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Abstract: Land use and land cover (LULC) changes resulting from rapid urbanization are the foremost
causes of increases in land surface temperature (LST) in urban areas. Exploring the impact of LULC
changes on the spatiotemporal patterns of LST under future climate change scenarios is critical
for sustainable urban development. This study aimed to project the LST of Nanjing for 2025 and
2030 under different climate change scenarios using simulated LULC and land coverage indicators.
Thermal infrared data from Landsat images were used to derive spatiotemporal patterns of LST in
Nanjing from 1990 to 2020. The patch-generating land use simulation (PLUS) model was applied
to simulate the LULC of Nanjing for 2025 and 2030 using historical LULC data and spatial driving
factors. We simulated the corresponding land coverage indicators using simulated LULC data.
We then generated LSTs for 2025 and 2030 under different climate change scenarios by applying
regression relationships between LST and land coverage indicators. The results show that the LST
of Nanjing has been increasing since 1990, with the mean LST increased from 23.44 ◦C in 1990 to
25.40 ◦C in 2020, and the mean LST estimated to reach 26.73 ◦C in 2030 (SSP585 scenario, integrated
scenario of SSP5 and RCP5.8). There were significant differences in the LST under different climate
scenarios, with increases in LST gradually decreasing under the SSP126 scenario (integrated scenario
of SSP1 and RCP2.6). LST growth was similar to the historical trend under the SSP245 scenario
(integrated scenario of SSP2 and RCP4.5), and an extreme increase in LST was observed under the
SSP585 scenario. Our results suggest that the increase in impervious surface area is the main reason
for the LST increase and urban heat island (UHI) effect. Overall, we proposed a method to project
future LST considering land use change effects and provide reasonable LST scenarios for Nanjing,
which may be useful for mitigating the UHI effect.

Keywords: land surface temperature (LST); land use change; scenario simulation; projection of future
LST; urban heat island; PLUS model

1. Introduction

Land surface temperature (LST), the radiative skin temperature of the land surface,
is affected by numerous factors, including surface humidity, sunlight intensity, surface
materials, terrain conditions, urbanization, land cover, and global climate change [1–7].
Accelerated urbanization and global climate change are the main anthropogenic causes
of increases in urban LST [8,9], which lead to the urban heat island (UHI) effect, i.e., a
phenomenon where the temperature of urban areas is higher than that of adjacent suburbs
or rural areas. The resultant urban heat environment or urban heat waves pose severe risks
to human health and well-being [10,11]. Extensive urbanization changes the underlying
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urban surface type, which results in an increase in urban LST and further intensifies the
UHI effect. This poses a challenge to healthy and sustainable urban development [4,12].

Over the past few decades, most of the world’s major cities have expanded, with more
than 50% of the population already living in cities, and by 2050, the urban population is
expected to reach 66% [13], which is attributable to the rapid expansion of cities [14,15].
Urban sprawl is commonly accompanied by a change in the urban underlying surface type,
which is primarily caused by urban land use and land cover (LULC) change [16–18], such as
the conversion of natural vegetation, cropland, and water bodies into impervious surfaces
represented by asphalt, concrete, and buildings [19]. Different land types tend to possess
different biophysical properties, which are reflected in their different responses to solar
radiation energy. For instance, by their impact on the spatial distribution patterns of surface
energy, forests and water bodies have the ability to cool and humidify the immediate
environment [20]. In fact, there is a broad consensus on the impact of LULC on urban LST;
that is, natural vegetation cover types such as forests, grasslands, and shrubs are generally
cooler than artificial surface types [4,5,21,22].

LST is usually obtained from ground-based observation measurements or the inversion
of thermal infrared data from satellite remote sensing. However, it is difficult to provide
a comprehensive spatial distribution pattern of LSTs from ground-based measurements
because urban ground stations are unevenly distributed and are not located in urban
cores [23]. The rapid development of remote sensing technology has made it possible
to acquire LST data on a large scale and spatiotemporal continuum; a large amount of
remote sensing data has been applied to LST retrieval, including the National Oceanic
and Atmospheric Administration-Advanced Very High-Resolution Radiometer (NOAA-
AVHHR), Moderate-resolution Imaging Spectroradiometer (MODIS), and Landsat in the
thermal infrared band [24–26]. This data acquisition has increased knowledge of the LST
mechanism; for example, the relationship between LST and UHI, LULC, and land coverage
indices. Previous studies have suggested that LST has a strong correlation with land
coverage indices such as the normalized difference vegetation index (NDVI), normalized
difference built-up index (NDBI), etc. [27–29]. In addition, other studies have indicated
that land use distribution density also significantly influences the distribution pattern of
urban LST, such as impervious surface distribution density (ISDD) [26].

Moreover, there is a deeper understanding of the impact of land use changes on LST,
that is, large-scale land use changes will lead to substantial local climate changes (e.g., the
UHI effect). The hazard of the UHI effect on human health has been increasingly observed
and threatens human life [11]. Thus, people are increasingly concerned about the spatial
distribution pattern of urban LST, especially in the context of increased uncertainty of
future climate change patterns. There are two main types of methods for urban LST predic-
tion. The first type of method is based on dynamic physical processes, such as solving the
temperature field by simulating the dynamic processes between the urban canopy and the
atmospheric boundary layer [30,31]. However, these methods are limited by the physical
processes used in the model, the accuracy of the parameterization, and the availability of
the urban surface feature dataset. In addition, they require huge computational power,
resulting in low accuracy of the acquired temperature data. The second type of method
is based on statistics; for example, by establishing a link between surface temperature
and various observable data (e.g., meteorological factors, ground coverage, or vegetation
indices) to calculate LST [32,33]. However, large uncertainties exist in the local (particularly
the areas of land use change) outcomes of the predicted LST as a result of these method-
ologies’ propensity to neglect the impact of land use change effects on LST predictions.
Consequently, it is necessary to develop new LST prediction methods that consider the
impact of land use change effects on LST prediction and combine the simulated future land
coverage indices and land use distribution density to predict LST.

Considering the impact of land use change effects on LST prediction from a spatial
perspective is a new attempt that is essential and scientifically valuable. Land use change
not only impacts LST but is also closely related to land coverage indices and land use
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distribution density, which are highly correlated with LST. Therefore, we can predict the
future patterns of these land coverage indices and land use distribution density data
if the future LULC can be accurately simulated. Future LST can then be predicted by
establishing the relationship between LST and these indices. The recently developed patch-
generating land use simulation (PLUS) model is a predictive land use simulation model
used to improve the understanding of the driving factors of LULC change. The model
is capable of performing future land use change simulations by deciphering the deep
relationships between sites and resolving land use change strategies, thereby improving
land use simulation accuracy [34–36].

In this study, we projected the LST of Nanjing for 2025 and 2030 under different
climate scenarios using simulated LULC data and the corresponding land use distribution
density combined with simulated land coverage indices. Specifically, (1) we inverted the
LST data from the thermal infrared band of Landsat images and analyzed their spatial and
temporal patterns in Nanjing from 1990 to 2020 (five-year interval); (2) the PLUS model was
applied to simulate the LULC patterns for Nanjing in 2025 and 2030 under different climate
scenarios based on land use driving factors; (3) we then calculated the corresponding
land use distribution density data using the simulated LULC data for 2025 and 2030, and
simulated land coverage indices for 2025 and 2030; and (4) finally, we established the
relationship between land coverage indices and land use distribution density and LST
in 2020, and applied the simulated land coverage indices and land use distribution density
for 2025 and 2030 to predict the LST in 2025 and 2030. Overall, this study provides a new
approach to predicting future urban LST distribution patterns that consider the impact
of land use change on LST prediction, which will help provide insights into mitigating
the UHI effect and recommend future urban planning and land resource reallocation for
decision-makers.

2. Study Area and Datasets
2.1. Study Area

Nanjing City is situated between 31◦14′ and 32◦37′N and 118◦22′ and 119◦14′E in
eastern China, in the middle of the Yangtze River’s downstream section (Figure 1). As of
2021, Nanjing had 11 districts with a total area of 6587.02 km2, a permanent population of
9,423,400 people, including 8,188,900 people in urban areas, with an urbanization rate of
86.9%, and a gross domestic product (GDP) of 231.37 billion USD. A northern subtropical
humid climate with four distinct seasons and copious rainfall characterizes Nanjing. With
117 rainy days on average year and 1294.4 mm of rainfall, the average annual temperature
is 17.1 ◦C [37].

As one of China’s hottest cities, Nanjing’s urban development has undergone sub-
stantial change over the past 30 years. According to Yang and Huang [38] annual China
land cover dataset (CLCD), which was created using Landsat data, Nanjing’s impervious
surface area expanded from 444.27 km2 in 1990 to 1371.95 km2 in 2020, more than tripling
in size over previous three decades. In addition, the permanent population of Nanjing is
increasing rapidly, from 6,148,500 in 2000 to 9,423,400 in 2021. Rapid urbanization with
the increase in population and impervious surfaces has significantly changed the underly-
ing surface types in Nanjing, which result in LST changes and intensification of the UHI
effect [26].

2.2. Datasets
2.2.1. Landsat Data

We collected all available Landsat 5 and Landsat 8 L1TP level surface reflectance (SR)
data for the summers (June to September) of 1990–2020 over the study area from the Google
Earth Engine (GEE) and used median composites for the synthetic annual images. GEE is
an online remote sensing cloud platform that allows users to perform remote sensing big
data computation and analysis quickly and efficiently without the need for computational
resources [39–41]. These data contained a cloud, shadow, water, and snow mask created
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using a C Function of Mask (CFMASK) algorithm and were atmospherically adjusted
using Land Surface Reflectance Code [42] and per-pixel saturation mask. All available
images were retrieved, and cloud coverage information, including cloud shadowing, was
removed from the images based on the quality assessment bands provided by the USGS
through GEE. In addition, Landsat 5 and Landsat 8 data were considered consistent and
inter-calibrated [39], and all TIR bands were resampled using cubic convolution to 30 m [43].
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Figure 1. Location of Nanjing City and false-color composite of Landsat 8 images. Note: R: NIR
band, G: Red band, and B: Greed represent the near-infrared, red, and green bands of Landsat
8 images, respectively.

2.2.2. LULC and Its Driving Factors

The LULC data for Nanjing from 1990 to 2020 (five-year interval) were obtained from
the CLCD dataset [38], which provides the annual LULC distribution for Nanjing from 1900
to 2020. Based on the actual land use conditions in Nanjing, the CLCD was divided into
five types: cropland, forest, grassland or shrub, water, and impervious surface (Figure 2).
Previous studies have confirmed that LULC changes are affected by socioeconomic devel-
opment and climate change [36,44]. Therefore, we collected 18 potential driving factors
that affect LULC changes in our study area, including GDP, population density, soil type,
digital elevation model (DEM), slope, temperature, precipitation, night-time light [45], and
vector data for residents, railroads, and various roads (Table S1). All driving factor data
were transformed into raster data in the same projection coordinate system (UTM Zone
50N) at a spatial resolution of 30 m.

The future temperature, precipitation [46], GDP [47], and population density [48] data
used to simulate future LULC changes were derived from three typical climate change
scenarios from the Coupled Model Intercomparison Project (CMIP) [49–52], i.e., SSP126,
SSP245, and SSP585. Among these, SSP126 is an integrated SSP1 and RCP2.6 scenario
that shows a green way forward for low levels of greenhouse gas (GHG) emissions and
sustainable socioeconomic growth. An intermediate pathway with a middle level of
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socioeconomic and technical growth and a medium level of GHG emissions is SSP245—an
integrated scenario of SSP2 and RCP4.5. SSP585 indicates a very high degree of fossil fuel
consumption and high GHG emissions from a high-end forcing pathway and is a combined
scenario of SSP5 and RCP5.8 [53,54].
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Figure 2. Historic LULC (land use and land cover) data in 1990−2020 (five-year interval) for Nan-
jing City.

3. Methodology
3.1. LST Derivation
3.1.1. Calculation of Proportion of Vegetation

The proportion of vegetation (PV) is commonly derived using the NDVI, which can
be given as follows:

PV =

(
NDVI − NDVIMin

NDVIMax − NDVIMin

)2
, (1)

where NDVI represents the original value of NDVI, NDVIMin, and NDVIMax are the mini-
mum and maximum values of NDVI in an image, respectively [55].

3.1.2. Calculation of Surface Emissivity

The surface-specific emissivity is calculated by the equation as follows [56]:

ε = 0.004 ∗ PV + 0.986, (2)

where ε is the surface-specific emissivity.
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3.1.3. Calculation of LST

The thermal infrared radiation reaching the satellite sensor is affected by atmospheric
radiation, and the atmospheric influence on the surface thermal radiation must be elim-
inated from the total thermal radiation. The LST can then be calculated using the Plank
function, which is expressed as [57]:

LST =
B(Ts)(

1 +
(

λB(Ts)
ρ

)
∗ ln(ε)

) − 273.15, (3)

where λ is the central wavelength of the thermal infrared band, corresponding to 10.40 µm
for Landsat 5 and 11.45 µm for Landsat 8; ρ is the constant of 1.438 × 10−2; and B(Ts) is the
thermal radiation of the blackbody when the temperature is Ts, which can be calculated by
the following formula:

B(Ts) =
K2

ln
(

K1
ρT

+ 1
) (4)

where K1 = 607.76 W/(m2·sr·µm) and K2 = 1260.56 K for Landsat 5 TM images;
K1 = 774.89 W/(m2·sr·µm) and K2 = 1321.08 K for Landsat 8 OLI/TIRS images; and ρT
is the thermal infrared spectrum of Landsat.

3.2. Acquisition of Potential Driving Factors of LST

Surface temperature is influenced by a combination of various drivers. We calculated
ten potential drivers based on Landsat data and LULC data to explore their effects on
LST, including NDVI, NDBI, soil-adjusted vegetation index (SAVI), modified normalized
difference water index (MNDWI), tasseled cap (TC) greenness (TCG) and TC wetness (TCW)
components after TC transformation, as well as impervious surface, forest, water body, and
cropland distribution density (Table S2). NDVI is the most commonly used vegetation index
for monitoring vegetation growth conditions and health [58–60]. The NDBI is a widely
used indicator for extracting built-up areas [61,62]. The MNDWI proposed by Xu [63] is a
commonly used water index that can effectively suppress signals from building surfaces
and accurately distinguish building surfaces from water pixels [64]. It is widely used in
surface water mapping, land use/cover change analysis, and ecological studies [65–67]. In
sparsely vegetated areas with exposed soil, reflectance values in the red and near-infrared
bands are affected, which influences the NDVI estimation results [68]. To eliminate the
effect of soil background, Huete [69] proposed the SAVI, which adds a soil adjustment
factor L to NDVI. In this study, we set L as 0.5 to fit most land covers [69]. TCG and TCW
are the greenness and wetness parameters of TC transformation [70,71], respectively.

Meng et al. [26] proposed a method for determining the distribution density of im-
pervious surfaces in order to assess the degree of dispersion of urban impervious surfaces
and to guarantee the integrity of urban subsurface types. The degree and density of the
impervious surface distribution within a specific radius centered on the pixel are referred
to as the pixel’s ISDD [72]. The density inside the radius is represented by the average
value. The weight, which may be used to quantify the degree of dispersion of buildings
within the radius, increases as the impervious surface image element approaches the center.
The calculation formula is as follows:

Densitys(r) =
∑n

i=1 Bsi ×
(

1− Di
2r

)
∑n

i=1

(
1− Di

2r

) , (5)

where s is the central pixel; r is the calculation radius; Bsi is the value of ith pixel within
radius r (impervious surface pixel = 1; permeable surface = 0); Di is the distance between
ith pixel and the central pixel; and the summation refers to all pixels within a circle with
radius r. We extended the formula to calculate the distribution density of croplands, forests,
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and water. It is notable that because of the small area of the grassland or shrubland type,
this land type was not included in the discussion.

3.3. Simulation of the Future LULC Data Using the PLUS Model

The PLUS model is able to simulate future LULC in combination with future predictor
variables dynamically and thus is particularly suitable for this study [36]. The land use
demands for the three future climate change scenarios were obtained based on historical
land use data [73] and Markov chain methods [36,74,75]. We compared the actual 2020
LULC data with the 2020 LULC data predicted by the PLUS model using the 2010 and
2015 LULC data as well as 18 driving factors that impact LULC in order to evaluate the
model’s accuracy. The PLUS model was used to simulate LULC under various climate
change scenarios if the simulation results’ accuracy was found to be adequate [34,35].

3.4. Projection of Future LST

Previous studies have shown that LST has a robust relationship with land cover
indices [4,20,76–78], including NDVI, NDBI, SAVI, MNDWI, TCG, TCW, ISDD, cropland
distribution density (CDD), forest distribution density (FDD), and water distribution
density (WDD). The partial least squares regression (PLSR) method was used to evaluate
the regression relationship between LST and ten potential factors in 2020. This methodology
is more succinct and statistically reliable than principal component regression because it
combines the advantages of principal component analysis with multiple regression [79,80].
Moreover, PLSR is well suited to this case because it can effectively avoid overfitting
problems due to the high linear correlation between variables [81]. The regression equation
(R2 = 0.735) for LST and the ten driving factors are as follows:

LST = −4.095 ∗ NDVI − 0.683 ∗ NDBI − 1.922 ∗ SAVI − 3.961 ∗MNDWI − 6.842 ∗ TCG− 9.223
∗TCW + 4.433 ∗ ISDD + 1.475 ∗ CDD− 0.011 ∗ FDD− 1.217 ∗WDD + 25.135

(6)

Using an approach that accounts for both structural and local differences in these
indices, future coverage indices were simulated [20]. Figure 3 illustrates the simulation
workflow for NDVI as an example. The local component shows the local index variations
brought on by LULC changes, while the structural component shows the overall shift in the
coverage indices over time. After a comprehensive analysis of NDVI and LULC changes
over the past 30 years, the process described above was used to simulate NDVI under the
future SSP126 scenario. The NDBI, SAVI, MNDWI, TCG, and TCW were simulated using a
similar method. The future ISDD, CDD, FDD, and WDD were calculated from the LULC
data simulated by the PLUS model using Equation (5). Finally, we used Equation (6) to
project future LST for 2025 and 2030. The workflow of the future land use simulation and
LST projection is illustrated in Figure 4.

3.5. UHI Intensity Calculation and Classification

We utilized the same standard to assess the UHI intensity for multiple periods since it
is inappropriate to directly compare the absolute temperature readings when reporting the
UHI intensity at different times. That is, we defined the UHI intensity (∆T) as the mean
LST difference between impervious and non-impervious surfaces:

∆T = TImpervious − TNon-impervious, (7)

where TImpervious and TNon-impervious are the mean LST of the impervious surface and the
non-impervious surface, respectively. The UHI intensity levels are listed in Table 1.
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Table 1. Definition of UHI (urban heat island) intensity levels.

Levels Definition

Level-1 TNon-impervious ≤ T(i,j,y) ≤ TNon-impervious + ∆T
Level-2 TNon-impervious + ∆T ≤ T(i,j,y) ≤ TNon-impervious + 1.5∆T
Level-3 TNon-impervious + 1.5∆T ≤ T(i,j,y) ≤ TNon-impervious + 2∆T
Level-4 TNon-impervious + 2∆T ≤ T(i,j,y) ≤ TNon-impervious + 2.5∆T
Level-5 T(i,j,y) ≥ TNon-impervious + 2.5∆T

Note: T(i,j,y) refer to the LST of a pixel (i, j) for the yth year.

4. Results
4.1. Spatiotemporal Patterns of LST during 1990–2020

Figure 5 illustrates the spatial distribution pattern of LST in the summer (June to
September) in Nanjing from 1990 to 2020, where the high surface temperature areas are
mainly concentrated in the impervious surface area and have been expanding since 1990.
The maximum value of LST showed a continuous increase from 34.84 ◦C in 1990 to 39.17 ◦C
in 2020 and peaked in 2015 (39.27 ◦C). The minimum value of LST was consistent with the
maximum value trend, i.e., its value continuously increased. LST varied greatly among
the land use types (Table 2), with impervious surfaces showing the highest LST, followed
by cropland and forest, and water having the smallest LST. Specifically, from 1990 to 2020,
impervious surfaces showed the largest increase (2.24 ◦C) in mean LST, whereas forests
had the smallest increase (1.38 ◦C) in mean LST, which reflects the effect of land use and
coverage index changes on LST over the past three decades. The VNP21A1D: Day Land
Surface Temperature and Emissivity Daily 1 km product from the GEE [82] was used
to validate the 2020 LST results, and the results showed a consistency of 86.37%, which
indicated the reliability of the LST extracted for this study. In addition, Figure 5 clearly
shows that the high LST areas of Nanjing in 1990 were distributed from the initial areas
mainly in the Qinhuai, Gulou, and Xuanwu districts around the city center to a large
number of high LST areas in almost all administrative districts of Nanjing in 2020. In
general, the development pattern of the high LST region has maintained a similar spatial
and temporal pattern to the land use changes in Nanjing over the past three decades
(Figure 2).

Table 2. Statistics of mean LST (land surface temperature) for different land use types in Nanjing
from 1990 to 2020.

Types 1990 (◦C) 1995 (◦C) 2000 (◦C) 2005 (◦C) 2010 (◦C) 2015 (◦C) 2020 (◦C)

Cropland 23.46 23.52 23.96 24.35 24.74 25.06 25.11
Forest 23.01 23.05 23.40 24.03 24.27 24.42 24.39
Water 21.72 22.00 22.57 22.79 23.12 23.29 23.41

Imperious surface 25.33 25.17 25.64 25.94 26.42 27.35 27.57

4.2. Simulation of LULC Data in Nanjing for 2025 and 2030

We projected Nanjing’s land use patterns for 2025 and 2030 under several climate
change scenarios using the PLUS model (Figure 6). Significant changes in land use were
anticipated compared to 2020, and the pattern of land use varied greatly across the various
scenarios (Table 3). Specifically, by 2030 under the SSP126 scenario, arable land and
grassland or shrubs will experience varying degrees of decrease, while forests will be
effectively protected, with a predicted increase of 13.44 km2 and 0.20%. The impervious
surface area will have a small increase of 63.71 km2 or 0.97%. In addition, the water
remained stable.

Under the SSP245 scenario, the cropland area is further decreased from 4139.20 km2

in 2020 to 4011.60 km2 in 2030, a total decrease of 127.60 km2 and a decrease of 1.93% in
proportion. The forest is not effectively protected, and the area will decrease by 39.44 km2
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by 2030. The impervious surface area has a higher increase than the SSP126 scenario and is
expected to increase by 168.29 km2, reaching 23.34% of the total area by 2030. The changes
in grassland or shrubs and water were similar to those in the SSP126 scenario. Notably,
under the SSP585 scenario, the cropland area decreased significantly (185.92 km2) from
62.73% in 2020 to 59.91% in 2030. The forest will be destroyed, with the area decreasing to
100.24 km2 by 2030. In contrast, the impervious surface expands significantly, increasing
from 1371.95 km2 in 2020 to 1659.03 km2 in 2030, an increase of 4.35%. Such a substantial
land use change will lead to future changes in the coverage indices and land use distribution
density and further result in a continued general increase in LST.

4.3. Simulation of Coverage Indices in Nanjing for 2025 and 2030

The simulated future LULC data of Nanjing combined with the workflow in Figure 3
were used to simulate the land coverage indicators under different future climate change
scenarios, including NDVI, NDBI, SAVI, MNDWI, TCG, TCW, ISDD, CDD, FDD, and
WDD, which were calculated using Equation (5). Figures 7 and 8 illustrate the simulation
results for NDVI and ISDD, respectively, and the other coverage indices are provided in
Figures S1–S8. The coverage indices were very similar under different climate scenarios;
however, a visual interpretation revealed that the main differences occurred in areas of
land use change, which was consistent with our expectation that land use change would
lead to changes in coverage indices.
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Figure 6. Simulation of LULC (land use and land cover) in Nanjing under different climate
change scenarios.

Table 3. Statistics of land use changes in Nanjing from 2020 to 2030 under different climate
change scenarios.

Scenarios Cropland Forest Grassland
or Shrub Water Imperious

Surface Total

2020
Area (km2) 4139.20 402.88 0.23 684.21 1371.95 6598.48

Percent 62.73 6.11 0.00 10.37 20.79 100.00

SSP126
2025

Area (km2) 4104.71 412.25 0.13 683.37 1398.02 6598.48
Percent 62.21 6.25 0.00 10.36 21.19 100.00

2030
Area (km2) 4063.03 416.32 0.10 683.37 1435.66 6598.48

Percent 61.58 6.31 0.00 10.36 21.76 100.00

SSP245
2025

Area (km2) 4086.16 381.46 0.10 683.37 1447.38 6598.48
Percent 61.93 5.78 0.00 10.36 21.94 100.00

2030
Area (km2) 4011.60 363.22 0.06 683.37 1540.24 6598.48

Percent 60.80 5.50 0.00 10.36 23.34 100.00

SSP585
2025

Area (km2) 4055.01 346.54 0.17 683.37 1513.39 6598.48
Percent 61.45 5.25 0.00 10.36 22.94 100.00

2030
Area (km2) 3953.28 302.64 0.12 683.40 1659.03 6598.48

Percent 59.91 4.59 0.00 10.36 25.14 100.00
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Figure 7. Simulation of NDVI (normalized difference vegetation index) in Nanjing under different
climate change scenarios.

Furthermore, there were notable differences in the coverage indices under different
scenarios compared with 2020. For example, the NDVI increased slightly under the SSP126
scenario (Figure 7a,d), whereas it decreased relatively more under the SSP585 scenario
(Figure 7c,f). The ISDD increased slightly under the SSP126 scenario (Figure 8a,d) and
decreased significantly under the SSP585 scenario (Figure 8c,f). Similar trends in NDVI
and ISDD, as described above, were observed for other coverage indices, except for water
bodies. As expected, the dramatic land use and coverage index changes predict that the
LST of Nanjing will change significantly in 2025 and 2030.

4.4. Predicting LST of Nanjing in 2025 and 2030

We used the simulated ten land coverage indicators as input layers, combined with
Equation (6), to obtain the LST of Nanjing for 2025 and 2030 under different future climate
scenarios (Figure 9). The results show that the LST of Nanjing under the three scenarios
shows different degrees of increase during 2020–2030. According to multiple scenarios,
Table 4 shows the mean LST for Nanjing in 2025 and 2030. It is clear that the mean LST
for each kind of land use is greater under the SSP585 scenario than it is under the SSP126
scenario. By 2030, impervious surfaces will have the highest mean LST (28.94 ◦C), followed
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by cropland (26.23 ◦C) and forest (25.18 ◦C), whereas water bodies have the lowest mean
LST (24.02 ◦C), which is also consistent with the mean LST pattern of different land use
types over the past three decades (Table 2).
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Figure 8. Simulation of ISDD (impervious surface distribution density) in Nanjing under different
climate change scenarios.

Table 4. Statistics of mean LST (land surface temperature) of Nanjing in 2025 and 2030 under different
climate change scenarios.

Types
SSP126 SSP245 SSP585

2025 (◦C) 2030 (◦C) 2025 (◦C) 2030 (◦C) 2025 (◦C) 2030 (◦C)

Cropland 25.06 25.36 25.30 25.53 25.52 26.23
Forest 24.36 24.25 24.48 24.72 24.71 25.18
Water 23.44 23.52 23.61 23.82 23.64 24.02

Imperious surface 27.62 27.67 27.84 28.09 28.11 28.94

Compared with 2020, except for forest, the mean LST increased slightly for the other
three land use types in 2030 under the SSP126 scenario. The mean LST of the forest
decreased from 24.39 ◦C in 2020 to 24.25 ◦C in 2030. Under the SSP245 scenario, the mean
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LST of each land use type will increase faster by 2030. Among the five land use types,
the mean LST of impervious surfaces increased by 0.52 ◦C. Under the SSP585 scenario, a
relatively large increase was observed in the mean LST for each land use type. By 2030, the
mean LST of impervious surfaces will approach 29 ◦C, and the mean LST of water bodies
will exceed 24 ◦C. The mean LST of impervious surface, cropland, forest, and water bodies
will increase by 1.37, 1.12, 0.79, and 0.61 ◦C, respectively.
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Figure 9. The LST (land surface temperature) projections for Nanjing in 2025 and 2030 under different
climate change scenarios.

To further explore the spatiotemporal characteristics of LST in 2025 and 2030 under
different scenarios, we calculated the difference between the LST maps in 2025 and 2030 and
the LST map in 2020, as illustrated in Figure 10. Significant differences in the distribution
of the Nanjing LST differences under different scenarios can be observed (Table 5). Under
the SSP126 scenario, only 1.42% of the study area will experience a decrease in LST by 2025,
while there are almost no areas where the LST increases by more than 3 ◦C. By 2030, the
LST decrease area will increase to 1.72%, and 0.05% of the areas will have an LST increase
greater than 3 ◦C. Under the SSP245 scenario, 90.77% of the study area will have an increase
in LST of 0–1 ◦C by 2025, and 8.73% of the area will have an increase in LST of more than
1 ◦C. By 2030, 71.93% of the study area will have a 0–1 ◦C increase in LST, and 27.56% of the
area will have an LST increase of more than 1 ◦C. In contrast, under the SSP585 scenario,
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only 0.20% of the study area will experience a decrease in LST by 2025, which will further
decrease to 0.11% by 2030. The area with an LST increase of more than 1 ◦C also increases
from 20.35% in 2025 to 45.79% in 2030, and the area with an LST increase of more than
3 ◦C reaches 3.97%. Overall, there were significant differences in future LST changes under
different climate scenarios, and the different climate scenario patterns leading to different
LST changes depend on the developmental pathway that is taken.
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Figure 10. Difference maps of LST (land surface temperature) under different climate change scenarios
compared to 2020.

Table 5. Statistics of the LST (land surface temperature) difference under different climate
change scenarios.

Difference (◦C)
SSP126 SSP245 SSP585

2020–2025 2020–2030 2020–2025 2020–2030 2020–2025 2020–2030

<0 1.42% 1.72% 0.49% 0.52% 0.20% 0.11%
0–1 95.77% 85.79% 90.77% 71.93% 79.45% 54.09%
1–3 2.81% 12.44% 8.43% 26.37% 19.35% 41.82%
>3 0.00% 0.05% 0.30% 1.19% 1.00% 3.97%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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4.5. Spatiotemporal Distribution of UHI Intensity Levels

Based on Equation (7) and Table 1, the distribution of the UHI intensity levels in 2025
and 2030 for Nanjing under various scenarios is shown in Figure 11. We conducted a
statistical study of the UHI intensity in 2025 and 2030 under several scenarios in order to
more accurately assess the regional and temporal evolution of the UHI intensity (Table 6).
Under the SSP126 scenario, the UHI effect will be observed for 57.78% of the study area by
2025, with this percentage increasing to 63.95% by 2030. Nonetheless, the percentage of
areas with high UHI intensity levels (Level-4 and Level-5) decreases under this scenario,
with Level-4 and Level-5 UHI intensities decreasing from 0.41% and 0.02% in 2025 to
0.32% and 0.01% in 2030, respectively. This indicates that the high UHI effect in Nanjing is
mitigated under the SSP126 scenario and is further reduced as this scenario continues.
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Figure 11. UHI (urban heat island intensity) levels of Nanjing in 2025 and 2030 under different
climate change scenarios.

Under the SSP245 scenario, the UHI effect in Nanjing continues to increase, with the
affected area increasing from 65.06% in 2025 to 73.49% in 2030. The percentage of areas
with a UHI intensity level of 3 or higher will reach 7.05% by 2030. The UHI effect was
the strongest in Nanjing under the SSP585 scenario. By 2030, only 10.38% of the study
area will have no observed UHI effect. Levels 3, 4, and 5 of UHI intensity in 2030 will
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be 10.31%, 3.74%, and 0.14%, respectively. The spatial distribution of high-level UHI
intensity areas (Figure 11) and the distribution of high ISDD highly overlap (Figure 8),
which is consistent with the previous assumption that the higher the distribution density
of impervious surfaces, the stronger the UHI effect. Overall, the high-level UHI effect in
Nanjing will slightly mitigate over time under the SSP126 scenario, whereas the UHI effect
in Nanjing will continue to increase under the SSP245 and SSP585 scenarios, especially in
the SSP585 scenario.

Table 6. Statistics of UHI (urban heat island intensity) intensity levels of Nanjing in 2025 and 2030
under different climate change scenarios.

Levels
SSP126 SSP245 SSP585

2025 2030 2025 2030 2025 2030

None 42.22% 36.05% 34.94% 26.51% 27.58% 10.38%
Level-1 45.56% 51.20% 50.65% 56.37% 55.15% 64.28%
Level-2 8.25% 8.72% 9.25% 10.07% 10.30% 11.15%
Level-3 3.53% 3.70% 4.47% 6.30% 5.90% 10.31%
Level-4 0.41% 0.32% 0.66% 0.73% 1.02% 3.74%
Level-5 0.02% 0.01% 0.03% 0.02% 0.05% 0.14%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

5. Discussion

Future LULC simulations may be used to reliably forecast future LST patterns based
on the assumption that land use change impacts would have an impact on LST. The PLUS
model can combine future predictor variables with Markov chains to accurately simulate
changes in land use distribution (the overall accuracy is approximately 95%) under the
constraints of future land use demand and development probabilities of different land
use types. The PLUS model retains the benefits of the cellular automata model’s adaptive
inertial competition and roulette wheel competition mechanisms [34,36]. Future land-
coverage indicators must be correctly predicted in order to forecast future LST. The temporal
changes in the indices are divided into structural and local components in our technique
for forecasting the coverage indices [20], which can accurately identify the changes in
the coverage indices due to land use changes. Consequently, the distribution pattern of
the future coverage index can be determined in a more refined manner. Based on the
calculation method of impervious surface distribution density proposed by Meng et al. [26],
we extended it to the distribution density calculation of other land use types. Using
the above two methods, we generated reasonable land coverage indicators NDVI, NDBI,
MNDWI, SAVI, TCG, TCW, ISDD, CDD, FDD, and WDD and successfully used them to
predict the LST of Nanjing for 2025 and 2030 (Figure 9).

Our results show that LST in Nanjing continuously increases from the past to the
future (for all three climate scenarios). We observed that the increase in LST in Nanjing was
consistent with the increase in the impervious surface area (Figure 12). Specifically, under
the SSP126 scenario, the trend of increasing LST slows as urban sprawl is effectively con-
trolled, and the increase in urban impervious surface area slows down (Figure 12a). Under
the SSP245 scenario, the urban impervious surface area maintained a high growth rate, and
the LST increased rapidly with an increase in impervious surface area (Figure 12b). Not
surprisingly, the rate of increase in LST reached a maximum because of the sharp increase
in impervious surface area under the SSP585 scenario (Figure 12c). This is consistent with
previous studies that showed a strong linear relationship between impervious surface area
and LST, where LST increased with an increase in impervious surface area [4,26,83]. Rapid
urbanization concentrates a sizable population in a little amount of time in economically
developed cities such as Nanjing. As a result, to accommodate the city’s growth, there
must be extensive urban building, a thriving real estate market, and a high demand for
industrial property. The consequence of rapid urban expansion is an increasing impervious
surface area, which leads to changes in the underlying urban surface types and land surface
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environment [20]. The large absorption capacity and high radiation temperature of the
impervious surface might lead to an increase in sensible heat and an increase in LST [84].
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The poor distribution of the urban thermal environment will result in the UHI effect
that would challenge the sustainability and livability of cities. In this study, the future
LST projections for the mean temperature of impervious surfaces were significantly higher
than that of other land use types (Table 4), which was the main reason for the intensified
UHI effect. Previous studies have found that vegetation and water bodies effectively
reduce the local thermal environment in cities [20,85]. Therefore, considering vegetation
and water zoning in planning and design within cities will help regulate the thermal
environment, which may be the most effective solution to reduce the UHI effect within
cities [33]. In some sense, increasing the proportion of urban land use types such as forests,
grasslands, shrubs, and water bodies can reduce the LST and mitigate the UHI effect to
some extent. Furthermore, reducing the impervious surface density also mitigates the UHI
effect [26], which is due to the fact that when the impervious surface patch gap becomes
larger, previously accumulated heat could be released from the surface, hence reducing
the LST [86]. Therefore, in order to mitigate the UHI, the primary emphasis of urban
design efforts should be on changing the material composition of the land surface [87],
such as reducing the distribution area of impervious surfaces. In addition, the distance
between the city and the river, the height of buildings, and the shape of green spaces may
have a significant impact on the distribution of LST, and this is an important element of
future urban planning to deal with the UHI effect [87]. The type of urban development is
also a factor that influences the LST and UHI. In general, the infill development pattern
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has higher urban LST than that of the leapfrog development pattern. This is due to the
surrounding high LST land use types (such as built-up areas), which create greater urban
LST surrounding the infill-developed urban regions. Leapfrog urban areas, on the other
hand, are bordered by other land use categories with a lower LST, including agricultural
land. Additionally, effective planning techniques such as urban design that include an
adequate percentage of public spaces, such as parks and lakes, aid in lowering LST [33].
It is worth mentioning that for the same population capacity, we should try to build
high-rise buildings in order to expand the shaded area, improve local ventilation and use
the protected land for green space and water bodies. Overall, the projected future LST
distribution pattern provides an insight that plays an irreplaceable role of vegetation in
mitigating UHI should not be ignored in urban land resource reallocation and that rational
urban layout [88], good LULC structure, and vegetation “greening strategies” are effective
measures to reduce LST and mitigate urban UHI effect.

Notably, there still exist some limitations in this study. First, the LULC data used
in this study were derived from the CLCD dataset. Although this dataset was proven
to have a high overall accuracy (79.31%) [38], however, the accuracy of future LULC
and LST predictions is based on the existing LULC. Therefore, LULC data with high
classification accuracy could contribute to reducing the uncertainties of future LULC
and LST predictions [20,34,36]. Second, we only considered 18 driving factors affecting
changes in LULC and did not consider more potential driving factors affecting changes in
LULC, such as economic factors, policy planning, etc. In the future, we will consider more
potential factors to improve the study framework [36]. Finally, there are some uncertainties
in the regression relationship between LST and driving factors [20,76]. We will focus on
improving the accuracy of the regression relationship between LST and driving factors in
future research to obtain better LST prediction results. Despite the above limitations, this
study proposed a method for predicting future LST that considers land use change effects
and provides distribution patterns for land use and LST in Nanjing under different climate
change scenarios. Clearly, the research framework proposed in this study is also applicable
to future LST projections and UHI simulations for other mega-cities in China or around the
world [4,15,76]. Indeed, this is also the ambition and challenge of our future work.

6. Conclusions

In this study, we retrieved the 1990–2020 LST and associated coverage indices for
Nanjing using Landsat imagery data and explored their spatiotemporal dynamics with
LULC in the study area. We also simulated the LULC of Nanjing for 2025 and 2030 under
different climate scenarios using the PLUS model and LULC driving factors and simulated
the corresponding land coverage indicators. By establishing a regression relationship
between LST and land coverage indicators by the PLSR method, we successfully predicted
the LST of Nanjing for 2025 and 2030 under different climate scenarios and obtained the
corresponding UHI distribution patterns. The results showed that the spatial pattern of
LULC in Nanjing has changed significantly over the past 30 years, which was also reflected
in the increase in LST since 1990. The impervious surface was the warmest land surface,
followed by cropland, forest, and water bodies. The key finding of this study is that the
substantial expansion of impervious surfaces was the main reason for the increase in LST,
which aggravated the UHI effect. Moreover, the impact of land use change on LST was
confirmed; thus, it should not be neglected in future LST prediction studies.

This study had several limitations: (1) there is some error in the LULC data used,
which will result in uncertainties in future LULC simulations; (2) the simulation of land
use data was potentially influenced by other driving factors, and its accuracy could be
further improved; and (3) the accuracy of the LST estimates for 2025 and 2030 may be
compromised using an empirical function of the link between LST and land coverage
indicators that was only created in 2020. Regardless, this study achieved two important
outcomes: (1) simulation of future land coverage indicators based on projected future
LULC and (2) projections of future LST, indicating the impact of land use change effects
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on LST and key land surface parameters. In general, this study proposed a method for
predicting future LST that considers land use change effects and provided distribution
patterns for land use and LST in Nanjing under different climate change scenarios and
gave suggestions for future urban planning and LST reduction, which can provide new
insights for mitigating urban UHI effect and thus help maintain sustainable and healthy
urban development.
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