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Abstract: One of the most valuable and nutritionally essential agricultural commodities worldwide is
milk. The European Union and New Zealand are the second- and third-largest exporting regions of milk
products and rely heavily on pasture-based production systems. They are comparable to the Australian
systems investigated in this study. With projections of herd decline, increased milk yield must be obtained
from a combination of animal genetics and feed efficiencies. Accurate pasture biomass estimation across
all seasons will improve feed efficiency and increase the productivity of dairy farms; however, the
existing time-consuming and manual methods of pasture measurement limit improvements to utilisation.
In this study, Sentinel-2 (S2) band and spectral index (SI) information were coupled with the broad
season and management-derived datasets using a Random Forest (RF) machine learning (ML) framework
to develop a perennial ryegrass (PRG) biomass prediction model accurate to +/−500 kg DM/ha, and
that could predict pasture yield above 3000 kg DM/ha. Measurements of PRG biomass were taken
from 11 working dairy farms across southeastern Australia over 2019–2021. Of the 68 possible variables
investigated, multiple simulations identified 12 S2 bands and 9 SI, management and season as the most
important variables, where Short-Wave Infrared (SWIR) bands were the most influential in predicting
pasture biomass above 4000 kg DM/ha. Conditional Latin Hypercube Sampling (cLHS) was used to
split the dataset into 80% and 20% for model calibration and internal validation in addition to an entirely
independent validation dataset. The combined internal model validation showed R2 = 0.90, LCCC = 0.72,
RMSE = 439.49 kg DM/ha, NRMSE = 15.08, and the combined independent validation had R2 = 0.88,
LCCC = 0.68, RMSE = 457.05 kg DM/ha, NRMSE = 19.83. The key findings of this study indicated
that the data obtained from the S2 bands and SI were appropriate for making accurate estimations
of PRG biomass. Furthermore, including SWIR bands significantly improved the model. Finally, by
utilising an RF ML model, a single ‘global’ model can automate PRG biomass prediction with high
accuracy across extensive regions of all seasons and types of farm management.

Keywords: satellite remote sensing; Sentinel-2; random forest; perennial ryegrass biomass; dairy pasture

1. Introduction

Dairy farms in Australia are largely grazing-based systems (almost 96%), utilising
pasture as a nutrient-dense and cheap feed source for dairy animals [1,2]. This precious
resource can be efficiently managed if measured, but in busy farming systems such as
dairy, it is difficult to observe the whole farm all the time adequately using traditional
on-farm pasture biomass measuring approaches. Fulkerson et al. [3] found that feed
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allocation for cows can vary by up to 50% from intake requirements per day. Therefore,
pasture allocation and utilisation should be carefully monitored [4] to avoid high pasture
availability leading to concentrate wastage or low pasture availability resulting in underfed
cows. The efficient utilisation of high-quality farm-grown biomass is one of the critical
attributes of a cost-effective pasture-based dairy farming system [5,6]. A robust and accurate
method for estimating and mapping pasture biomass variation across whole farms and
within paddocks is essential for sustainable dairy farm productivity in Australia and other
regions dependent on pasture-based systems.

The challenge in estimating pasture biomass in the dairy industry is four-fold.
Firstly, due to the regional differences in climate and access to irrigation, continuous pas-
ture biomass prediction needs to consider a range of seasons simultaneously. Secondly, the
biomass volume produced during the peak growth period (in any season) over very short
intervals (~30 days) can quickly exceed 3000 kg DM/ha (dry matter per hectare). Thirdly, the
paddocks can be as small as one hectare, which impacts measurement resolution. Finally, the
grazing or harvesting frequency in dairy farming requires frequent observations to provide
helpful information for supporting farm management and decision-making processes.

Many conventional and modern tools already provide pasture biomass prediction
at the paddock scale. However, these tools are labour-intensive or inaccurate and rarely
provide total farm views. One of the most basic and labour-intensive tools, the rising plate
meter (RPM), uses a plate to measure compressed pasture height [7]. The process is tedious
and can be time-consuming, particularly for large farms. In addition, for robust data
collection, many individual measurements are required per paddock to provide a single
paddock average; therefore, it does not comprehensively represent the spatial variability of
the pasture [8]. On the other hand, there are a growing number of handheld sensors [9] or
vehicle-mounted sensors (for example, multispectral sensors and ultrasonic sensors) [10]
that enable semi-automatic field data collection. Although handheld and vehicle-mounted
sensors are non-destructive methods, they still require time and access to traverse the
pasture and may inadvertently damage the pasture or soil. Unmanned aerial vehicle
(UAV) mounted sensors are becoming increasingly prevalent in agricultural settings [11,12].
However, these can only capture part of the farm in one day and require significant
investment in equipment, sensors, software, and computational resources (i.e., automated
analysis frameworks) to produce pasture biomass estimates.

Satellite remote sensing of aboveground biomass has been demonstrated for
50 years [13]. Recent advances in multispectral satellite sensors and constellation suites
theoretically enable the regular measurement of pasture biomass and can automatically
provide data over large areas, including regular revisit times. Many examples of spatio-
temporal observation of biophysical characteristics of vegetation, such as biomass and leaf
area index (LAI), were evident in the literature, including forests [14–16], crops [17–19], land
cover [20–22], and certain forages [23]. Spatio-temporal observation has also been a popular
choice for pasture biomass estimation [24–26]. However, many published studies did not
focus on highly managed environments such as dairy farm systems or extend across large
regions or periods [27]. Early studies focusing on dairy farming systems showed promis-
ing evidence that satellite platforms could estimate pasture growth and fertiliser needs
that match the farm-scale requirement, even when using coarse-resolution sensors [28,29].
Furthermore, Edirisinghe et al. [30,31] showed that with improved satellite-based sensors and
well-matched sampling strategies, it was possible to predict pasture biomass at the paddock
scale on annual pastures in Western Australia and perennial pastures in Waikato, New Zealand.

Sentinel-2A and Sentinel-2B (S2) satellites, launched by the European Space Agency
(ESA), are now popularly favoured for biomass mapping due to the five-day revisit cycle
(at the equator) and 12 bands with resolutions ranging from 10 m to 60 m [25,32–34].
An additional benefit is that the data is freely available. The short revisit time and large
swath width (290 km) theoretically enable regular measurement subject to cloud cover.
One of the advantages of using S2 imagery is the addition of SWIR bands. The pixel
resolution is also adequate for smaller dairy farm paddock areas.
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An extensive array of studies has demonstrated processing options for multispectral
sensor bands, such as single bands [35], commonly reported spectral indices, linear spectral
unmixing [26], spectral mixture analysis [36], and using the principles of radiation use
efficiency [37], and physically-based radiative transfer modelling [38]. Vegetation indices
are the most common approach, with the normalised difference vegetation index (NDVI)
being the most widely used and reported over the last 50 years and commonly used as
a reference index on which to gauge improvement [26,39,40]. Although NDVI has been
proven to be an excellent predictor of biomass in many studies, the challenges of fast-
growing high-volume wet canopies, such as those found in dairy pastures, suggest the
investigation of a suite of spectral indices (SI). Numata et al. [36] found better correlations
with fresh weight than dry weight using two indices that use SWIR bands. SWIR bands
have been found to improve the correlations between the measured and predicted dry
weight due to sensitivity to leaf water concentration at high biomass (>3000 kg DM/ha).
Biomass above 3000 kg DM/ha is a level that commonly exceeds a Leaf Area Index (LAI)
greater than 3. LAI > 3 is known to saturate common vegetation indices such as the
Normalised Difference Vegetation Index (NDVI) [41]. Broge and Leblanc [42] demonstrated
that the effectiveness of SI depends not just on the bandwidth or combination but also on the
target’s range and environmental factors such as soil classification and colour variations in the
soil in both dry and wet conditions and moisture present in the air that affect that range.

With the ever-increasing data from modern satellite sensors, selecting a proper em-
pirical modelling framework is essential in landscape research. The linear regression
analysis approach has been favoured for data analysis, particularly for satellite-based
work [31,32,43]. Guerini Filho et al. [32] considered multiple linear regression analyses for
natural grassland biomass estimation by SI and obtained a coefficient of determination (R2)
less than 0.70. Although the accuracies were satisfactory, the major disadvantage of the
approach is the site-dependent research and inability to capture the complex non-linear
patterns found in the data. Therefore, the algorithm will likely have greater errors for
the diverse pasture types in dairy management systems due to the design of the study
presented by Guerini Filho et al. [32].

Machine Learning (ML) algorithms have efficiently handled large datasets, partic-
ularly the ones with non-linear patterns. Recent progress in digital agriculture has also
triggered the necessity of state-of-the-art ML approaches to increase the efficiency of model
prediction with further automation [44]. ML has been used in agricultural applications,
particularly for pasture biomass prediction [25]. However, there is no universal measure
of ML suitability [45]. Among different ML techniques, non-parametric supervised classi-
fiers such as support vector machine (SVM) [46], artificial neural networks (ANN) [47,48],
k-nearest neighbor (kNN) [49], classification and regression tree (CART), and supervised
techniques such as Random Forest (RF) have been widely used for predicting biomass
based on satellite images [50,51].

The significant objectives of this study are summarised as the following:

• Combine S2 and ML modelling approaches to predict perennial ryegrass biomass
across a range of regions and seasons with an accuracy of +/−500 kg DM/ha.

• Provide technical evidence that utilising SWIR bands can improve the ability to predict
pasture yields above 3000 kg DM/ha and, therefore, enable measurements of high-
yielding pastures at any stage in the growth cycle in irrigated and dryland farm
management systems.

• Examine the pasture biomass prediction model quality through a fusion of S2 sensor-
derived datasets and broad management and seasonal datasets.

• Show that it is possible to predict pasture biomass across large regions and growing
seasons on commercial dairy farms with one ‘global’ model with an extensive ground
sampling campaign and the use of numerous bands and SI of the S2 sensor and the
ML modelling framework.
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2. Materials and Methods
2.1. Study Site Location, Soil, and Climate and Sampling Design

A total of 11 commercial dairy farms were part of this study. Seven farms were inten-
sively sampled and contributed to the calibration and validation dataset. The remaining
farms were sampled once to obtain fully independent validation data. Four farms were
in the Northern Irrigation Region of Victoria, two in the Macalister Irrigation District in
far eastern Victoria, two in West Gippsland, two in the southwest of Victoria, and one in
the southeast of South Australia, as illustrated in Figure 1. Four of the eleven farms were
dryland farms, and the remaining properties applied irrigation water to some or all of the
grazed pastures using flood irrigation or overhead sprinklers. Farm sizes ranged from
72 to 970 ha.
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Figure 1. Surveyed farm locations across southeast Australia. Farms, where calibration and vali-
dation data were collected, have a diamond symbol, and validation-only farms have a star symbol
(open = dryland, filled = irrigated).

The average paddock size per farm ranged from 1.2 to 15.7 ha. The Northern Irriga-
tion District farms have the lowest average annual rainfall and the highest temperatures,
while the West Gippsland farms have the highest average annual rainfall and a milder
temperature range (Table 1). Key land management options and soil characteristics across
the farms are also summarised in Table 1.

Two paddocks on each of the seven calibration farms were measured regularly (weekly
to monthly intervals). On each visit, three destructive samples were removed from at least
five predetermined 10 × 10 m areas across the two paddocks. The 10 × 10 m areas were
based on the S2 pixel grid to enable direct comparison of field data and image observations,
as shown in Figure 2. The sampling procedure was replicated on the four independent
validation farms. Two paddocks were sampled on each of these farms; however, these
farms were sampled only once.
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Table 1. Characteristics of each farm in this study. Data from the first seven farms were used to calibrate
and validate the model. Data from PS11, PS19, PS28, and PS31 provided independent validation.

Farm Region Annual Median
Rainfall (mm)

Annual Median
Temperature
Range (◦C)

Predominant
Australian
Soil Order

Irrigated/
Dryland Farm Size (ha) Average Paddock

Size (ha)

PS01 Macalister
Irrigation District 594 8.2–19.7 Chromosol

(brown) [52] Irrigated 348 5.4

PS02 Macalister
Irrigation District 594 8.2–19.7 Sodosol

(brown) [52] Irrigated 410 6.4

PS03 Northern
Irrigation Region 437 8.7–21.8 Sodosol

(red) [52] Irrigated 72 2.3

PS04 Northern
Irrigation Region 437 8.7–21.8 Sodosol

(red) [52] Irrigated 196 1.2

PS05 Southeast
South Australia 767 8.3–19.1 Tenosol [53] Irrigated 471 15.7

PS06 Southwest Victoria 750 7.8–19.2 Dermosol
(brown) [52] Dryland 358 5.3

PS07 West Gippsland 1001 9.0–19.7

Hydrosol
(redoxic),
Ferrosol
(red) [52]

Dryland 231 1.6

PS11 Southwest Victoria 779 9.4–18.0 Chromosol
(brown) [52] Dryland 380 4.5

PS19 West Gippsland 975 8.5–18.7 Ferrosol
(red) [52] Dryland 115 2.2

PS28 Northern
Irrigation Region 486 9.4–21.9 Sodosol

(brown) [52] Irrigated 338 1.7

PS31 Northern
Irrigation Region 527 8.7–21.2 Sodosol

(red) [52] Irrigated 970 1.9Remote Sens. 2023, 15, 2915 6 of 32 
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Figure 2. Three pasture observations and destructive cuts were taken in each 10 × 10 m sample
pixel (sampling unit), and the mean pasture dry matter yield was calculated. The number and the
orientation of the pixels across the paddocks depended on paddock size. The minimum sample per
paddock was five pixels.



Remote Sens. 2023, 15, 2915 6 of 30

2.2. Ground Data Collection

Field data collection across all eleven farms was consistently applied using the fol-
lowing procedures. All field data collection and in-field navigation were performed using
Emlid RTK GPS units with a spatial precision of +/−2 cm. The destructive sample areas
varied between 70 × 35 cm and 64 × 31 cm quadrats. Within these quadrats, observations
of plant leaf stage, botanical composition, and three measurements of height (ruler, rising
plate meter, and sonar) were taken before sampling and recorded in the field using the
ESRI Collector field application [54]. The pasture was cut to ground level, bagged, weighed
fresh, washed to remove soil and debris, and then oven-dried at 100 ◦C for 24 h or until
a constant weight was recorded. In addition, a vehicle-mounted wide-angle ultrasonic
sensor and a UAV-mounted multispectral camera were simultaneously used during data
collection, with results published separately [55–57]. In the previous works, while dif-
ferent sensors and numerical techniques were implemented, the focus remained on the
prediction of pasture yield and nutritive characteristics with similar sample pre-processing
approaches. The work of Karunaratne et al. [55] focused on UAV-based empirical numerical
modelling approaches by considering Structure from Motion only (Sf M), vegetation indices
(VI) only, and finally, Sf M + VI combination. Meanwhile, Lawson et al. [56] presented
global ultrasonic (vehicle-mounted) and RPM models using linear mixed models to predict
pasture biomass, and Thomson et al. [57] compared different modelling approaches using
hyperspectral datasets to predict pasture biomass and nutritive characteristics.

Data collected in the field was later downloaded from ESRI Collector via ArcGIS
Online [58] (AGOL) and saved to an ESRI File Geodatabase. Polygon data were transformed
from the WGS84 projection to the UTM zone appropriate for each farm to match the S2 data.

2.3. Satellite Data Collection

This study was aligned with a broader study where the aim was to test a variety of
sensors. One study design and collection protocol were utilised for multiple sensors to
reduce the operational cost across the programme. Since ground data collection timing
depended on appropriate UAV flying conditions (wind speed and rain) and rarely coincided
with satellite overpass dates, a process was developed to select the most appropriate S2
image for each collection date. This process considered images before and after field data
collection, the time of year, location, grazing, and the number of days between the field
data collection and image acquisition.

Intensively managed dairy pastures are grazed frequently. However, grazing times
recorded by the farmer were not always available or accurate. Therefore, a method was
developed to identify the timing of field measurement relative to grazing, which enabled
the appropriate selection of a satellite image. The image selection technique calculated the
measured mean above-ground biomass (kg DM/ha) for each paddock on each collection
day. These individual collection averages were combined to create summary statistics
(minimum, maximum, mean, and standard deviation) for each paddock over the complete
time series. If the mean biomass on the collection day was less than the minimum plus
the standard deviation of the total paddock collection biomass, then grazing had recently
occurred. As grazing may have occurred the previous day, it was important to use an image
acquired after the ground collection date. On the contrary, if the mean biomass on the
day of collection was greater than the maximum minus the standard deviation of the total
paddock collection, then it was likely that grazing would occur after the day of ground
collection. Therefore, an image acquired before the ground collection date was chosen
(Figure 3). This process was only used for the calibration and internal validation dataset.
Independent validation data were unique; therefore, the closest image to the collection
date was chosen. Trampling the area within and around the pixel may be possible in 34%
of images acquired after the ground collection date; however, this was not considered a
parameter in the image selection approach.
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Figure 3. Image selection was based on the calculated mean for each ground collection date compared
to the total range measured across that paddock. The closest image within the lag range was chosen,
where the ground collection date mean was within +/−1 standard deviation of the paddock mean.

Pasture accumulation rates differ broadly between regions and months and depend on
farm management. Based on the reported accumulation rates from Figures 8, 11, 12, and 13
of Doyle et al. [59], a maximum number of days of lag per month was established to
limit the potential growth differential between measurement and overpass of less than
200 kg DM/ha. The current study extended no image lag date beyond five days. Currently, no
average monthly pasture growth rates are reported for irrigated dairy pastures in southeast
South Australia. The southeast South Australia site was a summer irrigated system, as were
the Northern Irrigation Region Sites and the Macalister Irrigation Region sites. Therefore,
the shortest lag rule from those two sites was applied as a precautionary approach.

Data were collected from May 2019 to July 2021. A total of 200 paddock data collection
dates and 100 S2 image datasets, with less than 15% cloud, were available across the
seven calibration farms between May 2019 and March 2020. Of the available calibration
data, 75 paddock collection datasets matched 40 S2 images; however, on closer inspection,
the cloud affected eight images. Therefore, the final calibration data collection included
45 paddock datasets and 30 S2 images. Using the same approach for all data available from
April 2020 to July 2021, a final validation collection included 16 paddock datasets and eight
S2 images. Figure 4 overlays the image acquisition and ground collection dates for the
calibration and validation dataset, separated by farm, for a comprehensive understanding.
The reduction in data availability from March 2020 to April 2021 was due to COVID-19
lockdowns restricting farm access.



Remote Sens. 2023, 15, 2915 8 of 30

Remote Sens. 2023, 15, 2915 8 of 32 
 

Pasture accumulation rates differ broadly between regions and months and depend 
on farm management. Based on the reported accumulation rates from Figures 8, 11, 12, 
and 13 of Doyle et al. [59], a maximum number of days of lag per month was established 
to limit the potential growth differential between measurement and overpass of less than 
200 kg DM/ha. The current study extended no image lag date beyond five days. Currently, 
no average monthly pasture growth rates are reported for irrigated dairy pastures in 
southeast South Australia. The southeast South Australia site was a summer irrigated sys-
tem, as were the Northern Irrigation Region Sites and the Macalister Irrigation Region 
sites. Therefore, the shortest lag rule from those two sites was applied as a precautionary 
approach. 

Data were collected from May 2019 to July 2021. A total of 200 paddock data collec-
tion dates and 100 S2 image datasets, with less than 15% cloud, were available across the 
seven calibration farms between May 2019 and March 2020. Of the available calibration 
data, 75 paddock collection datasets matched 40 S2 images; however, on closer inspection, 
the cloud affected eight images. Therefore, the final calibration data collection included 45 
paddock datasets and 30 S2 images. Using the same approach for all data available from 
April 2020 to July 2021, a final validation collection included 16 paddock datasets and 
eight S2 images. Figure 4 overlays the image acquisition and ground collection dates for 
the calibration and validation dataset, separated by farm, for a comprehensive under-
standing. The reduction in data availability from March 2020 to April 2021 was due to 
COVID-19 lockdowns restricting farm access. 

 
Figure 4. Timescale of image acquisition and ground data collection of this study for (a) calibration 
and internal validation and (b) independent validation. 

  

Figure 4. Timescale of image acquisition and ground data collection of this study for (a) calibration
and internal validation and (b) independent validation.

2.4. Data Processing—Satellite Spectral Index Calculations and Stacking with Bands

Level 2A, Sentinel-2A, and 2B images with less than 15% cloud were downloaded from
the Sentinel Australasia Regional Access (SARA) website (https://copernicus.nci.org.au/sara.
client/#/home, accessed on 15 June 2020). Image data processing occurred in ENVI®+IDL
version 5.6 [60]. Each dataset was spatially subsampled to an area of interest (AOI) that
included the whole farm (not just the paddocks sampled), each band resampled to 10 m
resolution and stacked in a 12-band TIF file. Information on the original S2 bands has
been included in Table 2 (rows 55 to 66). The “GainOffset” function was used with offset
value for all bands set to 0.0001, and a high (1.0) and low (0.0) clip was applied. Fifty-four
spectral indices (SI) were then calculated for each image using an ENVI®+IDL model and
stacked into a 54-band TIF file. All SI are listed in Table 2 (rows one to 54). The initial
54 index selection was made from an extensive list curated from a literature review to
identify those indices that could be calculated using S2 bands. Each SI was reviewed
considering the bandwidths and centre wavelength of the S2 sensors rather than the
traditional band designation or the original S2 band spatial resolution. Consideration was
also given to the sensor initially used to develop the index. Each index calculation was
tested in ENVI to ensure the notation was calculated as defined in the original reference.
Simple ratios or difference indices were calculated using all available band combinations to
test the sensitivity of the full array of bands available on the S2 sensors.

https://copernicus.nci.org.au/sara.client/#/home
https://copernicus.nci.org.au/sara.client/#/home
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Table 2. Information on the spectral indices reviewed in rows one to 54, E = Exploratory band
combination, V = variation on a published spectral index. Information on original S2 bands used for
the prediction model [61], in rows 55 to 66, G = Green, RE = Red Edge, NIR = Near Infrared, R = Red,
BL = Blue. The final image stack index list of 21 bands is provided in column two.

Row No. Image Index Name/Description SI Formulae or Original Band Information Source (If Applicable)

1 Anthocyanin Ref 1 (1/B3 G) − (1/B5 RE) [62]

2 Anthocyanin Ref 2 B8 NIR × (1/B3 G) − (1/B5 RE) [62]

3 Atmospherically Resistant Veg B8A RE − (B4 R − 1 × (B2 Bl − B4 R))/B8A RE −
(B4 R − 1 × (B2 BL − B4 R)) [63]

4 B11 SWIR/B12 SWIR B11 SWIR/B12 SWIR E

5 B12 SWIR/B11 SWIR B12 SWIR/B11 SWIR E

6 Band_1 Difference Vegetation Index (DVI) B8 NIR−B4 R [40]

7 Enhanced Vegetation Index (EVI) 2.5 × ((B8A RE − B4 R)/(B8A RE + 6 × B4 R − 7.5 ×
B2 BL + 1)) [64]

8 Band_2 EVI 2 2.5 × (B8 NIR − B4 R)/(B8 NIR + 2.4) × (B4 R + 1) [65]

9 B11 SWIR/B8 NIR B11 SWIR/B8 NIR E

10 B11 SWIR/B8A NIR B11 SWIR/B8A NIR E

11 B12 SWIR/B8 NIR B12 SWIR/B8 NIR E

12 Band_3 B12 SWIR/B8A NIR B12 SWIR/B8A NIR E

13 Band_4 Global Environmental Monitoring Index

(2 × ((B8 NIR × B8 NIR) − (B4 R × B4 R)) + (1.5 × B8 NIR +
0.5 × B4 R)/(B8 NIR + B4 R + 0.5)) × (1 − 0.25 × (2 ×

((B8 NIR × B8 NIR) − (B4 R × B4 R)) + (1.5 × B8 NIR + 0.5 ×
B4 R)/(B8 NIR + B4 R + 0.5))) − (B4 R − 0.125)/(1 − B4 R)

[66]

14 Green Atmospherically Resistant Index (B8 NIR − (B3 G − 1.7 × (B2 BL − B4 R)))/(B8 NIR + (B3 G −
1.7 × (B2 BL − B4 R))) [67]

15 Green Chlorophyll Index (B8) B8 NIR [68]

16 Green Chlorophyll Index (B8A) B8A NIR [68]

17 Band_5 Green Difference Vegetation Index (B8) B8 NIR − B3 G [69]

18 Green Difference Index (B8A) B8A NIR − B3 G V

19 Band_6 Green Leaf index (GLI) ((B3 G − B4 R) + (B3 G − B2 BL))/(B3 G + B4 R + B3 G + B2 BL) [70]

20 Green NDVI (B8 NIR − B3 G)/(B8 NIR + B3 G) [71]

21 B8 NIR/B3 Green B8 NIR/B3 G E

22 B8A NIR/B3 Green B8A NIR/B3 G E

23 Band_7 Leaf Area Index (LAI) from EVI 3.618 × (2.5 × (B8 NIR − B4 R)/1 + B8 NIR + (6 × B4 R) −
(7.5 × B2 BL)) − 0.118 [72]

24 Modified Chlorophyll Absorption Ratio ((B5 RE − B4 R) − 0.2 × (B5 RE − B3 G)) × (B5 RE/B4 R) [73]

25 Modified Chlorophyll Abs Ratio
IMPROVED

(1.5 × (2.5 × (B7 RE-B4 R)) − 1.3 × (B7 RE − B3 G))/sqrt((2 ×
B7 RE + 1) × (2 × B7 RE + 1)) − (6 × B7 RE − 5 × sqrt(B4 R)

− 0.5)
[74]

26 Modified Red Edge NDVI (B6 RE − B5 RE)/(B6 RE + B5 RE − 2 × B2 BL) [75]

27 Modified Red Edge Simple Ratio (B6 RE − B2 BL)/(B5 RE − B2 BL) [75,76]

28 Modified simple ratio ((B8 NIR/B4 R) − 1)/((sqrt((B8 NIR/B4 R))) + 1) [77]

29 M SAVI 2 (2 × B8 NIR + 1 − sqrt((2 × B8 NIR + 1) × (2 × B8 NIR + 1)
− 8 × (B8 NIR − B4 R)))/2 [78]

30 Modified Triangular Veg Index 1.2 × (1.2 × (B7 RE − B3 G) − 2.5 × (B4 R − B3 G)) [74]

31 Modified Triangular VI IMPROVED
(1.5 × (2.5 × (B7 RE − B4 R)) − 1.3 × (B7 RE − B3

G))/sqrt((2 × B7 RE + 1) × (2 × B7 RE + 1)) − (6 × B7 RE −
5 × sqrt(B4 R) − 0.5)

[74]

32 Non-linear Index ((B8 NIR × B8 NIR) − B4 R)/((B8 NIR × B8 NIR) + B4 R) [79]

33 Normalised Difference Vegetation Index
(NDVI) (B8 NIR − B4 R)/(B8 NIR + B4 R) [13]

34 Optimised Soil Adjusted Vegetation Index
(OSAVI) (B8A RE − B4 R)/(B8A RE + B4 R + 0.16) [80]

35 Plant Senescence Reflectance index (B4 R − B2 BL)/B6 RE [81]

36 Band_8 Red Edge NDVI (B6 RE − B5 RE)/(B6 RE + B5 RE) [76]

37 Renormalised Difference Vegetation Index (B8 NIR − B4 R)/sqrt(B8 NIR + B4 R) [82]

38 B8 NIR/B4 Red B8 NIR/B4 R E

39 B8A NIR/B4 Red B8A NIR/B4 R E
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Table 2. Cont.

Row No. Image Index Name/Description SI Formulae or Original Band Information Source (If Applicable)

40 Soil Adjusted Vegetation Index (SAVI) ((B8 NIR − B4 R)/(B8 NIR + B4 R + 0.5)) × 1.5 [83]

41 Structure Insensitive Pigment Index B7 RE − B2 BL/B7 RE − B4 R [84]

42 Transformed Difference Veg Index 1.5 × ((B8 NIR − B4 R)/(sqrt(B8 NIR × B8 NIR) + B4 R + 0.5)) [85]

43 Triangular Greenness Index (−0.5 × ((665 − 492) × (B4 R − B3 G) − (665 − 492) ×
(B4 R − B2 BL)) [86]

44 Triangular Vegetation Index (120 × (B6 RE − B3 G) − 200 × (B4 R − B3 G))/2 [42]

45 Visible Atmospherically Resistant Index (B3 G − B4 R)/(B3 G + B4 R − B2 BL) [62]

46 Wide Dynamic Range Veg Index (0.2 × B8 NIR − B4 R)/(0.2 × B8 NIR + B4 R) [87,88]

47 Red Edge(B5) Simple Ratio Index B8 NIR/B5 RE [89]

48 Band_9 Red Edge(B6) Simple Ratio Index B8 NIR/B6 RE V

49 Red Edge(B7) Simple Ratio Index B8 NIR/B7 RE V

50 Red Edge(8A) Simple Ratio Index B8 NIR/B8A NIR V

51 Red Edge(B5) Chlorophyll Index (B8 NIR/B5 RE) − 1 [90]

52 Red Edge(B6) Chlorophyll Index (B8 NIR/B6 RE) − 1 V

53 Red Edge(B7) Chlorophyll Index (B8 NIR/B7 RE) − 1 V

54 Red Edge(B8A) Chlorophyll Index (B8 NIR/B8A NIR) − 1 V

Original S2 Bands S2A, S2B band centre/S2A, S2B band width/resolution

55 Band_10 B1 Aerosols 442.7, 442.2/21, 21/60

56 Band_11 B2 Blue 492.4, 492.1/66, 66/10

57 Band_12 B3 Green 559.8, 559.0/36, 36/10

58 Band_13 B4 Red 664.6, 664.9/31, 31/10

59 Band_14 B5 Red Edge 704.1, 703.8/15, 16/20

60 Band_15 B6 Red Edge 740.5, 739.1/15, 15/20

61 Band_16 B7 Red Edge 782.8, 779.7/20, 20/20

62 Band_17 B8 NIR 832.8, 832.9/106, 106/10

63 Band_18 B8A NIR 864.7, 864.0/21, 22/20

64 Band_19 B9 Water Vapour 945.1, 943.2/20, 21/60

65 Band_20 B11 SWIR 1 1613.7, 1610.4/91, 94/20

66 Band_21 B12 SWIR 2 2202.4, 2185.7/175, 185/20

2.5. Data Merging

Due to the precise locational attribution of the in-field data collection, it was possible to
combine field measurements with the satellite observations into one dataset. Each ground
data collection dataset with a matching S2 image was converted to a point layer using
the ‘Feature to Point’ tool in ESRI ArcMap 10.8 [91], and a unique S2 pixel identifier
was added to generate summary statistics and other analyses at pixel scale as required.
Pixel-level information from the 12-band and 54-SI stack were spatially joined to the ground
data point layer using the ‘Extract Multi values to points’ tool in ESRI ArcMap 10.8 [91].
All individual datasets were stacked using the R programming language for analysis [92].
The R computation was conducted on a Windows® 10 operating system. The computer had
a processor of 11th Gen Intel® CoreTM i9-11950H@2.60GHz 2.61 GHz processor with 64
GB RAM. The ML was run through the NVIDIA® RTX A3000 GPU to accelerate processing
and improve numerical efficiency.

2.6. Pre-Processing and Development of Machine Learning Framework

Additional categorical variables were added to the dataset prior to modelling. As the
season is an integral component of biomass modelling, the data were categorised into five
seasonal periods consistent with the Australian forage value index [65,93]. The seasons
were winter (June, July), early spring (August, September), late spring (October, November),
summer (December, January, February), and autumn (March, April, May). In addition,
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information on regions and types of management (dryland or irrigated) was included
(Table 1).

An ML approach was used to accommodate the high-dimensional datasets charac-
terised by multi-collinearity among the dependent variables. The RF model was chosen
among different ML approaches as it is an efficient technique for analysing linear and
non-linear relationships [44]. Furthermore, RF is an ensemble, non-parametric, supervised
approach that is widely applied in agricultural applications [94–96] and, therefore, consid-
ered appropriate to predict pasture biomass. RF models require additional functions to
increase the efficiency and reliability of predictions, such as performing variable importance
(VI) to optimise the feature space [44,97–99], presenting a correlation matrix to observe the
relationships among the high dimensional datasets [100], and the detection of outliers [101],
to name a few. In addition, several statistical interpretations and analyses, along with the
data preparation, were performed to improve model performance, and these have been
described in the following sections.

2.6.1. Shapiro–Wilk Test

In ML algorithms, outliers can deceive the sample training process, leading to in-
creased training times and less accurate models [102]. Therefore, it was essential to conduct
a detection check to identify outliers and normal distribution. The Shapiro–Wilk (SW) test
was considered in this study with both calibration and validation datasets to test the null
hypothesis, normality, and the detection of outliers due to its proven capability in digital
agriculture, mainly when dealing with multivariate datasets [103]. The null hypothesis
means that no direct relationship exists between the two variables being studied. A p-value,
also known as the probability value, is an important parameter that is mostly observed
to accept or reject a null hypothesis. Generally, a lower p-value refers to statistical signifi-
cance and if the null hypothesis is rejected. In the present study, p < 0.05 was assigned to
determine statistical significance. The calculation of the SW normality test was denoted
by W (0 ≤ W ≤ 1), which shows how efficiently the ordered and standardised sample
quantiles fit the standard normal quantiles, with 1 demonstrating a perfect match [102].
In the present study, W = 0.9596 and W = 0.9571 were obtained for internal and independent
model validations, respectively, along with p < 0.05. Therefore, it improves confidence in
the development of the model.

2.6.2. Conditional Latin Hypercube Sampling

Conditional Latin Hypercube sampling (cLHS) can be used for the spatial splitting
of datasets for model calibration and internal validation [104–106] as ancillary variables
occupy a hypercube in the feature, attribute, or variable space. The feature space can be
sampled instead of sampling the whole geographical space. However, planning a sampling
methodology that can select the sampling locations covering the hypercube of the feature
space is a complicated task. Therefore, a widely used alternative is to consider cLHS, which
is non-parametric, and additional conditions can be considered for model optimisations
based on input features [105].

The obtained data was split into calibration and validation datasets (80% [n = 171] and
20% [n = 43]) using the cLHS algorithm. The library package “clhs” was used to perform
the split [105]. The evolution of the objective function for the number of iterations was
monitored to observe stability. The algorithm identifies the points that can represent a
Latin hypercube through a random data sampling procedure. The dataset for cLHS was
subjected to 2500 iterations to reach a steady state of the objective function. Subsequently,
cLHS was used as an objective function for data splitting before calibration and internal
validation of the RF ML algorithm.

2.6.3. Variable Importance Section through Boruta Algorithm

The RF approach is efficient but could be time-consuming for application across large
spatial extents. Selecting variable importance (VI) is a standard practice in ML modelling
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to reduce the number of input variables. At the same time, this process allows the model to
emphasise the variables which are more influential in predicting the output. Since input
variables cannot be reduced or eliminated arbitrarily, standard algorithms are implemented
into ML models to perform the feature selection task. While there is no universal yardstick
of the most accurate algorithm to perform this task, the Boruta algorithm is popular,
particularly for remote sensing ML modelling [44,107–109]. The Boruta algorithm is an
ensemble technique and was considered in the ML approach to increase RF efficiency by
reducing the number of variables. The library package “Boruta” was employed in the
prediction model to perform feature selection by means of variable importance (VI) [109].
Therefore, Boruta ensures that the RF model is built based on only relevant and essential
features with minimised data dimensionality.

The original variable list comprised 12 original S2 bands and 54 SI totalling 66 bands
and indices (Table 2). In addition, season and management were included in the model
as categorical variables. Therefore, a total of 68 input variables were considered initially
before the final model development. Multiple Boruta algorithms were performed to identify
the most influential bands and SI to reduce the number of variables. The best 21 bands
consisting of 12 original bands and 9 SI were unbiasedly selected, as shown in Table 2
and as described in Section 2.7. Season and management were also found to be important
through the feature selection approach. Therefore, the model was developed with season
and management totalling 23 input variables as selected by Boruta. Boruta considered
all the candidate features (original bands and SI, season, and management) to predict
pasture biomass and randomly designed shadow versions of each feature. The maximum
number of iterations was varied to ensure that all essential attributes were identified and
the convergence state was monitored. Boruta runs were based on iterations written as a
function called “maxRuns” in R, indicating the maximum number of iterations. In the
current RF model, maxRuns = 1500 was found to be adequate for identifying all important
variables since the VI selection decision was reached within 1500 iterations. The RF model
was optimised once all requirements were fulfilled.

2.6.4. Random Forest Modelling

In this research, the RF model was performed in the R statistical programming envi-
ronment, and the “ranger” package was used to create the model. The “ranger” package
is a fast implementation of RF modelling and is specifically well-suited for analysing
high-dimensional data [110,111]. Furthermore, this RF model was simple to implement,
and in the current study, two key model parameters were needed to define: Ntree and
mtry [110], along with additional associates to ensure smooth execution. The following
briefly discusses some of the important parametric values considered in the RF model:

RF model parameters: The primary objective of RF model parameter tuning is to find
the optimal hyperparameters for the calibration dataset. While the default RF setting has
been reported to be less tunable, specific tuning search strategies (such as grid search) have
assisted in evaluating the discrete parameters for the out-of-bag performance [110]. One of
the primary tools is the “train” function embedded with the “caret” package [112], which
was used to evaluate the RF model parameter tuning and estimate the performance from the
training set. Furthermore, “tuneGrid” and “trainControl” arguments were integrated into
the coding environment to generate the parametric values of the candidates and modify the
resampling (if required). Additionally, the “repeatedcv” argument was used to integrate
the repeated K-fold cross-validation, where the argument repeats controlled the number of
repetitions. A specific number maintains K in the argument; by default, it is 10.

• Ntree: The parameter Ntree refers to the number of decision trees generated. As per
the literature, the standard requirement to analyse remote sensing data, i.e., a default
value of Ntree = 500 was used [44].

• mtry: The parameter mtry denotes the number of variables to be selected and tested
for the best split while growing trees. Lower mtry values have been attributed to
stability enhancement, as it reduces the number of correlated trees [110]. Several tests
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were included before selecting mtry values, as advised by Probst et al. [110]. In the
present model, mtry = 6 was found to be the best with reduced computational time.

In RF, the default splitting rule considers a selection of variables with many possible
combinations. However, it has been reported that the default rule favours the selection of
the variables with many splits and can overlook variables with fewer splits [110]. This type
of variable bias decreases RF efficiency, so a modified approach has been considered in this
study. In this study, the splitting rule was randomised per the technique described in Geurts
and Wehenkel [113]. In addition, the “extratrees” feature was considered. The function
“extratrees” adds additional components of randomness to the trees in RF modelling.
However, it has been observed that such randomness substantially impacts VI ranking and
may lead to RF being biased [110]. The “permutation” function of VI was integrated into
the R code to ensure an impartial VI [114].

A complete flowchart outlining the data manipulation and analysis framework using
the ML approach is shown in Figure 5.
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2.7. Spectral Index Reduction

After several primary iterations for biomass estimation and prediction model develop-
ment, 12 bands and 9 SI were selected using the outcomes of the Boruta algorithm. At least
12 iterations were made, and the results of the variable importance plot were collated.
Row numbers 3, 14, 16, 22, 32, 34, 43, and 54 (column 1, Table 2) were always rejected.
Row numbers 6, 8, 12, 13, 17, 19, 23, 36, and 48 (column 1, Table 2) were always important
and used in the biomass estimation and prediction model. The remaining 37 spectral
indices had variable results across model iterations. All were rejected at least once, and
some up to eight times.

2.8. Model Quality Assessment

As mentioned earlier, the model prediction quality was tested through internal and
fully independent validation. Different metrics were used to evaluate the model quality:
(a) RMSE, which provides information on the model accuracy by calculating the differences
between the predicted and observed values, (b) NRMSE, which is the calculated RMSE as
a percentage of the measured mean of the data, (c) R2, and finally (d) Lin’s concordance
correlation coefficient (LCCC).

The following equations describe the expression to determine the validation indices:

RMSE =

√
∑ N

i=1
(Y − Yi)

2

N
(1)
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where Y = measured pasture DM yield, Yi = predicted pasture DM yield, and N is the
number of samples.

NRMSE = (RMSE/Mean measured pasture DM yield) × 100 (2)

LCCC depicts the variation of the predicted values from a unity line (1:1) [115]. LCCC is
a measurement of the degree to which the predicted values adhere to the concordance line of
slope 1.0 through the origin and an outcome of the product between the Pearson correlation
coefficient and a bias factor reflecting the precision and accuracy. The bias factor information is
achieved from mean and slope bias [115]. LCCC is defined as the following:

LCCC =
2ρσxσy

σ2
x + σ2

y +
(
µx − µy

)2 (3)

where mx and my are the measured and predicted pasture biomass means, respectively;
sx

2 and sy
2 represent the variances of the measured and predicted pasture biomass. Mean-

while, r is the Pearson correlation coefficient between measured and predicted pasture biomass.

3. Results
3.1. Pearson Correlation Matrix and Best-Performing ML Model

Examining the relationships among the variables as well as the feature selection are
two of the significant steps in the ML approach. Importantly, weaker relationships between
the predictor and target variables affect the efficiency, prolong the training times of the
samples, increase the computational complexities, and reduce the potential impact of
significant parameters. Pearson’s correlation matrix is a popular method for demonstrating
correlation among variables in ML. Each cell in the correlation matrix represents the
correlation between two variables. The values are located between −1 and +1, with values
closer to −1 and +1 indicating strong negative and positive correlations. A value closer to
0 demonstrates no connection between those variables. This study calculated Pearson’s
correlation matrix to examine the correlation coefficient among the selected bands and
spectral indices, as shown in Figure 6. In general, it was observed that all the bands
considered to predict mean values of the dry matter showed good correlations, with Image
Index Band_20 (B11 SWIR), Band_11 (B2 Blue), Band_19 (B9 Water vapour), and Band_21
(B12 SWIR) showing the strongest correlations. None of the bands exhibited a null value (0)
to predict dry matter.

3.2. Combined Validation

Figure 7a shows the internal model validation where R2 = 0.90 and LCCC = 0.72 were
obtained. Moreover, independent validation (n = 84) was conducted to prove the model’s
ability to be a global model. Figure 7b shows the correlation between the measured and
predicted values, where R2 = 0.88 and LCCC = 0.68 were obtained. The R2 and LCCC values
suggested that the model could adequately predict a fully independent validation dataset.
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Pasture biomass measured in all seasons and types of management (dryland/irrigated)
was considered collectively in both validation datasets. The maximum yield range of the
internal validation dataset was close to 6000 kg DM/ha (Figure 7a), which was larger than
the independent validation dataset. Although the maximum predicted value was not as
close to the regression line, there were limited data at this high range. Furthermore, the
prediction range was diminished in the independent validation due to limited relevant
data (locations and seasons) (Figure 7b). Nevertheless, the maximum range of biomass
prediction exceeded 3000 kg DM/ha in both internal and independent validation (Figure 7),
which provides confidence in the robustness of the model. The values of R2 and LCCC for
both validations indicate the versatility of the model to be one single global model.
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Quantitative comparisons are shown in Table 3. The minimum and maximum mea-
sured biomass are shown to highlight the extensive range of biomass values considered in
the model. The w and p values from the SW test also show that the data considered for the
model calibrations were statistically significant.
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Table 3. Data, sample size, and model accuracy for internal and independent validations.

Model Accuracy Indicators

Type Field Data (kg DM/ha) Model Development Data Shapiro-Wilk Test Random Forest Model

Min Max Calibration Validation w-Value p-Value R2 LCCC RMSE
(kg DM/ha) NRMSE

Internal
validation 668 5777 171 43 0.9596 <0.05 0.90 0.72 439.49 15.08

Independent
validation 411 4838 84 0.9571 <0.05 0.88 0.68 457.05 19.83

Model accuracy indicators, RMSE and NRMSE, provide additional information
on the robustness of the model. An RMSE < 500 kg DM/ha was achieved overall
(RMSE = 439.49 kg DM/ha and 457.05 kg DM/ha for internal and independent vali-
dations, respectively). The entire independent validation data were entered directly into
the already calibrated model to assess accuracy, as shown in Table 3.

3.3. Validations Based on Season and Management

The VI plot (Figure 8) indicated that season was the most important variable. However,
it should be mentioned that while the ranks of variables differed, all the variables in Figure 8
were important in the biomass prediction model and should not be eliminated. The type of
farm management (irrigated or dryland) was another important variable that passed the
Boruta feature selection and was important for the biomass prediction model. Therefore,
separate plots were generated for all seasons and farm management (dryland or irrigated)
to assess the model accuracy separately.
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Figure 9 demonstrates the validations based on different seasons combining both types
of farm management. The quantitative agreement between the measured and predicted
pasture biomass at 0.81 ≤ R2 ≤ 0.96 and 0.59 ≤ LCCC ≤ 0.82 for internal validation
(Figure 9a) as well as 0.83 ≤ R2 ≤ 0.96 and 0.66 ≤ LCCC ≤ 0.86 for independent validation
(Figure 9b) are evidence of the efficacy of the present ML model in predicting pasture
biomass across different seasons. The agreement was improved in seasons that contained
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more data. The limited data are a result of clouds obstructing satellite images and restricted
farm access during the COVID-19 pandemic in early 2020. Due to the lack of relevant data,
it was impossible to present independent validation throughout all seasons.
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Figure 9. Demonstration of model accuracy based on two validations in different seasons: (a) internal
and (b) independent validations (both dryland and irrigated data combined). Data were not available
for all seasons.

Figure 10 contains the agreement for internal (Figure 10a) and independent (Figure 10b)
validations in each farm management type across all farms in all seasons. While internal
validation (Figure 10a) contained more information from the irrigation farm management,
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the scenario was the opposite for the independent validation, as presented in Figure 10b.
Regarding internal validation, R2 = 0.94 and LCCC = 0.83 for dryland, and R2 = 0.86 and
LCCC = 0.67 for irrigated farm management were obtained. On the other hand, the indepen-
dent validation exhibited R2 of 0.90 and 0.91 and LCCC values of 0.83 and 0.67 for dryland
and irrigated management. The excellent agreement in both validation scenarios indicated that
the present model was insensitive and unbiased to the type of farm management.
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Figure 10. All validations based on management (dryland/irrigated): (a) internal and (b) independent
across all farms and seasons.

3.4. SWIR Band Validation

Several tests across different farms were performed to determine the importance of
SWIR bands in pasture biomass estimation. SWIR bands were partially or completely
removed from the variable set through many model iterations. Index Number Band_20
(B11 SWIR), Band_21 (B12 SWIR), and Band_3 (B12 SWIR/B8A NIR) were left out of the test
to determine the importance of SWIR bands. The internal validation results are presented
in Figure 11. The removal of SWIR bands reduced the accuracy of the model significantly.
The accuracy indicators show that R2 = 0.79 and LCCC = 0.57 were obtained, which are
approximately 12% and 21% reductions from the original prediction model. In addition,
RMSE = 635.46 kg DM/ha was achieved through this test, which was approximately 45%
augmentation on the original pasture biomass prediction model presented in Section 3.2
and Table 4.

A comparison table has also been presented in Table 4 to demonstrate the importance
of SWIR bands by comparing two models, one with SWIR bands and one without. The
model with SWIR bands predicted maximum pasture biomass up to 4348.25 kg DM/ha
from a specific day in the summer season of the PS04 farm. The alternative model, excluding
SWIR bands (Band_20, Band_21) and Band_3, was used to predict the pasture biomass of
the same day and location, and the maximum biomass obtained was 3379.62 kg DM/ha,
which was approximately 22% less than the original prediction model.

Table 4. A comparison of model accuracy and efficiency with and without SWIR bands. The results
are from PS04 farm during a day from the summer season.

Accuracy and Efficiency
Indicators R2 LCCC RMSE (kg DM/ha) NRMSE Maximum Biomass

Predicted (kg DM/ha)

With SWIR bands 0.90 0.72 439.49 15.08 4348.25

Without SWIR bands 0.79 0.57 635.46 21.80 3379.62
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3.5. Model Automation

The model introduced in this study was used in an automated data processing flow.
Farms involved in the study were mapped, and each paddock management was noted.
It was common for dryland farms to have a small proportion of irrigated paddocks and vice
versa. The SARA database (https://copernicus.nci.org.au/sara.client/#/home, accessed
on 6 October 2020) was reviewed daily using the farm boundary, and when an image
with less than 15% cloud was identified, the image was downloaded. This review and
download process was automated using Python and APIs established by Geoscience
Australia. Once downloaded to an internal computer, the images were pre-processed using
the ESA SNAP© graph processing tool. Some of the major S2 image processing operations
involved resampling, clipping, S2 band arithmetic computation, band merging, and finally,
writing in TIF format.

The image was clipped to the farm extent, all bands were resampled to 10 m, the nine
important SIs were calculated, and a stack of 12 bands and 9 SI was created. The model
was augmented with functions that read the season from the image file name and the
management of each paddock from the farm mapping geodatabase. Finally, biomass
predictions were made per pixel to accommodate the different management types in each
paddock. Prediction per pixel was achieved using the “splancs” library in the R programming
language, which performed the spatial point-pattern analysis [116]. Furthermore, the “inpip”
function inside the model selected points inside a polygon based on an area of interest and
geospatial information. The output prediction map integrated dryland and irrigated biomass
predictions in one farm prediction. A flowchart is presented in Figure 12, outlining the steps.

The automation process did not require user-defined commands after a farm was
mapped and included in a farm geodatabase (ESRI). An example of the results across
five different seasons for the PS04 farm is shown in Figure 13. It could be observed that
the maximum biomass prediction exceeded 4000 kg DM/ha for early spring (Figure 13b),
late spring (Figure 13c), and summer (Figure 13d). However, the maximum range was
found to be 3633.83 kg DM/ha in the winter season (Figure 13a) and 3698.55 kg DM/ha
in autumn (Figure 13e). This example was from an irrigated farm. Clear differences in
biomass prediction can be seen throughout the image. Many are associated with farm
infrastructure, such as water troughs, channel banks, and fences delineating paddock
boundaries. Importantly, within-paddock variation is also visible due to uneven pasture

https://copernicus.nci.org.au/sara.client/#/home
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growth. In this farm, uneven pasture growth is due to water availability rather than
differences in soil type. This farm is flood-irrigated, and therefore, most paddocks have
been levelled to allow for optimal water flow. On occasion, water does not reach the end or
edges of the paddock due to low water levels in the channel, causing insufficient flow down
the paddock. Due to the price and availability of water, not all paddocks were irrigated
during this time, highlighting the importance of accommodating changes in management
and the full range of biomass amount.
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4. Discussion

This study has presented results that are new to the research area. The study has
combined a complete dataset collected from active commercial dairy farms with a mod-
elling approach that emphasises the crucial role of remote sensing in solving one of the
significant challenges faced by the pasture-based dairy industry, i.e., automated biomass
prediction with high accuracy for dense, moist, fast-growing canopies of pasture forages.
Excellent prediction qualities have been achieved for all regions, seasons, and manage-
ment types, producing a single global model for automated pasture biomass prediction.
Whilst other studies have investigated minor components common to this study, none have
demonstrated real-world outcomes or on a scale that can definitively identify the critical
spectral bands required for an accurate prediction. The following sections discuss these
novel outcomes in detail.

4.1. Overview of the Prediction Model Accuracy

This study has successfully achieved the stated aim of predicting perennial ryegrass
biomass with an accuracy of +/−500 kg DM/ha using internal (RMSE 439.49 kg DM/ha)
and independent validation (RMSE 457.05 kg DM/ha). In addition, separate prediction
accuracies were presented for seasonal and farm management differences to validate the
model’s accuracy. Internal validation across all seasons suggests that the model obtained
R2 ≥ 0.81 and LCCC ≥ 0.59. Independent validation was conducted across three seasons,
with the model showing an accuracy of R2 ≥ 0.83 and LCCC ≥ 0.66. Similar validations
for dryland and irrigated farm management systems provided further evidence of the
robustness of the present model where R2 ≥ 0.86 and LCCC ≥ 0.67 (internal validation)
and R2 ≥ 0.90 and LCCC ≥ 0.72 (independent validation) were obtained. It should be
noted that the validation data was predominantly acquired from entirely different farms
and at least a year after the calibration data collection. Additionally, all data were sourced
from commercial farms in paddocks under grazing, based on the specific farmer practices.
Therefore, there was almost always a day offset between data collection and image acquisi-
tion. Nevertheless, R2 and LCCC showed excellent agreements between the predicted and
measured pasture biomass for internal and independent validation despite the variability
of the conditions and environments under which data were collected.

4.2. Significance of S2 SWIR Bands in Improving Prediction Accuracy

The SWIR validation results were included in Figure 11 and Table 4 to demonstrate the
significance of SWIR bands. They support the hypothesis that using SWIR bands would
improve the ability to predict pasture yields above 3000 kg DM/ha and, therefore, enable
measurements of high-yielding pastures at any stage in the growth cycle in irrigated and
dryland production. Dairy pastures before harvest are dense, high moisture swards that
can often exceed LAI > 3 and quickly reach the saturation point for common vegetation
indices [41]. Saturation is evident at levels >0.7 NDVI [117] and biomass saturation at
2500 kg DM ha [11]. While Edirisinghe et al. [30] and Sinde-Gonzales et al. [12] reported
calibration data that exceeded 3000 kg DM/ha, prediction ranges rarely exceeded these
levels using NDVI-like indices. SWIR bands are known to be influenced by plant water
concentration and therefore are likely to extend the saturation sensitivity point [118,119].
The importance of SWIR bands in improving biomass prediction was also supported by
Dang et al. [120], Numata et al. [36], and Pandit et al. [121]. Furthermore, SWIR bands
were reported to have strong correlations with pasture biomass, regardless of the type and
density of the data and environmental factors [122–124]. This study found that adding
SWIR bands increased the predictable range of biomass above 4000 kg/DM ha.

Of the 23 bands identified in the VI plot process, S2 B11 SWIR and S2 B12 SWIR
were ranked second and fifth, respectively, further supporting the hypothesis that the
utilisation of SWIR bands would be significant for model prediction. These bands have
centre wavelengths of approximately 1600 and 2200 nm, respectively. The 1600 nm range
relates to biochemical components, starch, and sugar, and the 2200 nm range to structural
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components, lignin, and cellulose [125,126]. Among other bands, in the top 10 most
important variables, S2 B2 Blue and S2 B9 Water Vapour were present. S2 B2 has a centre
wavelength of 490 nm, an area of strong chlorophyll b absorption [127]. S2 B9 has a centre
wavelength of 940 nm and measures water vapour’s absorption over land [128]. Both are
important areas of sensitivity in dense, moist canopies. Importantly, this study found that
the five most important variables did not include the commonly used red or near-infrared
bands found in many biomass studies. Variables ranked six to ten had these common
bands but as part of an SI rather than the original band; moreover, the S2 B8 NIR is the
lowest-ranked variable in the VI plot. The band ranking suggested that bands associated
with canopy and plant moisture were the most important for predicting dense, moist,
high-biomass vegetation, such as PRG-based dairy pastures.

4.3. Consideration of ML for Data Analysis and Model Development

This study investigated an extensive range of spectral indices and satellite bands using
the ML RF model technique to predict pasture biomass. The ML RF model accommodates
high-dimensional data [44]. It was essential to use an approach that could accommodate
many variables (68 in the original model) due to the complexity of the farming environ-
ment under investigation. Conventional statistical models generally fail to meet accuracy
requirements in biomass estimation, particularly at the farm scale, to support on-farm
decision-making [129,130]. For example, Ali et al. [129] achieved R2 between 0.57 and 0.86
by using ML to predict the grassland yield estimation through satellite data. In contrast,
the conventional statistical model demonstrated the best R2 of 0.31. The advantage of an
ML model by Ali et al. [129] was shown further because the lowest NRMSE was reported
to be 25.05 using a conventional statistical model and 11.07 using an ML model. However,
it should be noted that Ali et al. [129] only considered a single farm with an area of 100 ha,
and yet they could only obtain R2 values at most 0.86. Yang et al. [48] also showed a similar
comparison and obtained R2 and RMSE of 0.85 and 355 kg DM/ha for the best-performing
ML model compared to R2 = 0.58 and RMSE = 536 kg DM/ha through the traditional
statistical model. Due to the large number of variables used in the present study, a direct
comparison between a conventional statistical approach and an ML approach was not
possible. This limitation proves that the ML approach has enhanced the prediction accuracy
of the study by effectively accommodating a large data set with 23 input variables.

4.4. Impact of Soils, Climate, and Farm Activities on Satellite Images and Biomass Estimation

This study has benefited from using on-ground data covering various soils, manage-
ment practices, regions, seasons, and years. The number and type of data points have
provided a wide range of biomass not found in other studies. For example, the analysis pre-
sented by Chen et al. [25] did not consider large-scale farm areas, and the pasture biomass
prediction barely went beyond 4000 kg DM/ha. In addition, the model quality indicators
were less accurate than the present study. Chen et al. [25] reported 0.63 ≤ R2 ≤ 0.68 and
0.22 ≤ R2 ≤ 0.40 through their ML internal and independent validations, respectively.
Wang et al. [131] obtained R2 = 0.67 in their best-performing ML models; however, the
work did not involve any grazing during the growing season. The earlier work by
Numata et al. [36] considered grazing intensity, assuming a minimum effect of grazing
rotation on the pasture biophysical variables of an actual farm; however, this study does not
consider this as a typical scenario for a commercial farm. Xu et al. [47] presented different
regression models for different regions. Each region had three equations (linear, power,
and exponential) with no possible resolution toward a global or single prediction model
within the area of interest. The mathematical interpretation by Grigera et al. [37] to build a
correlation between NDVI and fraction absorbed by the canopy (fPAR) was derived from
the literature and parametrised based on assumptions. In addition, the determination
of radiation use efficiency (RUE) was limited to the local conditions with restricted time
steps, and the empirical correlations require further clarification. As such, the correlation
presented by Grigera et al. [37] was limited to certain locations, the quality of the data in
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the literature, and specific time scales. The model will not have the potential to become a
global model for predicting pasture biomass. Crabbe et al. [21] primarily relied on field
measurements over October and February; therefore, the effect of seasonal cycles was
still limited in their prediction model. While comparing different ML techniques was
interesting, the precise information on pasture biomass and other model quality indicators,
such as RMSE and LCCC, was not reported. Based on the discussions above, the present
study fairly outperformed those models by considering one single prediction model across
all regions with an entire annual cycle, different types of farm management, and large-scale
active farm data that included grazing.

Of the data collected, internal and independent validations demonstrated insensitivity
to farm management (dryland and irrigated) and environmental factors (soil type and
colour). This result was somewhat surprising, considering that 11 commercial farms in this
study had differing soil types and colours. The VI plot assessment (Figure 8) determined
that management (dryland and irrigated) was the third least important variable (19th of
21 variables). Separate validation plots were presented in Figure 10, where good accuracy
was established in both dryland and irrigated management, indicating the robustness of
the prediction model for large-scale working farms, regardless of the kind of management.
The soil types in the farms varied from dense and sodic subsoils to strongly acidic brown
chromosols, wet soils such as hydrosols, and friable and structured iron-rich soils such as
red Ferrosols. Furthermore, variations in soil colour will be exacerbated with varying soil
moisture. For example, a dry brown chromosol will be different in colour compared to a
wet brown chromosol. Since dryland and irrigated farm management were considered for
the model development, substantial variations of soil colour have been accommodated
in the final model. Even so, the model was still able to obtain high accuracy, indicating
that the prediction model was not biased toward any specific type of soil (soil colour or
properties) or geographic location (such as southeast Australia).

4.5. Limitations of the Model

While management was of little importance to the model, the season was the most
important variable identified in the VI plot of the best-performing model. Correlations for
each of the five seasons used were significant (>0.8). The lowest correlation was found for
the summer season (Dec, Jan, and Feb), where the most extensive data range was measured.
High biomass occurred in summer irrigated pastures while dryland pastures commonly
senesce due to lack of moisture and have low biomass at this time. While Figure 9 showed
clear groupings associated with each season demonstrating good model outcomes, further
improvement is likely if the climatic characteristics recorded at the overpass were used
rather than coarse seasons. The enhancement will have the most significant impact in the
summer when the difference in soil moisture concentration and evapotranspiration is most
marked between irrigated and dryland management systems.

Even though this study has demonstrated the transferability of the model across
regions within southeastern Australia, seasons, and management types due to an extensive
dataset, the present model was limited by cloud-free imagery. While seasons like late spring
(October, November) and summer (December–February) had numerous cloud-free satellite
overpasses, the major challenge was during the winter season (June–July). As a result,
the range of biomass estimation was limited during the winter. Furthermore, the satellite
images were only considered if the field data collection occurred after S2 overpassing on
the same day or within a time (≤5 days) that limited potential pasture growth to less than
200 kg DM/ha.

Additionally, the present study contains field data from commercial farms; therefore,
activities such as grazing events will also affect the paddock’s variability. Furthermore,
grazing only sometimes follows a sequential schedule, depending on pasture growth,
suitable weather, and farm requirements. Consequently, available satellite data might be
further impacted. The ideal approach was to coincide the field data collection date with the
same day of the satellite overpass. However, this was difficult to achieve due to certain
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farm activities, weather conditions, and set satellite overpass schedules. Among the whole
dataset considered in this study, less than ten field data collections coincided with the
satellite overpassing, which might also have affected the model prediction accuracy.

For pasture to be the cheapest feeding source for dairy animals, grazing must be
well-managed to ensure efficient pasture utilisation. Therefore, the limited temporal
availability of biomass estimations may significantly impact the practical application of
the model outcomes developed. The addition of Synthetic-aperture radar (SAR), such
as Sentinel-1 (S1), which can pass through the cloud and provide regular observation, is
under development to overcome this significant issue. However, SAR satellites frequently
face challenges due to speckle, which is caused by the interference between the randomly
distributed scatters within each pixel [132]. Hence, building a multivariate hybrid model
requires more investigation into image pre-processing, calibration, and integration with the
S2 imagery. A similar ML RF modelling approach integrating S1 data will be investigated
based on the model’s success described here.

5. Conclusions

This study has presented an ML RF model incorporating S2 images to predict PRG
biomass in pastures across southeast Australia on 11 commercial dairy farms. This study
has successfully achieved the stated aim of predicting perennial ryegrass biomass with an
accuracy of +/−500 kg DM/ha using internal and independent validation. R2 and LCCC
showed excellent agreements between the predicted and measured pasture biomass for
internal and independent validation despite the variability of the conditions and environ-
ments under which data were collected.

This study has also found that the availability of SWIR bands increased the predictable
range of biomass above 4000 kg/DM ha. The R2 value and LCCC showed excellent
agreement between the predicted and measured pasture biomass amount (kg DM/ha) for
internal and independent validations despite the complexity of the data. The results support
the hypothesis and exceed the expectation that using SWIR bands would improve the ability
to predict pasture yields above 3000 kg DM/ha and, therefore, enable measurements of
high-yielding pastures at any stage in the growth cycle in irrigated and dryland production.
The VI plot band ranking suggested that bands associated with canopy and plant moisture
were the most important for predicting dense, moist, high-biomass vegetation such as
PRG-based dairy pastures.

The ML RF approach improved the prediction accuracy of the study by effectively ac-
commodating a large set of variables (12 bands, 9 SI, season, and management). This study
outperformed previously reported models by considering one single prediction model
across all regions with a complete annual cycle, different types of farm management, and
typical commercial farm activities, including grazing. Additionally, the model was still able
to obtain high model quality, indicating that the prediction model was not biased toward
any specific type of soil (soil colour or properties) or geographic location.

Further improvement is possible if the climatic characteristics recorded during the
overpass were used rather than coarse seasons. The enhancement will have the most
significant impact in the summer when the difference in soil moisture concentration and
evapotranspiration is the greatest between irrigated and dryland management systems.
Among the whole dataset considered in this study, less than ten field data collections
coincided with the satellite overpassing, which might also have affected the model predic-
tion accuracy. Based on the model’s success described here, a similar ML RF modelling
approach will be investigated to integrate S1 data.
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