNHB
occupies a very limited number of pixels, often just a single pixel, whereas the pixels
corresponding to the real target form a circular area with a similar appearance [45].

Based on the above observation results, contrast features can be designed to accurately
capture real targets [46,47].

On the basis of analyzing the above objectives and the characteristics of different types
of backgrounds, we propose a weighted ratio–difference local contrast method(WRDLCM)
consisting of two main components: a fundamental local comparison algorithm and a
weight function. The first component entails a ratio-based and difference-based local
contrast algorithm that facilitates target enhancement while suppressing the background.
The second component involves a weight function, which incorporates the concept of
ratio–difference combination. Additionally, to accommodate targets of different sizes, a
multi-scale algorithm is devised. Notably, prior to calculating the weight function, we
introduce the IRIL approach that suppresses random noise by utilizing the average value
of the largest pixels instead of solely relying on the maximum value. This method has
proven advantageous in detecting targets moving within complex environments. The
proposed algorithm prioritizes a restricted number of pixels within the local small area
during the calculation of each pixel, leading to a reduced computational load. Furthermore,
the algorithm supports parallel processing techniques, thereby facilitating efficient real-
time performance.

2.2. Design of the Detection Algorithm

Based on the preceding analysis, it is established that a truly small target within an
infrared (IR) image exhibits notable significance within a limited vicinity of its surrounding
neighborhood. Additionally, the pixel value of the target gradually diminishes from the
center toward the periphery, while the normal background tends to be dark and featureless.
Consequently, it is feasible to concentrate on the localized range encompassing the target
and its surroundings, represented by a window (as depicted in Figure 2). We define this
confined pixel range as an image block, comprising nine sub-blocks: a central sub-block
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denoted as T and eight neighboring sub-blocks labeled as B1 to B8. By traversing the entire
image using these image blocks, the central sub-block can effectively discern the presence
of a genuine target, while the surrounding sub-blocks aid in determining background
information. In situations where target measurements are inconclusive, the size of the sub-
block, denoted as N, should correspond to the dimensions of the largest small target [22].
According to the international optical organization SPIE, small targets typically exhibit
dimensions smaller than 9 × 9 pixels [48].
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The detailed process of the WRDLCM algorithm is depicted in Figure 3. Initially, for
the unknown target, the number of possible scales can be set first, and the contrast can
be calculated at each scale, for example, at the pth scale, the local contrast methods of
ratio (RLCMp) and difference (DLCMp), as well as the weight function based on the local
contrast method (WLCMp), are computed for the window. The RLCMp and DLCMp are
then combined to form RDLCMp, which is multiplied by the weighting function to obtain
WRDLCMp. Finally, the maximum value across multiple scales is selected as the WRDLCM
output. We will describe the multi-scale detection method in Section 2.2.5. By applying a
threshold, precise target identification can be achieved.
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Traversing the image block through the entire image will ultimately result in a new
matrix in which the target will occupy the highlighted pixel portion, and the pixel value of
the remaining background portion is 0.

2.2.1. The Calculation of the Radio-Based Local Contrast Method (RLCM)

In many papers, it is common for authors to calculate contrast using the maximum
pixel value. However, these approaches may not effectively suppress normal backgrounds
or minor noise surrounding the target, leading to inaccurate small target detection. In this
article, we propose a different method where contrast is calculated using average pixel
values. This approach allows for the elimination of background and clutter, resulting in
more accurate small target detection.

In the ith direction, the pixel contrast of RLCMi between the background sub-block Bi
and the center sub-block T is identified as follows:

RLCMi =
MT
MBi

, i = 1, 2, . . . , 8 (1)

where

MT =
1

K1

K1

∑
j=1

Grayj
T (2)

MBi = max

{
1

K2

K2

∑
j=1

Grayj
Bi, ξ

}
, i = 1, 2, . . . , 8 (3)

here, ξ is a small value greater than 0. In the event that the denominator in the above
formula is 0, ξ is set to 1.

K1 and K2 represent the maximum number of grayscale values in the sub-block, Grayj
T

and Grayj
Bi denote the jth maximal gray value of T and Bi, respectively. The inclusion

of mean operations in MT and MBi helps mitigate the interference of PNHB. Moreover,
considering that the real target typically exhibits attenuation from the center, it is recom-
mended to set K1 to a value smaller than the pixel count of the target. This choice ensures
a larger RLCM value, thereby enhancing the target. Additionally, for better results, it is
advisable for K2 to be slightly larger than K1.

In the context of the image block illustrated in Figure 2, there are eight directions sur-
rounding the target. To counteract the impact of edge background, the RLCM is described
as follows:

RLCM = min{RLCMi}, i = 1, 2, . . . , 8 (4)

2.2.2. The Calculation of the Difference-Based Local Contrast Method (DLCM)

Based on the analysis presented in Section 2.1, it is observed that a high-brightness
background typically manifests as a connected region with significantly larger pixel values,
exhibiting similarity within the highlighted background area. Exploiting this characteristic,
we can devise a differential form of contrast to counter the effects of the highlighted
background. The contrast difference in the ith direction is defined as follows:

DLCMi = max{|MT −MBi|, ξ}, i = 1, 2, . . . , 8 (5)

where MT and MBi are the same as in Formulas (2) and (3), respectively, and ξ is defined as
in Formula (3). The absolute value in Formula (5) is used to avoid negative values.

The final DLCM is obtained by selecting the largest DLCM value among the eight
neighborhood directions, as expressed by the following equation:

DLCM = max{DLCMi}, i = 1, 2, . . . , 8 (6)
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2.2.3. The Calculation of the RDLCM

As discussed earlier, RLCM is effective in handling complex background edges, PNHB,
and normal background, while DLCM is capable of eliminating a high-light background
and PNHB. To enhance the real target more effectively, we propose a ratio–difference
combined local contrast method (RDLCM) that combines the strengths of RLCM and
DLCM. By calculating the Hadamard product of RLCM and DLCM, the calculation formula
for RDLCM is as follows:

RDLCM = RLCM ◦DLCM (7)

2.2.4. Definition of the WLCM

(1) The Improved RIL

In scenarios where the image contains multiple backgrounds and significant clutter,
relying solely on RDLCM for detection may lead to false alarms. To address this challenge,
this paper introduces a novel weighting function that comprises two components. The
first component involves the introduction of the IRIL, which aims to mitigate the impact
of clutter and enhance target detection accuracy. The second component focuses on the
computation of the weighting function based on the ratio–difference combination. Together,
these components contribute to improving the detection algorithm’s overall effectiveness.

The RIL introduced by Lv et al. [41] is a valuable metric for evaluating the intricacy of
a block. However, the initial RIL definition, sensitive to isolated random noise, is merely
determined as the difference between the block’s highest value and its mean value. To
address this limitation, we propose the IRIL, which incorporates the mean value to mitigate
the impact of isolated random noise. This improved definition applies to both the IRILi of
neighborhood sub-blocks Bi and the IRILT of the center sub-block T.

IRILT = MT − Tmean (8)

IRILi = MT − Bimean, i = 1, 2, . . . , 8 (9)

IRIL = max{max{|MBi − Bimean|, ξ}}, i = 1, 2, . . . , 8 (10)

where MT and MBi are the same as Formulas (2) and (3), respectively. The subscript “mean”
indicates the average value. The absolute value in Formula (10) is used to ensure non-
negativity. ξ is the same as in Formula (3). The results of MT and MBi from Formula (2)
and Formula (3) can be directly utilized without precomputation, which greatly enhances
efficiency. The final IRIL value is obtained through the maximum pooling procedure.

(2) The WLCM

In this paper, similar to the calculation method of the RDLCM, The WLCM is computed
using both ratio and difference operations. IRILT and IRIL are incorporated as weighting
factors to calculate the ratio and difference, respectively. The weight value w(x, y) of a
specific pixel (x, y) is obtained as follows:

w(x, y) =
IRILT
IRIL

◦ (IRILT − IRIL) (11)

WLCM = max{0, w(x, y)} (12)

When defining WLCM, we take into consideration non-negative constraints to ensure
that the weight function remains positive. The weighting function in this study is designed
based on the similarities and differences between the target and background. Compared to
existing weight function approaches, it incorporates a wider range of factors, providing a
more comprehensive representation. Algorithm 1 shows the calculation steps of WRDLCM
at the pth scale.
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Algorithm 1 WRDLCM computation at the pth scale

Input: Raw IR image and the parameters N, K1, and K2.
Output: The result of the WRDLCMp calculation is a matrix called WRDLCMp.
1: Create a patch consisting of 9 cells, as depicted in Figure 2.
2: Translate the patch horizontally in a left-to-right motion and vertically from top-to-bottom over
the raw IR image.
3: At every pixel, compute its corresponding RLCMp and DLCMp values using formulas (1)–(6).
4: Once the calculation is completed for the entire image, create two new matrices RLCMp and
DLCMp to store the results.
5: Standardize the constituents in RFLCMp to the range (0, 1).
6: Standardize the elements in DFLCMp to the range (0, 1).
7: Compute the RDLCMp of the raw IR image by taking the Hadamard consequence of RLCMp
and DLCMp:
8: Compute the WLCMp of the raw IR image using formulas (8)–(12).
9: Standardize the parts in WLCMp to the range (0, 1).
10: Determine the WRDLCMp of the raw IR image by performing the Hadamard outcome of
RDLCMp and WLCMp.

2.2.5. Multi-scale WRDLCM Calculation

The previous basic contrast algorithm and weight function are multiplied using the
Hadamard product to form WRDLCM, as shown in Equation (13). This operation effectively
enhances small targets throughout the entire image. The contrast calculation for each
window is performed in parallel, improving the program’s runtime speed and satisfying
the real-time demands of the probing system.

WRDLCM = RDLCM ◦WLCM (13)

Regarding the key parameter K in Formulas (2) and (3), achieving multi-scale target
detection requires self-adaptive adjustment based on the target’s size. By applying Formulas (1)
to (13), the WRDLCM can be determined, and the WRDLCM values at different scales can
be maximized. The formula is as follows:

WRDLCM = max
{

max
{

WRDLCMp , p = 1, 2, . . . , L
}

, 0
}

(14)

The range of p is 1 to L, representing the first scale, the second scale, and so on. L repre-
sents the number of scales. It is important to note that real targets are typically brighter than
their surrounding objects. To further suppress clutter, non-negative constraints are applied.

The process of multi-scale WRDLCM calculation can be described as follows:

(1) For the pth scale, suitable values of K1 and K2 are selected. In this paper, three scales
are designed. For scale 1 (target size 3 × 3), the values of K1, K2, and N are configured
to 2, 4, and 5, respectively; for scale 2 (target size 5 × 5), the values of K1, K2, and N
are configured to 9, 18, and 7, respectively; for scale 3 (target size 7 × 7), the values of
K1, K2, and N are configured to 16, 32, and 9, respectively.

(2) For a given IR image, the output of the maximum WRDLCM at each pixel across
different scales is determined using Formula (14). It can be easily demonstrated
that performing multi-scale WRDLCM calculation yields the most appropriate de-
tection results. Furthermore, this algorithm incorporates parallel operations during
the contrast calculation, significantly optimizing the real-time performance of the
detection system.

Algorithm 2 gives the main steps of the multi-scale WRDLCM calculation.

RETRACTED
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Algorithm 2 multi-scale WRDLCM determination

Input: Raw IR image and the parameters N, K1, K2, . . . , KL. for L scales.
Output: The resulting matrix of the WRDLCM calculation is called WRDLCM.
1: for p = 1,2, . . . ,L do
Compute the WRDLCMp using Kp based on Algorithm 1.
2: end for
3: For each pixel, output the highest WRDLCM value across all L scales as the final multi-scale
WRDLCM value, denoted as:

WRDLCM = max
{

max
{

WRDLCMp , p = 1, 2, . . . , L
}

, 0
}
(14)

where (i, j) is the location of each pixel.

3. Performance Analysis and Threshold Manipulation
3.1. Analysis of Detection Performance

Figure 4 shows image blocks in various regions in the original IR image. The left side
of each graphical block represents its 3D distribution. Specifically, Figure 4a illustrates
a region containing a genuine small target, while the remaining sub-images showcase
different types of backgrounds.
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Figure 4. Image blocks in different regions in the original infrared image: (a–f) represent the real
small target, highlighted background, edge background, point noise, normal background, and pulse
noise in sequence, respectively.

A thorough observation of the 3D distribution map in Figure 4 reveals distinct char-
acteristics for both the target and each background type. By employing the ratio and
difference calculations in the algorithm, it can be deduced that only the WRDLCM of the
real target yields the highest value. Consequently, this analysis demonstrates the capability
to accurately detect small targets.

3.2. Threshold Operation

After the computation of WRDLCM, the target becomes highly prominent in the
image, while the majority of the background is filtered out. Subsequently, the employment
of threshold operations enables the extraction of the genuine target. The formula for
determining the threshold value is as follows:

Th = λ·max(WRDLCM) + (1− λ)·mean(WRDLCM) (15)
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where λ is a given factor between 0 and 1.
During our analysis of experimental results, we determined that an appropriate range

for the threshold parameter λ lies between 0.6 and 0.9. Utilizing the WRDLCM results,
we solely extract the portion where the pixel value exceeds the threshold. To enhance the
displayed outcome, we further apply an expansion operation to the extracted region. The
output result of the algorithm comprises the small target along with its expanded region.

4. Experimental Analysis and Results

To validate the algorithm proposed in this article, we conducted experiments using
various infrared small target datasets. All experiments were conducted on a 2.70 GHz Intel
Core i5-6400 PC with 8 GB of RAM under MATLAB environment.

4.1. Data and Performance Evaluation Indicators

In this paper, the number of scales we utilized is three, and the size distribution of
N is set to 5 × 5, 7 × 7, and 9 × 9, respectively. We conducted tests on infrared images
consisting of 1400 frames from multiple sequences. These sequences encompassed varying
sizes of small targets and distinct backgrounds. Table 1 offers a general outline of the
first frame image of each sequence. Some of these sequences were captured by HgCdTe
infrared detectors, and depict floor plans near Wuhan Tianhe International Airport, while
the remaining images were provided by our team.

Table 1. Description of 6 real infrared sequences.

Sequence Frames Size Target Number Target Size Target Type

Seq. 1 200 320 × 256 1 2 × 3~3 × 4 Plane

Seq. 2 300 256 × 256 1 3 × 3~3 × 4 Drone

Seq. 3 300 256 × 256 1 3 × 5 Truck

Seq. 4 200 320 × 256 1 3 × 5 Plane

Seq. 5 200 320 × 256 1 4 × 5 Plane

Seq. 6 200 320 × 256 1 3 × 3 Plane

We use the common signal clutter ratio gain (SCRG) and background suppression
factor (BSF) to evaluate the capability of the algorithm. Higher values of these performance
indicators indicate better performance. SCR stands for signal-to-noise ratio. A small target
with a higher SCR is more easily detectable. SCRG measures the level of enhancement
of the input and output signals of a target in comparison to the background. It is also
an indicator of the difficulty of detecting small targets. SCR and SCRG are established
as follows:

SCR =
|µt − µb|

σb
, SCRG =

SCRGout

SCRGin
(16)

where µt signifies the average pixel size of the target, µb represents the pixel value size
of the area around the target, and σb is the standard deviation of pixel values around
the target. SCRGin indicates the signal-to-noise ratio of the input image, and SCRGout
epitomizes the signal-to-noise ratio of the output image.

BSF indicates the efficacy of background attenuation, and the formula is as follows:

BSF =
Cin
Cout

(17)

where Cin signifies the deviation from the mean of the original input image, and Cout
symbolizes the deviation from the mean of the output image after detection.
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4.2. Experimental Outcomes Using the Proposed Method

In Figure 5a, we present samples from six sequences where the real target is not
prominent in the entire image, occupying only a few pixels, with significant interference
surrounding it. Figure 5b showcases the calculation output of RLCM (displaying a single-
scale result with a block size of 5 × 5). Figure 5c displays the results of DLCM, while
Figure 5d demonstrates the joint operation of RLCM and DLCM, resulting in RDLCM.
Compared to Figure 5b, Figure 5d effectively filters out most of the background, making
the infrared target more salient. The effect of the weight function WLCM, designed in this
paper, is displayed in Figure 5e. Figure 5f showcases the combined performance of WLCM
and WRDLCM. In Figure 5g, the target becomes more prominent, and the background is
nearly suppressed due to the influence of the weight function. Finally, accurate detection
of the actual target is achieved through threshold operations, as depicted in Figure 5h.
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To assess the adaptability of the proposed algorithm to the real-time motion of infrared
targets, we conducted tests on randomly selected images from the aforementioned six
sequences (excluding the images used in Figure 5). The results, presented in Figure 6,
demonstrate that even with random image selection within the sequence, the algorithm
reliably detects the real target. This further confirms the effectiveness of the algorithm and
its ability to adapt to varying scenarios.
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Figure 6. Step test results of sample images randomly selected from six sequences: (a) original
infrared image; (b,c) calculation results of RDLCM and WLCM at the same scale, respectively; (d) the
results of maximizing WRDLCM at multiple scales; and (e) threshold screening and detection results
after expansion.

4.3. Comparisons with Popular Methods

The algorithms that were compared to our proposed algorithm include VAR-DIFF [6],
ILCM [21], NLCM [22], MPCM [24], RLCM [23], MDTDLMS [25], and WLDM [27]. The
VAR-DIFF algorithm incorporates a weight function in its contrast calculation, but it only
utilizes a difference operation. ILCM and MPCM are sub-block-based methods without
weighting. The RLCM and MDTDLMS algorithms employ both difference and ratio
operations. The weight functions in WLDM and NLCM are designed based on specific
characteristics of small targets. Our proposed algorithm, WRDLCM, introduces a novel
approach combining ratio–difference operations and a new weighting function.

Tables 2 and 3 present a thorough comparison of different algorithms using two
widely adopted performance metrics: SCRG and BSF. Higher values of these performance
indicators indicate better performance. Our algorithm demonstrates significant improve-
ment in enhancing genuine targets, leading to favorable SCRG and BSF values across
most scenarios.
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Table 2. The SCRG of different algorithms.

Seq VAR-DIFF ILCM NLCM MPCM RLCM WLDM MDTDLMS SBE WSLCM Proposed

1 81.0621 46.9499 44.121 8.3706 20.1072 96.6349 134.0081 141.6602 158.2621 187.4666

2 28.589 3.9251 7.8695 1.5108 3.3806 8.1257 11.9812 13.9991 23.7546 27.4135

3 7.9416 1.9404 1.6612 2.0665 1.5181 19.0926 3.6358 8.3069 9.7639 12.43

4 24.4902 13.0714 18.8765 2.8125 11.8627 46.2286 48.9359 102.9054 91.9173 150.8203

5 69.4871 7.4718 10.3798 6.2368 13.2762 75.9957 59.4319 56.0565 52.0043 67.2493

6 67.6344 8.8442 11.6066 6.2767 15.3084 124.8624 66.1583 81.0356 79.2109 141.4133

Table 3. The BSF of different algorithms.

Seq VAR-DIFF ILCM NLCM MPCM RLCM WLDM MDTDLMS SBE WSLCM Proposed

1 5.04 × 10−10 46.3694 0.022 0.0192 15.1353 22.8578 3.89 × 105 6.33 × 105 0.0366 5.54 × 105

2 3.77 × 10−5 7.9812 0.0943 0.1349 2.4911 37.9672 1.64 × 103 2.03 × 103 0.0218 3.91 × 103

3 7.45 × 10−9 9.1742 0.0344 0.1368 2.1982 16.5951 4.24 × 103 1.13 × 104 0.1694 7.67 × 103

4 2.85 × 10−10 49.5869 0.0361 0.0202 11.12 15.1272 1.35 × 105 3.12 × 105 0.0638 4.09 × 105

5 2.49 × 10−11 25.8584 0.0052 0.0107 7.7217 12.5982 3.69 × 105 5.94 × 105 3.61 × 10−4 4.16 × 105

6 8.00 × 10−11 34.5385 0.0059 0.0261 9.1028 18.5719 4.70 × 105 3.89 × 105 0.002 4.08 × 105

VAR-DIFF performs well from the perspective of SCRG and BSF in the second and
third sequences but shows limited performance in the remaining sequences. The differential
operation in VAR-DIFF can effectively eliminate backgrounds with large areas of similar
pixel values and accurately detect genuine targets. However, it struggles to suppress
complex backgrounds in the presence of bright backgrounds or clutter, resulting in a subpar
performance in the other four sequences. ILCM, NLCM, MPCM, and RLCM all exhibit
low SCRG and BSF values, as these methods do not employ weight functions to enhance
targets. They simply rely on differential or ratio–difference combined contrast for target
detection. WLDM, on the other hand, incorporates a weight function to enhance targets
and demonstrates high SCRG values in the third, fifth, and sixth sequences, as its designed
weight function effectively resists cloud edges. MDTDLMS combines the concepts of
background estimation and difference ratio, and exhibits excellent SCRG performance
in the first sequence due to the simplicity of the background, which allows for accurate
estimation. However, its performance in other sequences is not as strong as that of our
proposed method. Based on the calculation results, our proposed method demonstrated
superior performance in comparison to most methods, consistently achieving outstanding
SCRG and BSF values across all six sequences. Although the SBE method may have
outperformed our algorithm in certain sequences, its algorithmic complexity surpasses that
of our proposed method.

The receiver operating characteristic (ROC) curve is an important measure for eval-
uating the capability of an algorithm. It gives a graphical depiction of the relationship
between the true positive rate and the false positive rate. Figure 7 presents the comparison
of ROC curves for different algorithms. In addition to the aforementioned comparison
algorithms, several additional methods are included in the ROC curve comparison, such
as TLLCM [26], STLCM [49], TCF [50], STLCF [51], SBE [52], and WSLCM [53], which are
popular algorithms of different types. From the ROC curve, it is evident that our proposed
method outperforms most algorithms and is comparable to newer approaches developed
in recent years.
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To evaluate the capability of the algorithm, we conducted tests on both a real dataset
and a simulated dataset consisting of 200 infrared images containing small targets and
complex backgrounds. The simulation parameters were set as follows: an image size of
256 × 320 pixels, a signal-to-noise ratio of 0.2, a background brightness of 100, a target
brightness of 120, and a bright region in the upper left corner of the simulated image with
a brightness value of 150. The initial target coordinates on the first frame were set to 80 on
the vertical axis and 20 on the horizontal axis. The horizontal positions were incremented
by 1 for each subsequent frame. The target’s shape was generated using a two-dimensional
Gaussian model. The target and background were combined to create the simulated image,
and random noise with a noise intensity of 20 was added.

Subsequently, the performance of the proposed algorithm was tested on this simulated
dataset, and several comparative algorithms were also applied to assess the dataset and
generate ROC curves. Figure 8 illustrates the challenges posed by the bright background
and complex noise in the vicinity of the target, making target detection difficult. We
tested the images from the 200 datasets and selected two random images to showcase the
detection results. As depicted in Figure 8, small targets can be accurately detected even in
the presence of complex bright backgrounds and noise.
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Figure 9 presents the comparison results of the ROC curves for several popular algo-
rithms on the simulated dataset. Our algorithm ranked second in terms of performance.
The optimal MDTDLMS-RDLCM [25] algorithm, which combines background estimation
and local contrast design, achieved the best performance. This demonstrates the practicality
of our algorithm in real-world scenarios. In future work, we can explore the integration of
background estimation to design local contrast more suited for target detection. Overall,
our algorithm is applicable for detecting small targets in both real and simulated scenarios.
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4.4. Experiments against Random Noise

Random noise is a significant factor that can degrade detection performance. To assess
the robustness of our algorithm, we introduced different levels of noise to the original
images from the sequence used in the previous experiments. Figure 10 illustrates the results
where white noise with a variance of 0 and mean values ranging from 1 to 5 was added to
the images. Subsequently, a performance test for target detection was conducted. From
the ROC curve results presented in Figure 10, it is evident that our proposed algorithm
performs well across all noise conditions. Regardless of the varying levels of noise, our
algorithm consistently demonstrates reliable detection capabilities.
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Table 4 provides a comparison of the processing times between several deep learning
methods and our proposed approach. The results demonstrate that our method is capable
of processing a higher number of frames per unit of time, effectively meeting the real-time
requirements. By contrast, deep learning methods such as RIPT [38], PSTNN [39], and
MF-LWCNN [40] require more time for processing.

Table 4. Processing frame time for different algorithms.

Method Frame Size Time Platform

RIPT [38] 255 × 320/200 × 256 2.26 CPU
PSTNN [39] 128 × 128/256 × 200/320 × 240 0.49 CPU

MF-LWCNN [40] 300 × 300 0.20 CPU
Our method 320 × 256/256 × 256 0.11 CPU

4.5. Testing of Multiple Targets

To further analyze the effectiveness of our proposed method, we conducted experi-
ments using a sequence containing multiple frames to detect two infrared small targets.
Specifically, we utilized Seq.7, which consists of 200 frames, with the background primarily
comprising a sea scene. The small targets in the images represent ships, and the image size
is 280 × 228. The target sizes range from 5 × 5 to 7 × 7.

Figure 11 illustrates the detection results for two targets. The experimental outcomes
validate the capability of our proposed method in highlighting the targets amidst intricate
backgrounds. The WRDLCM calculation enhances the visibility of the targets, and the
subsequent weighted processing significantly filters out the majority of the background,
further emphasizing the targets. By applying a threshold value, the actual targets can be
accurately identified.
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DLCM; (d) RDLCM; (e) WLCM; (f) WRDLCM; (g) the final multi-scale WRDLCM result; and (h) the
detection result after the threshold operation.

Figure 12 showcases the detection results of Seq.7 with the addition of random noise.
As depicted in Figure 12c, the original image becomes blurred, and the identification of
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small targets becomes more challenging. Despite the difficulty introduced by the noise,
the ROC curve demonstrates the stable performance of our proposed algorithm. However,
when the noise variance reaches 8, which is relatively strong, the ROC curve exhibits a
slight decrease. This indicates that our algorithm maintains good performance even in the
presence of severe noise interference.
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Figure 12. Performance at different noise levels: (a) the raw IR image; (b) Gaussian noise; (c)
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Furthermore, we conducted performance tests on single-frame images sourced from
the single-frame dataset [53] and the public SIRST dataset [54]. These single-frame images
allow us to assess the algorithm’s capability when spatiotemporal information from consec-
utive frames cannot be utilized. As depicted in Figure 13, our method achieves accurate
target detection even with single-frame images.
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4.6. Detection of Small Inland UAV Targets Using Infrared Images

The accurate detection of small UAV targets holds great significance in both the military
and civilian domains. This section focuses on evaluating the algorithm performance using
inland UAV target datasets obtained from the reference [55].

As depicted in Figure 14, this paper employs five real UAV sequences for testing,
representing diverse and complex scenes. Figure 14a displays the original IR sequences
used for testing, while Figure 14b–f present the results of each step in the proposed method.
Figure 14g depicts the target detected after the threshold operation. Notably, Figure 14e
showcases the outcome obtained through the application of the weight function, effectively
filtering out most of the noise and significantly enhancing the visibility of the small target.
Figure 14f represents the detection result obtained by combining RDLCM and WLCM.
Finally, the threshold value is applied to filter the target region, resulting in the precise
identification of the actual small target.
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Furthermore, to assess the performance of our method in the presence of noise, a
certain level of noise with a mean value of 0 and a variance of 20 is added to the image
in Figure 14. Figure 15 illustrates the detection results for images with added noise. As
observed in Figure 15b, the image becomes considerably blurred after the introduction of
random noise. However, as demonstrated in the final result depicted in Figure 15f, our al-
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gorithm exhibits robust noise resilience and maintains a satisfactory detection performance
even in the presence of noise.
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Most of the aforementioned comparison algorithms do not consider the spatial and
temporal dependencies between frames. By contrast, the method proposed in [56], referred
to as MSLSTIPT, utilizes spatiotemporal information to extend image data to tensor do-
mains. While this algorithm is novel and unique, it may not be effective for all small target
detection scenarios. Figure 16 illustrates the comparison results between the MSLSTIPT
algorithm and our proposed method on a small UAV target sequence, which is one of the
five sequences mentioned in Figure 14. The first row shows the original images of the UAV
sequence for the first six frames, while the second row presents the detection output of
the MSLSTIPT algorithm. By contrast, the third row displays the detection output of our
algorithm. It can be observed from the second row that the MSLSTIPT algorithm generates
numerous false alarms and fails to achieve satisfactory detection performance. However,
our algorithm demonstrates superior detection performance for these six sequential frames,
as depicted in the third row.RETRACTED
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5. Conclusions

This paper presents a novel WRDLCM algorithm that combines the RDLCM and
WLCM methods. The RDLCM algorithm leverages the benefits of both ratio-type and
difference-type local-contrast-based methods. It effectively suppresses various types of
interference and enhances target objects without requiring any preconditioning algorithms.
Additionally, a new weighting function, WLCM, is proposed. This function calculates
weighting factors using mean value arithmetic operations to mitigate single random noise.
By applying threshold filtering, the proposed algorithm accurately outputs the actual target.
The preliminary results demonstrate the effectiveness of our target detection approach
across various scenarios. Furthermore, our method is capable of detecting small targets
even when their scale changes.

Moreover, our approach offers advantages in FPGA hardware processing compared to
deep learning methods. While deep learning methods exhibit good detection performance,
their hardware implementation is challenging and may not meet the practical requirements
of industrial applications, particularly in real-world product deployment. Therefore, in
future work, we aim to explore the integration of traditional algorithms with deep learning
techniques to achieve real-time object detection for targets of different sizes. Addition-
ally, we plan to focus on hardware implementation and production by leveraging FPGA
technology, ensuring the wider applicability of our approach.
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