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Abstract: Hyperspectral unmixing, which decomposes mixed pixels into the endmembers and
corresponding abundances, is an important image process for the further application of hyperspectral
images (HSIs). Lately, the unmixing problem has been solved using deep learning techniques,
particularly autoencoders (AEs). However, the majority of them are based on the simple linear
mixing model (LMM), which disregards the spectral variability of endmembers in different pixels.
In this article, we present a multi-attention AE network (MAAENet) based on the extended LMM
to address the issue of the spectral variability problem in real scenes. Moreover, the majority of AE
networks ignore the global spatial information in HSIs and operate pixel- or patch-wise. We employ
attention mechanisms to design a spatial–spectral attention (SSA) module that can deal with the
band redundancy in HSIs and extract global spatial features through spectral correlation. Moreover,
noticing that the mixed pixels are always present in the intersection of different materials, a novel
sparse constraint based on spatial homogeneity is designed to constrain the abundance and abstract
local spatial features. Ablation experiments are conducted to verify the effectiveness of the proposed
AE structure, SSA module, and sparse constraint. The proposed method is compared with several
state-of-the-art unmixing methods and exhibits competitiveness on both synthetic and real datasets.

Keywords: hyperspectral unmixing; autoencoder; spatial–spectral attention; spectral variability;
spatial homogeneity

1. Introduction

Hyperspectral images (HSIs) have both spatial and spectral information. In particular,
hundreds of spectral bands can reflect the physical characteristics of objects, which can
greatly enhance the ability in various remote sensing applications, i.e., environmental
monitoring, resource exploration, and target detection and recognition [1].

Due to the tradeoff between the spatial and spectral resolutions, the spatial resolutions
of hyperspectral sensors are limited. Consequently, HSIs contain mixed pixels, which
contain multiple materials. The presence of mixed pixels reduces the performance of HSI
analysis for further applications. Therefore, a variety of spectral mixing models and spectral
unmixing algorithms have been proposed to decompose mixed pixels into a set of pure
spectra (denoted endmembers) and their corresponding proportions (denoted abundances).
In general, the hyperspectral unmixing process mainly contains two parts, endmember
extraction and abundance estimation. The endmember extraction finds the spectra of all
kinds of materials in the scene, while the abundance estimation determines the fraction of
endmembers contained in each pixel.

An unmixing algorithm is based on a certain spectral mixing model. The spectral
mixing models can be divided into the linear mixing model (LMM) and the nonlinear
mixing model (NLMM) [2]. The LMM assumes that the signal obtained by the spectrometer
is a direct reflection of incident light on the material, and the mixing spectra are a linear
combination of the various endmembers’ spectra. In contrast, NLMMs [3] make the
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assumption that the scattering of photons takes place on multiple materials in the scene.
The complex assumptions of nonlinear models are made for specific conditions and require
a great deal of prior knowledge. Therefore, LMM is the most widely used because of its
strong generalization ability in remote sensing and clear physical significance.

However, the illumination variations and atmospheric conditions may cause the
spectra of endmembers to vary within an image, which is called spectral variability. The
unmixing results of LMM will be degraded due to the spectral variability issue. Therefore,
various methods have been developed to mitigate the impacts of spectral variability in
spectral unmixing. The unmixing methods, which take the spectral variability into con-
sideration, can be divided into two categories, the endmember-bundle-based approaches
and the parametric endmember models. The endmember-bundle-based approaches [4–6]
generate a bundle of spectra for each endmember from the input data and explore which
spectrum of each endmember bundle is the best to generate the combination of each pixel.
The parametric models [7–11], such as the extended LMM (ELMM) [7], the perturbed LMM
(PLMM) [9], and the generalized LMM (GLMM) [11], introduce extra parameters into the
traditional LMM to simulate the spectral variability. The ELMM individually scales each
endmember in a pixel by a constant factor. Even more, each band of each endmember
spectrum is given its own scaling factor in the GLMM. Considering the computational
complexity, we choose the ELMM to model the spectral variability in our method.

According to the development of the unmixing problem, the existing linear un-
mixing methods can be divided into three types: supervised, semisupervised, and
unsupervised methods.

The supervised unmixing algorithms generally consist of two steps. They need to extract
the endmembers as a prior first and then solve the abundance. The endmember extraction
methods can be divided into two categories according to the pure pixel assumption. If
pure pixels for each material exist in the image, the endmembers are located at the vertices
of the HSI data simplex based on LMM. Algorithms such as vertex component analysis
(VCA) [12], Nfindr [13], and pixel purity exponent (PPI) [14] were proposed to find these
vertices. If there is no pure pixel in the scene, appropriate expansions of the HSI data
simplex are conducted, such as minimum volume simplex analysis (MVSA) [15] and
iterative constrained endmember (ICE) [16]. Later, some abundance-estimation algorithms
such as fully constrained least square (FCLS) [17,18] are used to complete the unmixing
process. Since these supervised methods separate endmember extraction and abundance
estimation, the abundance results of unmixing largely depend on the accuracy of the
extracted endmembers.

The semisupervised methods [19–21] are spare regression unmixing methods based
on the existing complete spectral library. They convert the spectral unmixing problem
into selecting the optimal linear combination of spectra subset in the library. Neverthe-
less, because of the redundancy of the spectral library and the spectral variability of the
endmembers, it is difficult to find the perfect match of endmembers in the spectral library.

The unsupervised methods [22–32] are blind-source separation algorithms that de-
compose the HSI matrix into the endmember matrix and abundance matrix simultaneously,
such as independent component analysis (ICA) [28], non-negative matrix factorization
(NMF), non-negative tensor factorization (NTF) unmixing algorithms, and some deep
learning methods. However, because the objective function used in the optimization is
non-convex, it is easy to fall into the local minimum, and the unmixing result may be
unstable. Therefore, in order to achieve better performance, different regularizations have
been appended to the objective function to improve the performance [23–25,29,30].

In recent years, spectral unmixing methods based on deep learning have become in-
creasingly popular with researchers. The most widely concerned is the autoencoder (AE)
framework, through which unsupervised spectral unmixing can be performed [33–35]. An
AE framework generally consists of an encoder and a decoder. The encoder transforms the
input HSIs into a hidden layer containing low-dimensional embedding, which corresponds
to the abundance. The decoder is constructed on a certain mixing model with the corre-
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sponding endmember matrix as another input. Generally, it is a simple linear layer without
bias whose weight is the endmember matrix.

Palsson et al. [36] studied the structure and loss function of autoencoders used for
spectral unmixing systematically for the first time. It was shown that the spectral angle
distance (SAD) may be a more suitable loss function and deeper encoders do not always
give better results. To achieve a robust unmixing performance by AE in the presence of
outliers, some denoising AEs [37,38] have been proposed, such as DAEN presented by
Su et al. [39], which consists of stacked AEs for initializing endmembers and a variational
AE to optimize the results. Nevertheless, these AE networks used fully-connected layers as
the base structure in the encoder part, so the spatial information in the image was ignored.
Palsson et al. [40] introduced the convolutional neural network (CNN) into the AE unmixing
methods. The advantage of CNN is exploiting the neighbor information of pixels [41,42].
As a kind of unsupervised unmixing network, more prior knowledge is added into the
loss function to avoid a local minimum, such as a sparsity or smoothing constraint on the
abundance [43,44] or a minimum volume constraint on the endmembers [45,46].

Most recently, more innovations have been focused on the structure of the encoder.
Hong et al. [47] proposed an endmember-guided unmixing network (EGU-Net) that
included a Siamese network to learn the endmember features from pure or nearly-pure
pixels and then share the weight with the main encoder. Xu et al. [44] proposed an AE
with global–local smoothing. It contained two modules, the local continuous conditional
random field smoothing module and the global recurrent smoothing module, which exploit
local and global spatial features, respectively. However, these networks were limited to
the encoder part and ignored the decoder which could have a more complicated fitting
capability for the reconstruction of HSIs. In [48], Shi et al. proposed the probabilistic
generative model for spectral unmixing (PGMSU), which uses a variational AE framework
to generate an arbitrary posterior distribution of endmembers for each material of each
pixel. Li et al. [49] used 3D-CNN combined with a channel attention network to solve the
unmixing problem. Zhao et al. [50] proposed an unmixing AE that used 3D-CNN as a
basic structure to integrate the spectral information and introduced spectral variability into
the decoder.

As we can see from the discussion above, most unmixing AEs ignore the global
information of HSIs. In the natural scene, the spectral similarity between long-range pixels
is common, which is not considered by the pixel-wise or patch-wise AEs. Meanwhile, the
spectral variability caused by illumination and shadow should be considered. The simple
decoders based on LMM cannot fully exploit the powerful representation ability of encoders.
Moreover, the unsupervised unmixing problem is still ill-posed after all. The initialization
of the networks will partly influence the result. Currently, most endmember matrices of
unmixing AEs are initialized with VCA or randomly [35]. The inappropriate initialized
weights may make the unmixing results unstable or trap them in a local minimum.

In this article, we propose an unsupervised hyperspectral unmixing method based
on a multi-attention AE network (MAAENet). We introduce the spectral variability model
into the decoder based on ELMM, which improves the unmixing performance further. In
the encoder, we design a module based on an attention mechanism called spectral–spatial
attention (SSA) module that can help the encoder compute the importance of each spectral
channel and gather spatial information globally. Meanwhile, we propose an abundance-
regularization term based on spatial homogeneity to exploit the local spatial features of
each pixel. In addition, we use a more stable endmember initialization method to avoid
local minima as much as possible.

The main contributions of this article are summarized as follows:

1. A novel AE architecture based on the ELMM is proposed for spectral unmixing.
The decoder is specifically designed to deal with the spectral variability by adding
pixel-wise scaling factors of the endmembers in real scenes.

2. A spatial–spectral attention (SSA) module is designed by incorporating a non-local
attention mechanism and a spectral attention mechanism to extract the spatial–spectral
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features of HSIs effectively. The non-local attention mechanism exploits the global
spatial feature of pixels.

3. A flexible constraint to abundance is proposed as a regularization called LSHC. The
relationship between the mixing severity and spatial homogeneity is considered in
LSHC as local spatial prior knowledge.

This article is organized as follows. Section 2 briefly reviews the LMM and extended
LMM. Section 3 describes the proposed unmixing AE framework, including the network
architecture, the structure of the SSA module, and the loss function. Section 4 is the
experimental section. Finally, the conclusions of our work are presented in Section 5.

2. Problem Formulation
2.1. Linear Mixing Model

The hyperspectral data is denoted Y = [y1, y2, . . . , yn] ∈ Rb×n, where b denotes the
number of bands, n = h×w is the number of pixels, and h and w are the numbers of image
rows and columns, respectively. The goal of spectral unmixing is to estimate the spectral
vector ep of all the endmembers contained in the image and the abundance vector an of
these endmembers in each pixel. The endmember spectrum matrix of the HSI is denoted
E = [e1, e2, . . . , ep] ∈ Rb×p, and A = [a1, a2, . . . , an] ∈ Rp×n is the abundance matrix of all
the pixels, where p is the number of endmembers. According to the LMM of hyperspectral
unmixing, the spectra Y in the image can be expressed as:

Y = EA + N (1)

where N ∈ Rb×n is the additive noise. Two constraints are applied to the abundance
coefficients. One is the abundance non-negative constraint (ANC), which requires the
abundance coefficients to be non-negative. The other is the abundance sum-to-one constraint
(ASC), since the spectra of an arbitrary pixel should be completely represented by the
contributions of the endmembers. These two constraints are given by the following equations:

ANC:A ≥ 0
ASC:1pA = 1n

(2)

where 1p ∈ R1×p and 1n ∈ R1×n represent all-one row vectors.

2.2. Extended Linear Mixing Model

The LMM, as a simplified model for spectral unmixing, cannot adapt to natural scenes
well. In reality, the variation in atmospheric, illumination, and environmental conditions
causes spectral variability [51], which means there may be multiple spectra of the same
material in the image. Various models that adopt additional parameters based on the
LMM have been proposed to address the spectral variability of endmembers in unmixing
problems, such as augmented LMM [8], perturbed LMM [9], and extended LMM [7,10].

In this research, we implement the ELMM into the proposed unmixing network
architecture to address the endmember variability. The ELMM employs scaling factors to
approximate the variation of each endmember, which can be formulated as:

yk = Eskak + nk (3)

where sk ∈ Rp×p is a diagonal matrix with non-negative diagonal elements. The diagonal
elements of sk are scaling coefficients representing the spectral variability caused by the
atmosphere and shading in the actual scene. The ELMM for all the pixels can be rewritten
as following in matrix form:

Y = E(S�A) + N (4)

where S ∈ Rp×n is an incorporation of sk for all pixels and its kth column consists of the
diagonal elements of sk. The mathematical symbol � denotes the Hadamard product.
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3. Proposed Method

In this section, we detail the proposed unmixing method. The proposed unmixing
network includes two main parts, namely, the encoder and the decoder. The encoder is
designed to learn the low-dimension spectra representation and potential spatial–spectral
features of the input HSI. The last layer of the encoder is the learned abundance map Â,
which can be expressed as:

Â =GE(Y) (5)

where GE(•) denotes the nonlinear mapping function learned by the encoder. The overall
structure of the encoder is shown in Figure 1. Convolution layers are used as the basic layers
to exploit the information of the hyperspectral data cube. The first layer is a 3 × 3 Conv
layer used to integrate the neighborhood features of each pixel. After that, there is a spatial–
spectral attention module that is specially designed to extract the spatial and spectral
features. A detailed description of the SSA module is in Section 3.1. The next two layers
use a 1 × 1 Conv kernel and LeakyReLU activation function to map the features into low-
dimensional features. The last layer uses a 1 × 1 Conv kernel to compress the features to
the abundance vectors, and the softmax function is used as an activation function to satisfy
ANC and ASC.

Figure 1. The architecture of the proposed AE network for hyperspectral unmixing.

Furthermore, a 3 × 3 Conv layer is followed by a normalization function to apply
a sparse regularization on abundance. More details on this regularization are given in
Section 3.2.

The decoder of the proposed network architecture is designed strictly according to the
ELMM. The decoding function GD(•) of the reconstruction process can be formulated as:

Ŷ =GD(A) = E(S�A) (6)

The weight of the decoder is an endmember matrix and the output is the reconstructed
HSI Ŷ. Most decoders of unmixing AEs [36–39] are based on the simple LMM, which could
waste the powerful ability of encoders to extract features. In this research, we introduce
the ELMM into our decoder to enhance the fitting ability of the decoder. As shown in
Figure 1, the decoder needs two parameter matrices: the scaling factor matrix S and the
endmember matrix E. The detailed reconstruction process of the kth pixel in the HSI is
shown in Figure 2. According to the formulation of the ELMM given by Equation (3), the
scaling factor sk is applied to the abundance vector ak to simulate the spectral variability of
each endmember. The values of the diagonal elements of sk are all initialized as 1, which
represents the situation with no spectral variability. Then, the scaled abundance vector is
input to a dense layer to reconstruct the pixel spectra, where the weights are correlated
with the endmembers. The weights of the decoder are initialized using the endmembers
extracted with the method detailed in Section 4.2 and the reflectance of each band is limited
to the range of 0 to 1 in the optimization process.
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Figure 2. The specific architecture of the decoder.

3.1. Spatial–Spectral Attention (SSA) Module

HSIs have rich spatial information and spectral information. Normally, the convolution
layers of the networks can only extract features within the local neighborhood and ignore
the global information of input. Moreover, HSIs have hundreds of bands and some of them
are highly correlated, which means some bands may be redundant. Thus, giving different
weights to each band according to their importance can strengthen the fitting ability of
networks. Recently, various attention mechanisms have been proposed for computer-vision
tasks [52–55]. The attention mechanisms can be regarded as reweighting processes, which
allow the networks efficiently to divert attention to the most important regions of the input
data and disregard the irrelevant parts.

In this research, we construct an attention module called the spatial–spectral attention
(SSA) module for the encoder network. As shown in Figure 3, the SSA module consists
of two branches, a non-local attention module for extracting global spatial correlation
information and a spectral attention module for weighting the importance of the spectral
information in each band.

Figure 3. Detailed network structure of the SSA module.

The non-local operation aims to build the connection between a single pixel and all
the other pixels. In a natural scene, similar pixels, which have similar spectra, exist not
only in the neighborhood but also in long-distance regions. In addition, pixels with similar
spectra are likely to have the same abundance of endmembers. It is helpful to extract global
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information for solving the unmixing problem. Therefore, we proposed a non-local atten-
tion module that can capture global information by computing the relationship between
any two positions. Different from the non-local neural network proposed in [54], in our
method, we made some modifications to make the module more suitable for applications in
HSIs with a clear physical interpretation. Since each pixel of an HSI has its own spectrum,
we adopt the spectral correlation instead of the dot product used in [54] to define the
pairwise function for computing the similarity in the embedding space. The function f (•)
is given as:

f (xi,xj) =
xi

Txj

‖xi‖
∥∥xj
∥∥ (7)

where xi and xj are the spectral features of the ith pixel and jth pixel, respectively.
We wrap this operation into the non-local architecture illustrated in Figure 3. The

specific operations are as follows. Let X ∈ Rc×h×w denote the input feature map with c
channels. First, feature transformation is performed by two Conv layers with a convolution
kernel size of 1 × 1, and the output is {X1, X2} ∈ Rc×h×w. Then, unfold X1, X2 by pixels
and obtain {U, V} ∈ Rc×n. After that, the non-local similarity map Wn ∈ Rn×n, which
denotes the similarity between the feature vector of each pixel, is formulated as follows:

Wn(i, j)=
e f (Ui ,Vj)

n
∑

i=1
e f (Ui ,Vj)

(8)

where Ui is the ith column of U and Vj is the jth column of W. The element Wn(i, j) denotes
the globally normalized spectral similarity between the ith pixel in X1 and the jth pixel in X2.
Thus, each pixel is associated with all the other pixels through Wn. Finally, the flattened X is
multiplied by Wn to obtain XNS, which contains the global spatial correlation information.

Another branch is the spectral attention module, which is a kind of channel attention
mechanism. The spectral attention module is designed to obtain the weights to describe
the importance of all spectral bands. The representational power of the network can be
improved by dynamically adjusting the weight of each band. The specific operations are
as follows. First, the input feature map is sent to a convolution layer to integrate the
information of all channels, and the output is denoted as X3 ∈ Rc×h×w. Then, mean pooling
and standard deviation pooling of each channel are conducted separately to obtain the
spectral features. The formulas of Wmean ∈ Rc and Wstd ∈ Rc are given as follows:

Wmean(k) =
1

hw

h

∑
u=1

w

∑
v=1

X3(k, u, v) (9)

Wstd(k) =

√√√√ 1
hw

h

∑
u=1

w

∑
v=1

(X3(k, u, v)−Wmean(k))
2 (10)

where k denotes the kth spectral band of X3 and (u, v) is the spatial position. After that,
two dense layers are used to transform the features. Finally, these features are added and
sent to the sigmoid layer to generate the spectral weights Wc ∈ Rc, which are multiplied
with X by channel to generate XSA. The calculation of Wc can be formulated as follows,
where F 1 and F2 denote the mapping of the two dense layers.

Wc = sigmoid(F 1(Wmean) +F2(Wstd)) (11)

At the end of SSA, XNS and XSA are concatenated with X to generate the final out-
put. Through the SSA module, the output feature vector of each pixel contains global
information and the redundant bands become less important in the unmixing process.
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3.2. Spatial Homogeneity Constraint (LSHC)

In most of the unmixing algorithms, sparse regularization is always added to the
objective function to constrain the abundance. The lq norm regularization is the commonly
used term [19,43,44,56], which can be formulated as:

Lsparse =
1

pn

p

∑
i=1

n

∑
j=1

∣∣aij
∣∣q (12)

where q is a fixed value, which is set to 0.5 in NMF [25] and deep learning algorithms [43,44],
and in semisupervised algorithms it is usually set to 2 [19]. These regularizations are
based on the sparse prior and aim at reducing the number of endmembers contained in
the pixels. However, not all the pixels satisfy the sparse condition. In natural scenes,
mixed pixels generally exist at the junction of different materials, and the abundance of
these mixed pixels should not be sparse. At these mixing regions, the spectra of pixels
vary dramatically from one to another, which causes low spatial homogeneity. In contrast,
the regions composed of pure pixels where the corresponding abundance vectors are
more likely to be sparse tend to have a high spatial homogeneity. Noticing the distinction
between mixed pixels and pure pixels in spatial homogeneity, we propose a regularization
based on the spatial homogeneity constraint, denoted LSHC:

LSHC =
1

pn

p

∑
i=1

n

∑
j=1

∣∣aij
∣∣µ(u,v) (13)

where (u, v) is the spatial position of pixels in the image. Compared to lq norm regulariza-
tion with a fixed exponent, the exponents µ in LSHC vary with the spatial homogeneity at
a given spatial position (u, v). LSHC introduces prior information about the spatial distri-
bution of materials in a scene. As shown in Figure 1, the branch above the main encoder
network is constructed to calculate the spatial homogeneity and then the spatial homogene-
ity map is normalized in the range of 0.5 to 2. Figure 4 demonstrates the calculation of µ
for an HSI. A Laplacian operator is applied to the HSI to generate the spatial homogeneity
map M. Logarithmic transform is used to normalize M. The process of normalization can
be formulated as:

µ = N (M) = 0.5 +
1.5

log2(1 + γ)
log2(1 + γ

M−min(M)

max(M)−min(M)
) (14)

where M is the spatial homogeneity map and γ = 50 is the stretching factor of the logarith-
mic transform. For pixels with low homogeneity, the exponent of LSHC is close to 2 and the
abundance vector tends to be average distributed. For pixels with high homogeneity, the
exponent is close to 0.5 and the abundance vector tends to be sparse.

Figure 4. The calculation of spatial homogeneity map M and coefficient map µ (the ∗ denotes
convolution operation).
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The principle of how this LSHC works is shown in Figure 5. In order to facilitate
understanding, we demonstrate a case that contains two kinds of endmembers. The
abundance of the ith pixel can be expressed as ai = [a1,i, a2,i]

T, and its LSHC is given as:

LSHC =
1
2
(
|a1,i|µ + |a2,i|µ

)
(15)

As shown in Figure 5, different values µ and LSHC correspond to different curves.
Meanwhile, ai should satisfy the ASC, which means a1,i + a2,i = 1 (the red line in Figure 5).
The intersection points of the red line and these curves represent the abundance vectors
we estimated.

The iteration process aims to minimize the value of Equation (15). When the neigh-
borhood pixels of the ith pixel are highly mixed, the value of µ is closer to 2 (i.e., µ = 1.7,
shown in Figure 5a). In the process of optimization, as indicated by the arrow, the curve of
LSHC will move from the black one to the blue one, of which the value of LSHC is lower.
In addition, the intersection point will move from point O1 or O2 to point P. The values
of a1,i and a2,i tend to be close to one another, which is consistent with the high mixing
characteristic of this pixel.

(a) (b)

Figure 5. The effect of LSHC: (a) µ = 1.7, the abundance vector tends to be closer to [0.5, 0.5]T;
(b) µ = 0.6, the abundance vector tends to be closer to [0, 1]T or [1, 0]T.

In contrast, if the neighborhood of the ith pixel has high homogeneity, the value of µ is
closer to 0.5 (i.e., µ = 0.6, shown in Figure 5b). After optimization, the abundance point will
move from point Q to point T1 or T2 as the curve moves down. In both cases, either a1,i or a2,i
is close to 1, which is consistent with the sparse characteristic of the pure pixel.

3.3. Overall Loss Function

The total loss function Ltotal in our model consists of the following three parts:

Ltotal = LRE + λ1LSHC + λ2Lscale (16)

where λ1 and λ2 are the coefficients of the regularization terms, which are set to 0.05 and
0.01, respectively, in our model.

The LRE is the reconstruction loss function of the AE model. We use the spectral angle
distance (SAD) as LRE, which is defined as:

LRE =
1
n

n

∑
i=1

cos−1
(

yi
Tŷi

‖yi‖‖ŷi‖

)
(17)

where yi and ŷi denote the original and reconstructed spectral of the ith pixel.
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The LSHC and Lscale are the regularization terms on the abundance and endmembers,
respectively. LSHC has been discussed in detail above and will not be repeated here. The
Lscale regularization is a constraint of the scaling matrix. The aim of Lscale is to enforce the
spatial smoothness of scaling matrix S. It is defined as:

Lscale =
1

np
(‖Hh(S)‖2

F + ‖Hv(S)‖2
F) (18)

where Hh and Hv are linear operators of the horizontal and vertical gradients between
adjacent pixels (acting separately on each endmember).

4. Experiments

In order to assess the performance of the proposed method, comparison experiments
are conducted on a synthetic hyperspectral dataset as well as real datasets (Jasper Ridge
dataset, Samson dataset, and Urban dataset). At first, we conduct ablation experiments
to demonstrate the effectiveness of the SSA module, ELMM-based decoder, and sparse
regularization term LSHC we proposed. Then, the proposed method is compared with
the current mainstream non-deep learning unmixing algorithms [18,26] and deep learning
algorithms [36,40,48] based on the LMM. It is also compared with a non-deep learning
unmixing algorithm based on the ELMM [10].

In the experiment, two evaluation metrics are used to measure the accuracy of the
algorithms: the mean spectral angle distance (mSAD) and average root mean square error
(aRMSE), which are defined as:

mSAD =
1
p

p

∑
j=1

cos−1

(
eT

j êj∥∥ej
∥∥∥∥êj

∥∥
)

(19)

aRMSE =

√
∑n

i=1 ‖ai − âi‖2

pn
(20)

where ej and êj are the real spectrum and the extracted spectrum of the jth endmem-
ber, respectively, and ai and âi denote the ground truth of abundance and the estimated
abundance, respectively, of the ith pixel.

The proposed network is implemented under the TensorFlow framework. The learning
rate is initialized with 0.001, and an exponential decay schedule is applied to adjust the
learning rate during training (decay steps = 10, decay rate = 0.9). The network runs
for 500 epochs. The endmember matrix is initialized with the endmembers extracted
in Section 4.2. The scaling factor matrix is initialized to 1. In the first 100 epochs, the
endmember matrix and scaling factor matrix are fixed to generate a good initialization of
the encoder.

4.1. Data Description

(1) Synthetic dataset
Figure 6a shows a color image of the synthetic dataset. The synthetic dataset is gen-

erated as follows: First, 5 endmembers are randomly selected from the United States
Geological Survey (USGS) spectral library. White Gaussian noise is added to these end-
members. The standard deviation of the white Gaussian noise is 0.1. Then, the abundance
distribution of each endmember is randomly generated and combined through the ex-
tended linear mixing model. The scaling factors are limited between 0.8 and 1.2 and
uniformly distributed. Finally, a 20 dB white Gaussian noise is added to these pixels. This
synthetic dataset is of 120 × 120 pixels and contains 5 endmembers with 431 bands. The
5 endmembers selected from USGS are asphalt, PVC, sheetmetal, brick, and fiberglass.

(2) Real dataset
The real datasets are downloaded from the Remote Sensing Laboratory website

(https://rslab.ut.ac.ir/data, accessed on 5 March 2021). The commonly used datasets

https://rslab.ut.ac.ir/data
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for hyperspectral unmixing are the Jasper Ridge, Samson, and Urban datasets, which are
shown in Figure 6b–d, respectively.

The Samson dataset contains 95 × 95 pixels. Each pixel is observed at 156 bands
covering the spectra from 401 nm to 889 nm, which has little water vapor impact and no
serious noise. The Samson dataset has three types of endmembers: water, tree, and soil.

The Jasper Ridge dataset contains 100 × 100 pixels. Each pixel records 224 bands
ranging from 380 nm to 2500 nm. Due to the influence of water vapor absorption, bands
1–3, 108–112, 154–166, and 220–224 are not available, so only the remaining 198 bands are
retained for experiments. The Jasper Ridge dataset includes four types of endmembers:
water, tree, soil, and road.

The Urban dataset is a more complex unmixing dataset. There are 307 × 307 pixels
in this image. The image has 210 spectral bands covering the wavelengths from 400 nm
to 2500 nm. After removing the badly degraded bands 1–4, 76, 87, 101–111, 136–153, and
198–210 caused by water vapor and atmospheric effects, there remain 162 bands for the
experiments. This dataset contains both artificial and natural objects, which are tree, grass,
roof, asphalt, metal, and soil.

(a) (b)

(c) (d)

Figure 6. Datasets: (a) Synthetic dataset; (b) Samson dataset; (c) Jasper Ridge dataset; (d) Urban
dataset.

4.2. Endmember Initialization

Endmember initialization is the precursor work of the unmixing algorithm. The accu-
racy of the extracted endmembers greatly impacts the unmixing results. Most endmember-
extraction algorithms are based on the geometric properties of endmembers in the spectral
space. However, these methods are seriously affected by noise and outliers. Therefore, we
use a more stable method that combines simple linear iterative clustering (SLIC) [57] and
VCA to initialize the endmember matrix. The SLIC operation on the space and spectrum can
generate a super-pixel segmentation on the hyperspectral data. An example of SLIC on the
Jasper Ridge dataset is shown in Figure 7. After obtaining the super-pixels, the cluster centers
of each super-pixel can be regarded as approximate pure pixels. These cluster centers are less
sensitive to noise and outliers because they are the regional average of similar pixels. Using
the spectra of these center pixels as candidates to extract endmembers would be more reliable.
Then, we choose VCA as the following operation to extract the initial endmembers.
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Figure 7. The SLIC result on the Jasper Ridge dataset.

The ATGP [58], Nfindr [13], VCA [12], and SGSNMF [26] algorithms are selected
as the comparison algorithms for endmember extraction. Table 1 shows the results of
the extracted endmembers on all datasets. According to the SAD results, the SLIC-VCA
algorithm achieves the best results on real datasets. Especially on the Urban dataset,
the extracted endmembers are much better than other methods, which indicates that the
SLIC-VCA method adapts to complex natural scenes well. For the synthetic dataset, the
SLIC-VCA algorithm yields the third-best value of mSAD. However, Figure 8 shows that
the result of the SLIC-VCA algorithm on the synthetic dataset obtains a closer absolute
value compared to VCA and SGSNMF. This means that SLIC-VCA is less affected by
the endmember scaling factors added in the synthetic dataset. These results confirm the
effectiveness of the endmember-initialization method.

Figure 8. The results of endmember extraction (synthetic dataset): extracted endmembers (red) and
actual endmembers (blue).
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Table 1. mSAD (rad) results of SLIC-VCA on each dataset.

SLIC-VCA VCA Nfindr ATGP SGSNMF

Synthetic 0.0463 0.0285 0.1332 0.1469 0.0363
Samson 0.0530 0.0756 0.0583 0.4185 0.0921

Jasper Ridge 0.0764 0.1538 0.1376 0.4949 0.1726
Urban 0.1001 0.5194 0.3566 0.3790 0.4028

4.3. Ablation Experiments

Ablation experiments are conducted on the Samson dataset and Jasper Ridge dataset
to verify the effectiveness of our proposed method. The ablation experiments consist of
three parts, which are related to the three highlights of the proposed method, respectively.

4.3.1. The Effect of SSA Module

In order to analyze the effectiveness of the proposed SSA module, four conditions
are set in this ablation experiment. The first one is removing the SSA module, the second
one is only using the non-local attention module, the third one is only using the spectral
attention module, and the fourth one is using the proposed SSA module. Table 2 shows
the abundance-estimation results of each condition. The aRMSE results of cases without
the SSA module are the worst. After adding either the non-local attention module or
the spectral attention module, the unmixing performance improves to a certain degree.
The best results are achieved by using the SSA module. These results demonstrate the
effectiveness of the SSA module and its two branches.

Table 2. RMSE results of ablation experiments on the SSA module.

Datasets
Non-Local
Attention
Module

Spectral
Attention
Module

Water Tree Soil Road aRMSE

Samson

8 8 0.1166 0.0798 0.1216 - 0.1077
4 8 0.0966 0.0747 0.1056 - 0.0932
8 4 0.0924 0.1000 0.1056 - 0.0995
4 4 0.0626 0.0798 0.0996 - 0.0825

Jasper Ridge

8 8 0.0523 0.0984 0.1228 0.1158 0.1012
4 8 0.0617 0.0822 0.1328 0.1038 0.0987
8 4 0.0511 0.0746 0.1228 0.1038 0.0923
4 4 0.0523 0.0724 0.1108 0.0878 0.0838

In order to analyze the computational complexity caused by using SSA, the computa-
tional time of the aforementioned four conditions on the four datasets are summarized in
Table 3. The algorithm is implemented in Python (3.8) and TensorFlow (2.7.0). The network
is run on a computer with an Intel Xeon E5-2620 v4 processor, 48 GB of memory, a 64-bit
operating system, and an NVIDIA GeForce GTX (1080 Ti) graphical processing unit. It is
evident across all datasets that the non-local attention module increases the computing
time more than the spectral attention module does. Additionally, the SSA module, which
combines the two modules, takes the longest time to complete. Furthermore, with the
Urban dataset, the computing time dramatically increases. This might be because this
dataset has more pixels and more intricate geographical information than the other datasets,
which could increase the computational complexity.
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Table 3. The processing time of ablation experiments on the SSA module (s).

Non-Local
Attention
Module

Spectral
Attention
Module

Synthetic Samson Jasper Ridge Urban

8 8 37.18 24.06 27.05 88.36
4 8 92.50 37.76 40.35 484.65
8 4 54.61 39.77 47.70 108.37
4 4 107.88 53.75 58.42 532.74

4.3.2. The Effect of Scaling Matrix

To analyze the impact of the ELMM introduced in our decoder, we compare the
unmixing results with/without the scaling matrix. Table 4 shows the results under different
settings. The aRMSEs of both datasets are both smaller with the scaling factor matrix S
than those without S. This ablation experiment demonstrates that the introduction of the
ELMM in our decoder can improve the unmixing performance of the network.

Table 4. RMSE comparison of different scaling factor matrix settings.

Datasets Water Tree Soil Road aRMSE

Samson with S 0.0626 0.0798 0.0996 - 0.0825
without S 0.0955 0.0633 0.1117 - 0.0924

Jasper Ridge with S 0.0523 0.0724 0.1108 0.0878 0.0838
without S 0.0567 0.0827 0.1138 0.0988 0.0906

4.3.3. The Effect of LSHC

To verify the effectiveness of our proposed spatial homogeneity constraint LSHC on
the abundance, we compare the LSHC with the commonly used L1/2 loss (µ is fixed at 0.5)
and L2 loss (µ is fixed at 2). The unmixing results are summarized in Table 5. The proposed
LSHC generates the best results of aRMSE, followed by the L1/2 loss, and L2 loss yields
the worst results. The impact of the LSHC constraint can also be seen in the comparison in
Figure 9. As the value of µ becomes higher, the abundance maps become more uniformly
distributed, which is consistent with our analysis in Section 3.2.

Figure 9. The results of abundance map (Samson dataset) under different loss-function settings.
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Table 5. RMSE comparison of different loss functions.

Datasets Water Tree Soil Road aRMSE

Samson
LSHC loss 0.0626 0.0798 0.0996 - 0.0825
L1/2 loss 0.0958 0.0637 0.1107 - 0.0922
L2 loss 0.0982 0.0705 0.1087 - 0.0939

Jasper Ridge
LSHC loss 0.0523 0.0724 0.1108 0.0878 0.0838
L1/2 loss 0.0557 0.0775 0.1139 0.0962 0.0886
L2 loss 0.0515 0.0809 0.1185 0.1054 0.0927

4.4. Comparison Experiments

In this section, comparison experiments are carried out between our proposed method
and other deep learning methods as well as traditional methods. The compared methods
are as follows:

(1) FCLSU [18]: The most-widely used method of abundance estimation. It should be
coupled with an endmember-extraction method. In our experiments, the endmember
is also extracted using the SLIC-VCA initial method.

(2) SGSNMF [26]: An NMF method cooperating with spatial group sparsity regulariza-
tion. The abundances and endmembers are initialized by the results of FCLSU.

(3) DAEU [38]: A deep-learning-based method for blind hyperspectral unmixing using
an autoencoder structure. This network uses fully connected layers to extract the
features of the pixel-wise spectra input.

(4) CNNAEU [40]: A CNN-based unmixing autoencoder network using patches of HSIs
as input to exploit the spatial information of the image.

(5) PGMSU [48]: A unmixing autoencoder considering spectral variability through a vari-
ational autoencoder (VAE). This method uses VAE to generate different endmembers
for each pixel.

(6) ELMM [10]: A linear unmixing model considering spectral variability introduced in
Section 2.2, which is also the model of the decoder used in our method. It uses the
alternating non-negative least squares (ANLS) to solve the problem. It is also worth
noting that spatial similarity regularization is implemented in the object function.

On each dataset, the SGSNMF, DAEU, CNNAEU, PGMSU, and proposed MAAENet
experiments are run ten times independently. The mean value and standard deviation of
RMSE are calculated and summarized in the following experiments.

4.4.1. Synthetic Dataset

Table 6 and Figure 10 demonstrate the RMSE results and abundance maps of the
synthetic dataset obtained using different methods. Our technique has a lower aRMSE
than the competing methods. Moreover, it is clear from the abundance maps that noise
has a significant impact on FCLSU. Because of the random initialization of endmembers,
DAEU and CNNAEU produce inferior results, which suggests that a reliable initialization
of endmember is required. The PGMSU abundance maps are overly smoothed, while the
ELMM abundance maps are very sharp.

Table 6. RMSE of the synthetic dataset.

MAAENet FCLSU SGSNMF DAEU CNNAEU PGMSU ELMM

Asphalt 0.0742 ± 0.0052 0.0872 0.1266 ± 0.0035 0.1234 ± 0.0254 0.2456 ± 0.1218 0.0982 ± 0.0206 0.1051
PVC 0.0569 ± 0.0059 0.0742 0.0781 ± 0.0011 0.2004 ± 0.0483 0.1826 ± 0.0760 0.1258 ± 0.0176 0.1402

Sheetmetal 0.0574 ± 0.0039 0.0534 0.0623 ± 0.0002 0.1212 ± 0.0424 0.1538 ± 0.0548 0.0721 ± 0.0221 0.0975
Brick 0.0727 ± 0.0029 0.0774 0.0626 ± 0.0014 0.2188 ± 0.0225 0.2785 ± 0.056 0.1136 ± 0.0140 0.1322

Fiberglass 0.0701 ± 0.0020 0.0713 0.0536 ± 0.0003 0.1205 ± 0.0371 0.2001 ± 0.0984 0.0774 ± 0.0124 0.0833
aRMSE 0.0668 ± 0.0011 0.0735 0.0810 ± 0.0010 0.1655 ± 0.0136 0.2458 ± 0.0228 0.1003 ± 0.0113 0.1137
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Figure 10. Synthetic data: actual abundance maps and estimated abundance maps using different
methods.

We add Gaussian noises of 10 dB, 20 dB, and 30 dB to the synthetic dataset in order
to show how the suggested technique performs under various noise levels. As indicated
in Table 6, FCLSU is the second-best method overall. Hence, it is selected to process the
synthetic datasets with noise for comparison. The RMSE results of the synthetic dataset
with noise are displayed in Table 7 shows. As can be observed, our method MAAENet
performs better at all three noise levels compared with FCLSU. Additionally, unlike FCLSU,
the unmixing results of MAAENet do not significantly degrade when the noise level rises.
This implies that the proposed MAAENet has a lower sensitivity to noise than FCLSU.

Table 7. RMSE of the synthetic dataset under different noise levels.

10 dB 20 dB 30 dB

MAAENet FCLSU MAAENet FCLSU MAAENet FCLSU

Asphalt 0.0763 ± 0.0025 0.0917 0.0742 ± 0.0052 0.0872 0.0691 ± 0.0056 0.0844
PVC 0.0691 ± 0.0036 0.1137 0.0569 ± 0.0059 0.0742 0.0539 ± 0.0038 0.0588

Sheetmetal 0.0599 ± 0.0028 0.0653 0.0574 ± 0.0039 0.0534 0.0541 ± 0.0014 0.0454
Brick 0.0824 ± 0.0032 0.1010 0.0727 ± 0.0029 0.0774 0.0723 ± 0.0020 0.0724

Fiberglass 0.0748 ± 0.0015 0.0755 0.0701 ± 0.0020 0.0713 0.0632 ± 0.0041 0.0600
aRMSE 0.0729 ± 0.0011 0.0911 0.0668 ± 0.0011 0.0735 0.0630 ± 0.0012 0.0656

4.4.2. Samson Dataset

The abundance RMSE results of all the methods on the Samson dataset are shown
in Table 8. It can be seen that our approach outperforms deep learning, geometrical, and
NMF-based approaches. The outcomes of traditional unmixing techniques such as FCLSU
and SGSNMF are inferior. Since spectral variability is considered in the method, the results
of the ELMM algorithm are improved slightly. However, as we can see from Figure 11,
the ELMM algorithm’s adoption of a smoothing requirement results in the abundance
maps being overly smoothed. The findings obtained with the DAEU are second-best.
The CNNAEU abundance results have a propensity to be 1, meaning that an abundance
map is roughly equivalent to a classification map. Moreover, Figure 11 demonstrates how
significantly different the abundance map of the soil material produced using PGMSU is
from the ground truth.
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Table 8. RMSE of the Samson dataset.

MAAENet FCLSU SGSNMF DAEU CNNAEU PGMSU ELMM

Water 0.0626 ± 0.0183 0.2720 0.3884 ± 0.0005 0.0515 ± 0.0174 0.2164 ± 0.0285 0.2898 ± 0.0140 0.2340
Tree 0.0798 ± 0.0059 0.1507 0.2699 ± 0.0003 0.1367 ± 0.0696 0.2144 ± 0.0480 0.1647 ± 0.0113 0.1367
Soil 0.0996 ± 0.0086 0.1817 0.1928 ± 0.0005 0.1050 ± 0.0207 0.1663 ± 0.0551 0.3153 ± 0.0191 0.1603

aRMSE 0.0825 ± 0.0075 0.2079 0.2947 ± 0.0004 0.1069 ± 0.0327 0.2035 ± 0.0215 0.2650 ± 0.0137 0.1818

Figure 11. Samson data: actual abundance maps and estimated abundance maps using different
methods.

4.4.3. Jasper Ridge Dataset

Table 9 demonstrates how our technique regularly outperforms the competition when
used on the Jasper Ridge dataset. Figure 12 provides an illustration of the abundance
maps. With more endmembers in the scene, the performance of the other two deep learning
techniques, CNNAEU and DAEU, drops off considerably. The random initialization spectra
of endmembers could be the main reason for CNNAEU’s inaccuracy. The second-best
results are obtained with PGMSU, and the third-best results are attained with ELMM. This
suggests that the Jasper Ridge dataset’s endmember spectra contain significant spectral
variability. Thus, in this situation, spectral-variability-based approaches are preferable.

Figure 12. Jasper Ridge data: actual abundance maps and estimated abundance maps using different
methods.
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Table 9. RMSE of the Jasper Ridge dataset.

MAAENet FCLSU SGSNMF DAEU CNNAEU PGMSU ELMM

Water 0.0523 ± 0.0037 0.1270 0.1780 ± 0.0028 0.1375 ± 0.0232 0.2291 ± 0.0969 0.1193 ± 0.0038 0.1090
Tree 0.0724 ± 0.0062 0.1062 0.1460 ± 0.0119 0.0788 ± 0.0084 0.2459 ± 0.0076 0.0970 ± 0.0045 0.0734
Soil 0.1108 ± 0.0088 0.1755 0.1794 ± 0.0566 0.1456 ± 0.0278 0.3466 ± 0.0244 0.0807 ± 0.0026 0.1726

Road 0.0878 ± 0.0115 0.1832 0.1272 ± 0.0121 0.2237 ± 0.0223 0.3215 ± 0.0911 0.0624 ± 0.0022 0.1392
aRMSE 0.0838 ± 0.0063 0.1515 0.1609 ± 0.0139 0.1558 ± 0.0146 0.2943 ± 0.0382 0.0923 ± 0.0015 0.1289

4.4.4. Urban Dataset

Table 10 and Figure 13 show the unmixing results on the Urban dataset. This dataset
contains a complicated scene with six different materials. Even so, our approach continues
to perform better than the other competing methods. On both the tree and the asphalt mate-
rial, the FCLSU, SGSNMF, and ELMM abundance maps are significantly worse. Moreover,
ELMM also performs more poorly on the roof material. DAEU, CNNAEU, and PGMSU,
which are deep-learning-based algorithms, perform worse on the metal material.

Table 10. RMSE of the Urban dataset.

MAAENet FCLSU SGSNMF DAEU CNNAEU PGMSU ELMM

Tree 0.1092 ± 0.0101 0.2373 0.2364 ± 0.0041 0.1766 ± 0.0857 0.2074 ± 0.0152 0.1515 ± 0.0119 0.4499
Grass 0.1292 ± 0.0061 0.2037 0.1662 ± 0.0417 0.2347 ± 0.0163 0.2831 ± 0.0228 0.1954 ± 0.0165 0.1880
Roof 0.0834 ± 0.0092 0.1461 0.1787 ± 0.0062 0.1861 ± 0.0830 0.1936 ± 0.0721 0.1145 ± 0.0052 0.4343

Asphalt 0.1465 ± 0.0069 0.3083 0.3466 ± 0.0565 0.1591 ± 0.0233 0.2993 ± 0.0744 0.1735 ± 0.0054 0.4304
Metal 0.0993 ± 0.0347 0.1312 0.1196 ± 0.0297 0.1916 ± 0.0096 0.1511 ± 0.0314 0.1154 ± 0.0013 0.0875
Soil 0.1023 ± 0.0175 0.1805 0.1480 ± 0.0057 0.2262 ± 0.0280 0.2155 ± 0.0268 0.1471 ± 0.0062 0.1501

aRMSE 0.1196 ± 0.0083 0.2090 0.2173 ± 0.0219 0.2028 ± 0.0080 0.2334 ± 0.0259 0.1525 ± 0.0052 0.3271

Figure 13. Urban data: actual abundance maps and estimated abundance maps using different
methods.

5. Conclusions

An ELMM-based deep learning system called MAAENet was introduced in this study
to address endmember variability. In the decoder, scaling factors were added to model
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the spectral variability. An SSA module based on attention mechanisms was designed
in the encoder to gather the global spatial information and reweight each band of HSIs.
To further limit the sparsity of abundance and collect local spatial features, a flexible
regularization based on geographic homogeneity was included in the total loss function.
The endmember matrix was initialized using VCA from the cluster centers of SLIC results.
Experiments were conducted on a synthetic dataset and three real datasets. The benefits of
the SLIC-VCA approach were demonstrated by the endmember extraction findings. The
ablation experiments demonstrated the usefulness of the specially designed decoder, SSA
module, and LSHC. Furthermore, compared to existing unmixing approaches, our method
could produce better results for abundance estimation in all datasets. Additionally, the
experimental findings demonstrated that even as the number of endmembers increased,
our technique could still deliver a competitive performance. Future studies could explore
the spectral variability of endmember further by adding prior knowledge and using more
complex nonlinear mixing models. In addition, recently, graph convolution networks
(GCN) have been proposed for classification using hyperspectral images [59]. We could
build autoencoder networks using the GNN architecture to achieve better representation
and improve the unmixing performance.
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