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Abstract: To extract effective features for the terrain classification of hyperspectral remote-sensing
images (HRSIs), a spectral fractional-differentiation (SFD) feature of HRSIs is presented, and a
criterion for selecting the fractional-differentiation order is also proposed based on maximizing
data separability. The minimum distance (MD) classifier, support vector machine (SVM) classifier,
K-nearest neighbor (K-NN) classifier, and logistic regression (LR) classifier are used to verify the
effectiveness of the proposed SFD feature, respectively. The obtained SFD feature is sent to the full
connected network (FCN) and 1-dimensionality convolutional neural network (1DCNN) for deep-
feature extraction and classification, and the SFD-Spa feature cube containing spatial information
is sent to the 3-dimensionality convolutional neural network (3DCNN) for deep-feature extraction
and classification. The SFD-Spa feature after performing the principal component analysis (PCA)
on spectral pixels is directly connected with the first principal component of the original data and
sent to 3DCNNPCA and hybrid spectral net (HybridSN) models to extract deep features. Experiments
on four real HRSIs using four traditional classifiers and five network models have shown that the
extracted SFD feature can effectively improve the accuracy of terrain classification, and sending SFD
feature to deep-learning environments can further improve the accuracy of terrain classification for
HRSIs, especially in the case of small-size training samples.

Keywords: fractional differentiation; convolutional neural networks (CNNs); feature extraction;
hyperspectral remote-sensing images (HRSIs)

1. Introduction

Hyperspectral remote-sensing images (HRSIs) contain abundant spatial and spectral
information simultaneously. The spectral dimension reveals the spectral curve character-
istics of each pixel, while the spatial dimension reveals the spatial characteristics of the
ground surface, and the organic fusion of spatial and spectral information is realized by
HRSIs [1–3]. However, HRSIs have the characteristics of information redundancy and
high dimensionality that bring difficulties and challenges to feature extraction and terrain
classification [4,5].

For the feature extraction of HRSIs, the dimensionality reduction methods are usually
utilized to project the HRSIs’ spectral pixels to a low-dimensionality feature subspace [6,7].
Principal component analysis (PCA) and linear discriminant analysis (LDA) are representa-
tive approaches [8,9]. PCA calculates the covariance matrix of the original data, then, the
eigenvectors corresponding to the first several largest eigenvalues of the covariance matrix
are selected, and the original spectral pixels are projected to the orthogonal subspace sup-
ported by these eigenvectors to achieve the feature extraction and dimensionality reduction.
LDA projects the original spectral pixels into a low-dimensional subspace, which has the
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largest between-class scatters and the smallest within-class scatters so that the data have
the best separability in the subspace.

In addition to reducing the dimensionality of HRSIs by feature extraction, discriminant
features that can enhance the spectral differences of different terrains can also be achieved
by other data analysis methods. Bao et al. have demonstrated that the derivatives of
the spectral feature of HRSIs can capture the salient features of different land-cover cate-
gories, and have shown that in the case of small samples or poor data quality, combining
the spectral first-order differentiation rather than second-order differentiation with the
original spectral pixel can avoid the curse of dimensionality and improve the recognition
rate [10]. Ye et al. extracted the spectral first-order differentiation in HRSIs and then
used locality preserving nonnegative matrix factorization (LPNMF) and locality Fisher
discrimination analysis (LFDA) to reduce the dimensionality of the original spectral pixel
and spectral derivative, respectively, and, finally, performed feature fusion, which can
effectively improve the classification performance [11].

At present, fractional differentiation is usually used in spectral analysis to estimate
the contents of some elements or ions in soil or vegetation and is rarely used in spectral
classification [12]. Lao et al. calculated the fractional differentiation of the soil spectral
pixel in visible near-infrared spectroscopy to estimate the soil contents of salt and soluble
ions [13]. Hong et al. used fractional differentiation to estimate soil organic carbon (SOC),
wherein the spectral parameters derived from different spectral indices based on spectral
fractional differentiation are combined to obtain the best estimation accuracy of SOC [14].

In recent years, convolutional neural networks have achieved remarkable results in the
terrain classification of HRSIs [15]. Hu et al. applied a 1-dimensionality convolutional neu-
ral network (1DCNN) to HRSIs, which only used spectral information without considering
spatial information [16]. Zhang et al. used PCA to reduce the dimensionality of spectral
pixels and then used a 2-dimensionality convolutional neural network (2DCNN) for feature
extraction and classification, which considered the spatial information of HRSIs [17]. To
achieve full use of both the spectral and spatial information of HRSIs, Chen et al. used
PCA to reduce the dimensionality of spectral pixels and sent the dimensionality-reduced
data into a 3-dimensionality convolutional neural network (3DCNN), and, simultaneously,
extracted the spatial and spectral deep features of HRSIs [18].

This paper uses fractional differentiation to perform feature extraction on the pixel
spectral curves of HRSIs from the aspect of data analysis, because fractional differentiation
can retain part of the original characteristics of the data while obtaining the characteristics
that express the differences in the data, and the order of the fractional differentiation can
change with the different data. In this paper, a spectral fractional-differentiation (SFD)
feature of HRSIs is presented, and a criterion for selecting the fractional-differentiation
order is also proposed based on maximizing data separability. The minimum distance (MD)
classifier, support vector machine (SVM) classifier, K-nearest neighbor (K-NN) classifier,
and logistic regression (LR) classifier are used to verify the effectiveness of the proposed
SFD feature, respectively. The obtained SFD feature is sent to the full connected network
(FCN) [19] and 1DCNN for deep-feature extraction and classification, and the SFD-Spa
feature cube containing spatial information is sent to 3DCNN for deep-feature extraction
and classification. The SFD-Spa feature after performing PCA on spectral pixels is directly
connected with the first principal component of the original data and sent to 3DCNNPCA
and hybrid spectral net (HybridSN) [20] models to extract deep features. Compared with
integer-order differentiation, the advantage of fractional-order differentiation is that it has
memory and globality. When the order of the integer differentiation is just larger than
that of fractional differentiation, fractional-order differentiation can preserve more low-
frequency components of the signal, while the high- and middle-frequency components
are also obviously enhanced [21]. The advantages of the presented HRSIs SFD feature are
as follows:

(1) The presented SFD feature preserves both the overall curve shape and local burrs
characteristics of the pixel spectral curves of HRSIs, which is very suitable for ter-
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rain classification. The overall curve shapes of spectral curves correspond to the
low-frequency components and the local burrs correspond to the high-frequency
components of the pixel spectral curve. For HRSIs terrain classification, the shape
characteristics of spectral curves contribute most to the discriminant of quite different
terrains, such as water, soil, and plants; while the local burr characteristics contribute
most to the identification of the different terrains which have similar spectral curves,
such as wheat and soybean. These two characteristics are both important, however,
the integer differentiation invariably enhanced the high-frequency components, i.e.,
local burrs while losing most of the low-frequency components, i.e., the shape char-
acteristics of spectral curves. Fractional differentiation preserves the low-frequency
components sufficiently while amplifying the high-frequency components remarkably,
thus, the presented SFD feature contains both the overall curve shape and local burr
characteristics of the spectral curves;

(2) The order of the fractional differentiation of the presented SFD feature can be selected
by achieving the best separability. With the increase in the differentiation order, the
shape characteristics of the original spectral curve are less preserved, while the local
burr characteristics are enhanced more significantly. In view of such character, a
criterion for selecting the appropriate fractional-differentiation order is presented
based on achieving the best data separability, which guarantees that the overall curve
shape characteristics and the local burr characteristics are properly preserved in the
resulting SFD feature, such that the quite different terrains and the similar terrains are
all easy to identify.

Experimental results on four real HRSIs using four traditional classifiers and five
network models have shown that the extracted SFD feature can effectively improve the
terrain classification accuracy, and sending the SFD feature to deep-learning environments
can further improve the terrain classification accuracy, especially in the case of small-size
training samples [22,23].

2. Spectral Fractional-Differentiation (SFD) Feature
2.1. Fractional Differentiation

Among the many definitions of fractional differentiation, the commonly used three
forms are Riemann–Liouville, Grümwald–Letnikvo, and Caputo [24]. In this paper, the
Grümwald–Letnikvo definition is used to generalize the differentiation of continuous func-
tions from integer order to fractional order, and the fractional-order differential expression
is deduced by using the difference equation of integer-order differentiation.

According to the definition of integer-order differentiation, for a differentiable function
f (x), its g-th integer-order differentiation is

f (g)(x) = lim
h→0

1
hg

n

∑
j=0

(−1)j
(

g
j

)
f (x− jh) (1)

where g ∈ N, the binomial coefficient
(

g
j

)
= Γ(g+1)

Γ(j+1)Γ(g−j+1) = g!
j!(g−j)! , Γ(·) is Gamma

function, Γ(x) =
∫ ∞

0 e−ttx−1dt, and h represents the differential step size. Extending the
order g to any real number v, the Grümwald–Letnikvo differentiation of f (x) is defined as

aDv
x f (x) = lim

h→0
1
hv

[(x−a)/h]
∑

j=0
(−1)j

(
v
j

)
f (x− jh)

= lim
h→0

1
hv

[(x−a)/h]
∑

j=0
(−1)j Γ(v+1)

Γ(j+1)Γ(v−j+1) f (x− jh)
(2)

where a represents the lower limit of f (x), and [(x − a)/h] represents taking the integer part
of (x − a)/h [25].
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Fractional differentiation defined in Equation (2) is a generalization of integer dif-
ferentiation. When the order v is a positive integer, Equation (2) still holds, thus, the
integer-order differentiation can be regarded as a special case of the fractional-order differ-
entiation. Fractional differentiation is different from integer differentiation in numerical
computing. During the calculation of the integer-order differentiation, the differential
result of a point is only related to the information of the nearby points and unrelated
to the information of other points; when the fractional differentiation is calculated, the
differential result of a point is related to the information of all points before that point, and
the points closer to it have greater weights in the calculation, thus, results in that fractional
differentiation have memory and globality [25].

2.2. Spectral Fractional-Differentiation (SFD) Feature

The classical integer-order differentiation is a tool to describe the characteristics of the
Euclidean space samples and is often utilized for signal extraction and singularity detection
in signal analysis and processing. Fractional differentiation is a generalization of integer
differentiation. Pu has pointed out that when the fractional-differentiation operation of a
signal is performed, the high-frequency and middle-frequency components of the signal
will be greatly improved, while the low-frequency components are retained nonlinearly [26];
and with the increase in the differentiation order, the improvement of the high-frequency
and middle-frequency components will be enhanced, but fewer low-frequency components
will be preserved [27]. In this paper, fractional differentiation is performed on the spectral
pixel of HRSIs, and the resulting spectral fractional-differentiation (SFD) feature is used for
terrain classification. Since the definition of Grümwald–Letnikvo fractional differentiation
is generalized from the definition of integer differentiation and is expressed in discrete
form, which is convenient for numerical calculation. Therefore, the presented SFD feature
is defined according to the Grümwald–Letnikvo formula.

For a unary function f (x), let the differential step h = 1, then the expression of the v-th
order fractional differentiation of f (x) is

f (v)(x) = f (x) + (−v) f (x− 1) +
(−v)(−v + 1)

2
f (x− 2) + · · ·+ Γ(−v + 1)

n!Γ(−v + t + 1)
f (x− t) (3)

which has (t + 1) terms.
For HRSIs, a spectral pixel can be regarded as a discrete form of a unary function.

Assuming that each pixel has N spectral bands, for a spectral pixel x = [x0, x1, x2, · · · , xN−1],
the v-th order fractional-differentiation vector of x, i.e., the presented SFD feature, is

x(v) = [a0x1 + a1x0, a0x2 + a1x1 + a2x0, · · · , a0xN−1 + a1xN−2 + a2xN−3 + · · ·+ aN−1x0] (4)

where a0, a1, · · · , aN−1 are the first (N− 1) coefficients on the right side of Equation (3) and

a0 = 1
a1 = −v
a2 = [(−v)(−v + 1)]/2
a3 = [(−v)(−v + 1)(−v + 2)]/6
· · ·
aN−1 = Γ(−v + 1)/[(N − 1)!Γ(−v + N)]

(5)

The dimensionality of the SFD feature x(v) is (N − 1), and the components of x(v) cor-
respond to the v-th order fractional differentiation of bands x1, x2, · · · , xN−1. In particular,
when the order v equals 1, the expression of spectral fractional differentiation is the same
as that of the first-order differentiation.

2.3. Criterion for Selecting Optimal Fractional-Differentiation Order

In the terrain classification of HRSIs based on the spectral pixel, when there only exist
quite different terrains, such as water, soil, and plants, the overall curve shape characteristics
of spectral curves, which correspond to the low-frequency components, contribute most
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to the discriminant. However, the phenomenon of different subjects with similar spectra
commonly exists in HRSIs scenes [28,29]; in this case, the local burrs characteristics, which
correspond to the high-frequency components, contribute most to the identification. In real
HRSIs scenes, the phenomena of different objects with quite different spectra and different
subjects with similar spectra both exist. This required that the feature extracted from the
spectral curve should properly contain the low-frequency and high-frequency components
simultaneously.

Shown in Figure 1 is the amplitude spectrum of the SFD feature of the corn-no-till class
in the Indian Pines dataset, where the fractional-differentiation order v varies from 0 to
1.6 with step 0.4, the amplitude spectrum is taken logarithm for observation and the bases of
the logarithm is 2. Figure 1 shows that as the fractional-differentiation order increases, the
low-frequency components of the amplitude spectra decrease, while the mid-frequency and
high-frequency components significantly increase. It can be concluded that the low-order
SFD feature can enhance the high-frequency components while sufficiently retaining the
low-frequency components of the spectral pixel, which is beneficial for preserving both the
overall curve shape characteristics and the local burrs characteristics. However, how to
select an appropriate differentiation order is a problem worth considering.
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Figure 1. Amplitude spectra of SFDs with different fractional-differentiation orders.

To study how the presented SFD feature is influenced by the fractional-differentiation
order and to select the appropriate SFD order, the spectral curve of the corn-no-till class
in the Indian Pines dataset is selected to extract the SFD feature with the fractional-
differentiation order varies from 0 to 1.9 at step 0.1, thus, a total of 20 SFD curves are
obtained, as shown in Figure 2.

It can be seen intuitively from Figure 2 that, as the differentiation order increases,
the SFD values corresponding to the slowly changing parts of the original spectral curve
gradually approach 0, and the SFD values corresponding to the local sharply changing
parts dramatically increase. When the differentiation order increases from 0 to 1, the SFD
curves still retain lots of shape characteristics of the original spectral curve, and the local
sharp characteristics are enhanced. When the differentiation order increases from 1 to 1.9,
the SFD curves lost most of the shape characteristics of the original spectral curve, and the
local sharp characteristics are further enhanced. Therefore, for HRSIs terrain classification,
when the differentiation order 0 < v < 1, the presented SFD feature contains the discriminant
information benefit for classifying the different objects with quite different spectra and
different subjects with similar spectra simultaneously and is very suitable for real HRSIs
scenes. However, how to achieve more precise ranges of appropriate differentiation orders
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for different HRSIs is a problem worth further considering. In this paper, a criterion for
selecting the SFD order is proposed based on maximizing the separability.
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Assuming that the number of classes is C, let v denote the order of SFD, and the
dimensionality of the SFD feature is (N − 1), the within-class scatter matrix S(v)

w and the
between-class scatter matrix S(v)

b in the (N − 1)-dimensionality SFD feature space are

S(v)
w =

C

∑
i=1

Pi
1
ni

ni

∑
k=1

(
x(v)ik −m(v)

i

)(
x(v)ik −m(v)

i

)T
(6)

and

S(v)
b =

C

∑
i=1

Pi

(
m(v)

i −m(v)
)(

m(v)
i −m(v)

)T
(7)

, respectively, where ni represents the number of samples of class i, x(v)ik represents the
v-th order fractional differentiation of the k-th sample of class i, Pi represents the prior
probability of class i, m(v)

i represents the mean of the v-th order fractional differentiations

of class i, and m(v) = ∑C
i=1 Pim

(v)
i represents the overall mean of the v-th order fractional

differentiations.
The presented criterion for optimizing SFD order is

J(v) = Tr
(

S(v)
b

)
− Tr

(
S(v)

w

)
, (8)
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where “Tr()” represents the trace of a matrix. The principle of the SFD order selecting crite-
rion is that the data separability should be maximized in the SFD feature space. Tr

(
S(v)

b

)
measures the variance of the class means in the v-th order SFD feature space, the larger
Tr
(

S(v)
b

)
is, the greater the between-class separability is. Tr

(
S(v)

w

)
measures the within-

class divergence in the v-th order SFD feature space, the smaller the Tr
(

S(v)
w

)
is, the smaller

the within-class divergence is. Therefore, J(v) evaluates the data separability in the v-th
order SFD feature space, by maximizing J, the data separability in the SFD feature space is
maximized, thus, the optimal SFD order is

v∗ = argmax
v

J(v). (9)

Shown in Figure 3 are the variations of criterion J with the SFD order v on 4 real HRSIs
datasets.
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Figure 3 shows that, when the SFD order 0 < v < 1, Botswana, Indian Pines, and Salinas
datasets have the same variation trend, they all have obvious peaks as 0.4 ≤ v ≤ 0.6,
as the SFD order v increases, the criterion J becomes smaller, which means smaller data
separability, this is consistent with the analysis of Figure 1. For the Pavia University dataset,
criterion J has an obvious peak as 0.5 ≤ v ≤ 0.7 and then decreases with the increase in
v, and an inflection point occurs at v = 1.1, but the general trend is still the same as the
other three datasets. Therefore, it is confirmed again that the SFD order v ranges between
0 and 1 is more conducive to improving the classification accuracy of HRSIs, and the precise
appropriate SFD order range for each dataset is given.

3. Networks Structure and Parameter Settings

To further extract deep features, five network models are used for deep-feature extrac-
tion and terrain classification. The five network models used are fully connected network
(FCN), one-dimensional convolutional neural network (1DCNN), three-dimensional convo-
lutional neural network (3DCNN), three-dimensional convolutional neural network after
spectral PCA dimensionality reduction (3DCNNPCA), and hybrid spectral net (HybridSN).
Tables 1 and 2 show the parameters and the number of output feature maps for each layer
of the networks, respectively. N represents the dimension of the input dataset. C represents
the number of classes. I, Conv, Po, and FC represent the input layer, convolutional layer,
pooling layer, and fully connected layer, respectively. For example, Conv6 indicates that
this layer is a convolutional layer located in the sixth layer of the network structure. ”

√
”

means there exists an FC layer. <*> represents rounding up the calculation result.
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Table 1. Parameter settings for five network models.

FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

I1 1 × N 1 × N 1 × N 11 × 11 × N 25 × 25 × N
Conv2 - <1 × N/9> 7 × 7 × 3 3 × 3 × 7 3 × 3 × 7

Po3 - 1 ×
<<N/9>/5> - - -

Conv4 - - 3 × 3 × 3 3 × 3 × 5 3 × 3 × 5
Po5 - - - - -

Conv6 - - - 3 × 3 × 3 3 × 3 × 3
Po7 - - - - -

Conv8 - - - 3 × 3 × 3 3 × 3
Po9 - - - - -
FC1

√ √ √ √ √

FC2
√ √

-
√ √

FC3
√

- -
√ √

FC4
√

- - - -

Table 2. Number of output feature maps for five network models.

FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

I1 1 1 1 1 1
Conv2 - 20 2 8 8

Po3 - 20 - - -
Conv4 - - 4 16 16

Po5 - - - - -
Conv6 - - - 32 32

Po7 - - - - -
Conv8 - - - 64 64

Po9 - - - - -
FC1 2048 100 C 256 256
FC2 4096 C - 128 128
FC3 2048 - - C C
FC4 C - - - -

4. Experimental Results

Firstly, using the proposed criterion J to select the appropriate SFD order for each
dataset, the selected SFD order for Indian Pines, Botswana, Pavia University, and Salinas
are 0.6, 0.3, 0.6, and 0.4, respectively. Additionally, then perform fractional differentiation
on the pixel spectral curves with the selected order and achieve the SFD feature. Four
traditional classifiers and five networks are used to verify the effectiveness of the resulting
SFD feature. Among the five network models, the inputs of FCN and 1DCNN models are
SFD feature vectors without spatial information, while the inputs of 3DCNN, 3DCNNPCA,
and HybridSN contain spatial information. The input of 3DCNN is the SFD-Spa feature
cube, and the input of 3DCNNPCA and HybridSN is the data cube by connecting the SFD-
Spa feature after PCA with the first principal component of the original data. To unify the
forms, the experimental results on five network models are all represented by “SFD”.

4.1. Experimental Datasets

Four real HRSIs, namely, Indian Pines, Botswana, Pavia University, and Salinas, are
used for the experiments. The Indian Pines dataset includes 16 classes, and the image
size is 145 × 145, and a total of 10,249 pixels can be used to classify. After removing the
bands 104–108, 150–163, and 220 affected by noise factors, 200 bands were finally left for the
experiment. The Botswana dataset was obtained by NASA’s EO-1 satellite in the Botswana
area. 14 terrain classes are included, and the image size is 1476 × 256, and 3248 of them
are terrain pixels. After removing the bands affected by noise and water vapor, the bands
10–55, 82–97, 102–119, 134–164, and 187–220 were retained, i.e., a total of 145 bands were
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finally selected. Pavia University dataset contains 9 classes, the image size is 610 × 340,
including 42,776 terrain pixels, and 103 bands were finally selected. The Salinas dataset
has 16 classes, and the image size is 512 × 217. Bands 108–112, 154–167, and 220 were
affected by noise and water vapor and were removed. 204 bands are reserved for research,
and a total of 54,129 pixels can be used for terrain classification. Table 3 shows the specific
sampling results of the experimental data. Figures 4 and 5 show the false-color image and
ground truth of these datasets.
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Table 3. Category number, name, and sample number of each dataset.

Category
Number

Category
Name

Sample
Number Category Number Category

Name Sample Number

Indian Pines

1 Alfalfa 46 9 Oats 20
2 Corn-notill 1428 10 Soybean-notill 972
3 Corn-mintill 830 11 Soybean-mintill 2455
4 Corn 237 12 Soybean-clean 593
5 Grass-pasture 483 13 Wheat 205
6 Grass-trees 730 14 Woods 1265
7 Grass-pasture-mowed 28 15 Building-Grass-Trees-Drives 386
8 Hay-windrowed 478 16 Stone-Steel-Towers 93

Botswana

1 Water 270 8 Island interior 203
2 Hippo grass 101 9 Acacia woodlands 314
3 Floodplain grass1 251 10 Acacia shrub lands 248
4 Floodplain grass2 215 11 Acacia grasslands 305
5 Reeds1 269 12 Short mopani 181
6 Riparian 269 13 Mixed mopani 268
7 Firescar2 259 14 Exposed soils 95

Pavia University

1 Asphalt 6631 6 Bare Soil 5029
2 Meadows 18,649 7 Bitumen 1330
3 Gravel 2099 8 Self-Blocking Bricks 3682
4 Tress 3064 9 Shadows 947
5 Painted metal sheets 1345
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Table 3. Cont.

Category
Number

Category
Name

Sample
Number Category Number Category

Name Sample Number

Salinas

1 Brocoli_green_weeds_1 2009 9 Soil_vinyard_develop 6203
2 Brocoli_green_weeds_2 3726 10 Corn_senesced_green_weeds 3278
3 Fallow 1976 11 Lettuce_romaine_4wk 1068
4 Fallow_rough_plow 1394 12 Lettuce_romaine_5wk 1927
5 Fallow_smooth 2678 13 Lettuce_romaine_6wk 916
6 Stubble 3959 14 Lettuce_romaine_7wk 1070
7 Celery 3579 15 Vinyard_untrained 7268
8 Grapes_untrained 11,271 16 Vinyard_vertical_trellis 1807
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4.2. Classification Results of Traditional Shallow Classifiers

The presented SFD feature will be compared with the spectral (Spe) feature, spectral
first-order differential (Spe-1st) feature, and spectral second-order differential (Spe-2nd)
feature. The above four features will be further compared through LDA dimensionality
reduction to form SFDLDA, SpeLDA, Spe-1stLDA, and Spe-2ndLDA features. The comparison
process will be validated using four traditional classifiers, namely, the MD classifier, the
SVM classifier, the K-NN classifier, and the LR classifier. For each dataset, 20% of each
class data are randomly selected as training samples and the rest as testing samples.
Considering the randomness of the experiment, the average overall accuracy (AOA) and
standard deviation (SD), average Kappa coefficient of 10 runs are used to describe the
classification results. The experimental results on four real HRSIs datasets are shown
in Tables 4–7, “Average Kappa” is the abbreviation of “Average Kappa coefficient”, the
optimal classification results are shown in bold in each column.

Table 4. Classification results of the Indian Pines dataset on traditional shallow classifiers.

Classifier
SVM MD K-NN LR

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

Spe 82.93 ± 0.36 0.805 46.15 ± 0.89 0.404 77.93 ± 0.44 0.748 56.30 ± 0.79 0.476
Spe-1st 67.54 ± 0.61 0.622 46.02 ± 0.80 0.402 50.41 ± 0.51 0.431 59.62 ± 1.33 0.523
Spe-2nd 54.83 ± 0.34 0.468 39.50 ± 0.85 0.332 39.67 ± 0.37 0.310 51.83 ± 0.67 0.428

SFD 83.55 ± 0.38 0.812 48.95 ± 0.71 0.433 78.37 ± 0.54 0.753 62.89 ± 1.35 0.562
SpeLDA 79.53 ± 0.41 0.765 73.70 ± 0.46 0.704 78.75 ± 0.80 0.756 73.82 ± 0.52 0.699

Spe-1stLDA 79.39 ± 0.40 0.764 73.39 ± 0.65 0.700 78.12 ± 0.69 0.749 73.84 ± 0.60 0.700
Spe-2ndLDA 79.26 ± 0.46 0.762 72.97 ± 0.50 0.696 77.67 ± 0.68 0.744 73.33 ± 0.29 0.694

SFDLDA 79.67 ± 0.43 0.767 74.00 ± 0.51 0.707 78.96 ± 0.87 0.759 73.94 ± 0.41 0.701

Table 5. Classification results of the Botswana dataset on traditional shallow classifiers.

Classifier
SVM MD K-NN LR

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

Spe 91.79 ± 0.54 0.911 80.76 ± 0.68 0.793 90.71 ± 0.38 0.899 87.09 ± 1.20 0.860
Spe-1st 87.22 ± 0.81 0.862 79.69 ± 0.84 0.780 78.26 ± 1.08 0.765 86.13 ± 0.85 0.850
Spe-2nd 74.77 ± 1.13 0.726 65.74 ± 1.17 0.629 55.03 ± 0.74 0.515 71.96 ± 1.17 0.696

SFD 92.55 ± 0.54 0.919 82.01 ± 0.53 0.805 91.69 ± 0.37 0.910 89.57 ± 0.92 0.887
SpeLDA 93.65 ± 0.45 0.931 92.85 ± 0.46 0.923 93.40 ± 0.53 0.929 89.09 ± 0.87 0.882

Spe-1stLDA 93.22 ± 0.52 0.927 92.43 ± 0.58 0.918 92.87 ± 0.53 0.923 87.23 ± 0.57 0.862
Spe-2ndLDA 92.42 ± 0.73 0.918 91.69 ± 0.50 0.910 92.05 ± 0.56 0.914 85.44 ± 0.94 0.842

SFDLDA 93.75 ± 0.44 0.944 93.01 ± 0.43 0.924 93.51 ± 0.46 0.930 89.37 ± 0.66 0.885
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Table 6. Classification results of the Pavia University dataset on traditional shallow classifiers.

Classifier
SVM MD K-NN LR

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

Spe 89.96 ± 0.17 0.865 59.54 ± 0.44 0.501 84.77 ± 0.25 0.795 76.82 ± 1.37 0.681
Spe-1st 86.07 ± 0.14 0.811 58.66 ± 0.83 0.492 68.43 ± 0.21 0.574 81.53 ± 0.23 0.748
Spe-2nd 74.42 ± 0.18 0.643 30.82 ± 1.37 0.230 45.48 ± 0.26 0.244 74.62 ± 0.23 0.651

SFD 91.43 ± 0.10 0.885 62.34 ± 0.35 0.544 85.46 ± 0.23 0.804 82.88 ± 0.50 0.767
SpeLDA 88.62 ± 0.30 0.848 71.50 ± 0.34 0.643 87.16 ± 0.41 0.827 81.91 ± 0.39 0.754

Spe-1stLDA 88.71 ± 0.28 0.849 76.54 ± 0.37 0.699 87.54 ± 0.20 0.832 80.14 ± 0.18 0.729
Spe-2ndLDA 87.05 ± 0.11 0.827 73.88 ± 0.47 0.669 85.58 ± 0.17 0.806 79.29 ± 0.15 0.718

SFDLDA 89.49 ± 0.29 0.859 77.52 ± 0.32 0.711 88.25 ± 0.21 0.842 81.97 ± 0.39 0.755

Table 7. Classification results of the Salinas dataset on traditional shallow classifiers.

Classifier
SVM MD K-NN LR

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

AOA (%) ±
SD (%)

Average
Kappa

Spe 93.62 ± 0.09 0.929 75.57 ± 0.27 0.729 90.53 ± 0.16 0.895 84.51 ± 0.91 0.826
Spe-1st 91.39 ± 0.06 0.904 75.42 ± 0.14 0.727 86.68 ± 0.16 0.852 86.80 ± 0.92 0.852
Spe-2nd 88.16 ± 0.11 0.868 73.29 ± 0.19 0.704 81.71 ± 0.15 0.796 81.96 ± 0.58 0.797

SFD 93.76 ± 0.10 0.930 76.80 ± 0.31 0.743 90.70 ± 0.17 0.896 86.92 ± 0.77 0.853
SpeLDA 94.26 ± 0.08 0.936 91.33 ± 0.09 0.903 93.57 ± 0.09 0.928 91.21 ± 0.08 0.902

Spe-1stLDA 94.37 ± 0.09 0.938 91.34 ± 0.10 0.904 93.58 ± 0.10 0.928 91.22 ± 0.10 0.902
Spe-2ndLDA 94.30 ± 0.08 0.937 91.33 ± 0.10 0.903 93.57 ± 0.08 0.928 91.22 ± 0.09 0.902

SFDLDA 94.39 ± 0.08 0.938 91.35 ± 0.09 0.904 93.59 ± 0.10 0.928 91.24 ± 0.08 0.902

From Table 4, it can be seen that under 20% of the training samples in the Indian
Pines dataset, compared to the original spectral feature Spe, the AOA of the extracted
SFD features on SVM, MD, K-NN, and LR classifiers increased by 0.62%, 2.80%, 0.44%,
and 6.59%, respectively; additionally, compared to the Spe-1st and Spe-2nd features, the
AOA and average Kappa coefficient obtained by classification has significantly improved,
indicating that the extracted SFD feature can achieve better accuracy in terrain classification.
In addition, compared to the SpeLDA feature by performing LDA on the original spectral
feature Spe, the SFDLDA feature has an AOA increase of 0.14%, 0.30%, 0.21%, and 0.12%
on SVM, MD, K-NN, and LR classifiers; and compared to Spe-1stLDA feature and Spe-
2ndLDA feature, the AOA and average Kappa coefficient have been improved to a certain
extent, indicating that the extracted SFD feature can still retain their high separability after
dimensionality reduction processing, enhancing the classification effect. In terms of the
classification time, using the MD classifier as an example, the classification time for the Spe
feature, Spe-1st feature, Spe-2nd feature, and SFD feature are 0.371 s, 0.361 s, 0.360 s, and
0.356 s, respectively. The result indicates that the extracted SFD feature can improve the
accuracy of terrain classification while ensuring an almost constant classification rate.

Table 5 shows the classification results of the Botswana dataset under 20% of training
samples. Compared to the original spectral feature Spe, the extracted SFD feature has
significantly improved AOA and average Kappa coefficient on SVM, MD, K-NN, and LR
classifiers compared to other features. Compared to the Spe feature, AOA has increased
by 0.76%, 1.25%, 0.98%, and 2.48%, respectively, proving that the SFD feature can achieve
better terrain classification accuracy. Meanwhile, compared to the SpeLDA feature, the
AOA of the SFDLDA feature on SVM, MD, K-NN, and LR classifiers also increased by
0.10%, 0.16%, 0.11%, and 0.28%, respectively, indicating that the extracted SFD feature can
still retain their high separability after dimensionality reduction processing, enhancing
classification performance. In addition, the SD values of SFD and SFDLDA features are
smaller than those of other features, further proving that the extracted features have a more
stable classification effect. In terms of the classification time, using the MD classifier as an
example, the classification time for the Spe feature, Spe-1st feature, Spe-2nd feature, and
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SFD feature are 0.132 s, 0.125 s, 0.136 s, and 0.126 s, respectively. The result indicates that
the extracted SFD feature can effectively improve accuracy while maintaining runtime.

According to Table 6, it can be found that under 20% of training samples, the SFD
feature extracted from the Pavia University dataset showed an increase in AOA on SVM,
MD, K-NN, and LR classifiers by 1.47%, 2.80%, 0.69%, and 6.06%, respectively, compared to
the original Spe feature. Moreover, compared to the Spe-1st and Spe-2nd features, the AOA
and average Kappa coefficient of the SFD features were significantly improved, indicating
that the extracted SFD feature can achieve better terrain classification accuracy. In addition,
compared to the SpeLDA feature, the AOA of the SFDLDA feature on SVM, MD, K-NN, and
LR classifiers increased by 0.87%, 6.02%, 1.09%, and 0.06%, respectively, and was also much
greater than the AOA obtained from Spe-1stLDA and Spe-2ndLDA feature classification.
Meanwhile, the SD values of the SFD feature and SFDLDA feature have decreased to varying
degrees compared to most other features, indicating that the SFD feature has a certain
degree of stability in terrain classification compared to other features. In terms of the
classification time, using the MD classifier as an example, the classification time for the Spe
feature, Spe-1st feature, Spe-2nd feature, and SFD feature are 0.748 s, 0.778 s, 0.721 s, and
0.755 s, respectively. The result indicates that the extracted SFD feature can improve the
accuracy of terrain classification while ensuring an almost constant classification rate.

From Table 7, it can be observed that when selecting 20% of the training samples in the
Salinas dataset, the extracted SFD feature showed an increase in AOA on SVM, MD, K-NN,
and LR classifiers by 0.14%, 1.23%, 0.17%, and 2.41%, respectively, compared to the Spe
feature. Moreover, the AOA was significantly improved compared to the Spe-1st feature
and Spe-2nd feature. In addition, the AOA of the SFDLDA feature on SVM, MD, K-NN,
and LR classifiers increased by 0.13%, 0.02%, 0.02%, and 0.03%, respectively, compared
to the SpeLDA feature. The AOA and average Kappa coefficient obtained by the SFDLDA
feature were also improved to some extent compared to the Spe-1stLDA feature and Spe-
2ndLDA feature, indicating that the extracted SFD feature can still enhance the classification
effect to some extent compared to other features. In addition, in terms of the classification
time, using the MD classifier as an example, the classification time for the Spe feature,
Spe-1st feature, Spe-2nd feature, and SFD feature are 1.680 s, 1.638 s, 1.666 s, and 1.642 s,
respectively. The result indicates that the extracted SFD feature can effectively improve
accuracy while maintaining runtime.

4.3. Classification Results of Networks

To extract deep features and verify the effectiveness of the SFD feature on different
network structures, this paper sends the original spectral feature Spe, spectral first-order
differential (Spe-1st) feature, spectral second-order differential (Spe-2nd) feature, spectral
and frequency spectrum mixed feature (SFMF) [30], and extracted SFD feature into five
different network structures for deep-feature extraction and classification, and compares
the classification results. The experiments are conducted on a server with the RTX3080
graphical processing unit and 128 GB RAM, and the networks are implemented in Python.
For each HRSIs dataset, 3%, 5%, and 10% samples of each class are randomly selected as
training samples, and the rest are testing samples. Considering the randomness of the
experimental results, the AOA and average Kappa coefficient of 10 runs were recorded to
evaluate the classification effect. Tables 8–11 show the experimental results on four real
HRSIs datasets, where “Avg. Kap.” is the abbreviation of “Average Kappa coefficient”, the
optimal classification results are shown in bold.
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Table 8. Classification results of the Indian Pines dataset on network models.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

3% training samples

Spe 62.15 ± 1.42 0.561 64.17 ± 1.13 0.585 74.12 ± 4.73 0.705 84.61 ± 0.90 0.823 87.57 ± 1.04 0.858
Spe-1st 53.83 ± 2.19 0.467 61.52 ± 1.46 0.555 76.68 ± 2.64 0.733 84.15 ± 0.49 0.819 88.77 ± 0.55 0.871

Spe-
2nd 49.61 ± 1.36 0.415 49.33 ± 1.49 0.415 70.16 ± 2.41 0.656 82.86 ± 0.80 0.804 88.64 ± 0.71 0.870

SFMF 61.44 ± 0.92 0.555 68.47 ± 2.05 0.637 73.20 ± 2.28 0.693 84.90 ± 0.64 0.825 87.98 ± 0.86 0.863
SFD 64.58 ± 1.94 0.589 73.10 ± 1.56 0.691 77.61 ± 3.61 0.743 85.74 ± 0.68 0.833 88.95 ± 0.93 0.874

5% training samples

Spe 67.62 ± 2.65 0.627 76.00 ± 1.27 0.724 79.41 ± 4.35 0.765 90.98 ± 0.49 0.895 93.20 ± 1.56 0.922
Spe-1st 59.53 ± 0.37 0.531 65.23 ± 1.12 0.601 81.89 ± 1.46 0.794 89.37 ± 1.05 0.879 94.61 ± 0.82 0.938

Spe-
2nd 52.25 ± 1.43 0.449 51.61 ± 0.78 0.444 76.49 ± 1.12 0.731 89.59 ± 0.47 0.881 94.42 ± 0.47 0.936

SFMF 68.28 ± 1.45 0.634 74.24 ± 1.30 0.705 82.72 ± 1.90 0.803 90.86 ± 0.51 0.894 93.86 ± 0.93 0.927
SFD 72.85 ± 1.88 0.687 78.79 ± 1.16 0.753 83.41 ± 2.59 0.811 91.24 ± 0.27 0.898 94.99 ± 0.51 0.935

10% training samples

Spe 73.80 ± 3.95 0.700 76.70 ± 1.43 0.733 87.75 ± 2.32 0.861 95.43 ± 0.55 0.943 98.04 ± 0.26 0.978
Spe-1st 63.61 ± 0.65 0.581 69.54 ± 0.98 0.650 87.46 ± 1.51 0.857 93.31 ± 0.47 0.924 98.15 ± 0.29 0.979

Spe-
2nd 55.45 ± 0.52 0.487 53.33 ± 0.80 0.464 81.79 ± 1.18 0.792 92.41 ± 0.46 0.913 98.10 ± 0.19 0.978

SFMF 74.52 ± 1.35 0.708 79.09 ± 0.73 0.761 88.70 ± 1.45 0.871 95.72 ± 0.51 0.946 98.33 ± 0.21 0.980
SFD 77.95 ± 3.19 0.749 81.64 ± 0.92 0.790 89.05 ± 1.65 0.869 96.03 ± 0.37 0.950 98.46 ± 0.19 0.982

Table 9. Classification results of the Botswana dataset on network models.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

3% training samples

Spe 81.19 ± 1.41 0.796 76.26 ± 2.28 0.743 87.32 ± 4.78 0.863 97.14 ± 0.79 0.969 93.23 ± 1.75 0.927
Spe-1st 74.09 ± 2.33 0.719 55.74 ± 3.55 0.515 81.42 ± 6.27 0.799 97.35 ± 0.73 0.971 93.60 ± 2.03 0.931

Spe-
2nd 59.89 ± 2.32 0.565 49.14 ± 2.70 0.444 77.73 ± 2.79 0.759 95.91 ± 0.67 0.956 91.73 ± 1.34 0.910

SFMF 82.03 ± 1.80 0.805 71.38 ± 1.55 0.689 88.47 ± 0.97 0.875 97.88 ± 0.82 0.974 93.87 ± 1.42 0.932
SFD 86.44 ± 1.36 0.853 78.13 ± 1.87 0.763 90.24 ± 2.28 0.894 98.36 ± 0.31 0.981 94.33 ± 1.13 0.939

5% training samples

Spe 81.36 ± 2.37 0.786 81.78 ± 1.97 0.803 90.14 ± 4.13 0.893 98.70 ± 0.65 0.984 97.05 ± 1.06 0.968
Spe-1st 77.82 ± 2.10 0.759 79.63 ± 0.89 0.779 89.98 ± 1.61 0.891 97.45 ± 1.16 0.972 97.28 ± 1.02 0.971

Spe-
2nd 65.30 ± 1.68 0.624 56.41 ± 2.82 0.524 86.26 ± 1.32 0.851 96.03 ± 0.98 0.957 95.61 ± 1.27 0.953

SFMF 83.22 ± 2.61 0.818 79.38 ± 1.92 0.776 90.16 ± 2.54 0.893 98.52 ± 0.75 0.981 96.41 ± 1.72 0.965
SFD 87.02 ± 0.67 0.859 83.59 ± 1.13 0.822 91.03 ± 1.20 0.903 99.02 ± 0.15 0.987 97.49 ± 0.45 0.973

10% training samples

Spe 86.42 ± 0.83 0.853 86.13 ± 0.73 0.850 93.69 ± 2.80 0.932 99.09 ± 0.35 0.990 99.40 ± 0.58 0.994
Spe-1st 83.83 ± 0.80 0.825 86.55 ± 1.04 0.854 93.59 ± 2.81 0.931 99.01 ± 0.33 0.989 99.50 ± 0.25 0.995

Spe-
2nd 73.86 ± 2.08 0.717 76.91 ± 1.46 0.750 92.42 ± 1.28 0.918 98.68 ± 0.22 0.986 99.18 ± 0.55 0.991

SFMF 88.08 ± 1.02 0.871 86.89 ± 1.16 0.858 94.37 ± 1.91 0.939 99.12 ± 0.28 0.991 99.51 ± 0.38 0.995
SFD 89.94 ± 1.00 0.891 87.00 ± 0.76 0.859 95.24 ± 1.10 0.948 99.44 ± 0.11 0.993 99.61 ± 0.28 0.996
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Table 10. Classification results of the Pavia University dataset on network models.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

3% training samples

Spe 84.55 ± 1.58 0.794 79.13 ± 0.62 0.713 88.51 ± 5.47 0.848 98.17 ± 0.23 0.975 98.47 ± 0.62 0.980
Spe-1st 79.62 ± 1.27 0.727 72.51 ± 1.87 0.626 88.79 ± 1.89 0.853 98.14 ± 0.36 0.975 99.30 ± 0.21 0.991

Spe-
2nd 72.60 ± 1.08 0.630 62.47 ± 0.43 0.477 87.67 ± 4.42 0.836 97.93 ± 0.58 0.973 98.81 ± 0.37 0.984

SFMF 84.54 ± 0.87 0.796 79.22 ± 0.36 0.720 88.59 ± 2.98 0.852 98.21 ± 0.44 0.976 98.71 ± 0.44 0.983
SFD 85.02 ± 1.07 0.800 79.32 ± 1.56 0.725 91.49 ± 1.62 0.889 98.43 ± 0.14 0.978 99.33 ± 0.09 0.991

5% training samples

Spe 86.01 ± 2.50 0.815 82.28 ± 1.00 0.760 92.71 ± 0.91 0.904 99.01 ± 0.22 0.985 99.41 ± 0.13 0.992
Spe-1st 81.85 ± 0.96 0.754 79.30 ± 0.76 0.722 92.93 ± 0.88 0.907 98.46 ± 0.66 0.979 99.55 ± 0.20 0.994

Spe-
2nd 73.48 ± 2.84 0.645 68.75 ± 0.82 0.576 92.77 ± 0.75 0.905 98.59 ± 0.13 0.981 99.58 ± 0.10 0.994

SFMF 86.55 ± 1.06 0.821 82.08 ± 0.82 0.764 91.34 ± 2.15 0.886 99.00 ± 0.35 0.985 99.42 ± 0.10 0.992
SFD 87.00 ± 0.81 0.826 82.86 ± 1.02 0.765 93.66 ± 0.79 0.917 99.06 ± 0.06 0.985 99.59 ± 0.21 0.995

10% training samples

Spe 88.73 ± 1.64 0.850 84.90 ± 5.81 0.802 94.82 ± 0.56 0.932 99.43 ± 0.20 0.992 99.69 ± 0.07 0.996
Spe-1st 84.34 ± 2.79 0.794 81.10 ± 4.38 0.749 94.61 ± 0.40 0.929 99.39 ± 0.12 0.992 99.79 ± 0.07 0.997

Spe-
2nd 78.11 ± 3.16 0.710 75.22 ± 0.89 0.668 94.92 ± 0.15 0.934 99.31 ± 0.08 0.991 99.79 ± 0.10 0.997

SFMF 89.05 ± 0.81 0.854 86.09 ± 1.06 0.821 94.15 ± 0.25 0.924 99.36 ± 0.09 0.992 99.71 ± 0.04 0.996
SFD 89.13 ± 1.15 0.856 86.63 ± 2.17 0.829 95.31 ± 0.16 0.939 99.44 ± 0.04 0.992 99.81 ± 0.08 0.998

Table 11. Classification results of the Salinas dataset on network models.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

3% training samples

Spe 87.43 ± 1.42 0.860 86.43 ± 1.48 0.848 90.42 ± 1.46 0.893 97.21 ± 0.31 0.968 99.70 ± 0.16 0.997
Spe-1st 87.40 ± 1.39 0.859 87.74 ± 1.29 0.863 90.82 ± 1.51 0.898 97.07 ± 0.55 0.967 99.52 ± 0.12 0.995

Spe-
2nd 81.63 ± 1.16 0.795 82.48 ± 0.65 0.801 90.38 ± 2.94 0.893 96.32 ± 0.28 0.959 99.51 ± 0.15 0.995

SFMF 88.93 ± 0.52 0.878 87.94 ± 2.05 0.866 91.02 ± 0.77 0.900 97.27 ± 0.30 0.969 99.70 ± 0.08 0.997
SFD 89.19 ± 0.98 0.879 88.40 ± 1.68 0.871 91.17 ± 1.56 0.902 97.62 ± 0.26 0.972 99.73 ± 0.06 0.997

5% training samples

Spe 88.26 ± 1.20 0.869 88.15 ± 1.26 0.868 91.54 ± 1.45 0.906 98.14 ± 0.30 0.979 99.85 ± 0.08 0.998
Spe-1st 88.81 ± 1.15 0.875 89.64 ± 0.74 0.884 92.00 ± 0.88 0.911 98.59 ± 0.35 0.985 99.83 ± 0.11 0.998

Spe-
2nd 83.72 ± 1.65 0.819 84.73 ± 0.89 0.830 91.52 ± 1.81 0.906 98.20 ± 0.23 0.980 99.85 ± 0.07 0.998

SFMF 89.83 ± 1.17 0.887 88.39 ± 2.38 0.871 90.62 ± 2.17 0.896 98.42 ± 0.28 0.983 99.86 ± 0.10 0.998
SFD 90.02 ± 1.18 0.889 88.90 ± 0.78 0.876 92.16 ± 1.37 0.913 98.70 ± 0.18 0.986 99.90 ± 0.04 0.999

10% training samples

Spe 90.67 ± 0.59 0.896 90.58 ± 0.75 0.895 92.94 ± 1.79 0.922 99.63 ± 0.14 0.996 99.97 ± 0.02 0.999
Spe-1st 90.59 ± 0.79 0.895 91.35 ± 0.23 0.906 92.47 ± 2.75 0.917 99.50 ± 0.23 0.995 99.93 ± 0.13 0.999

Spe-
2nd 86.37 ± 0.69 0.848 86.99 ± 0.47 0.855 92.96 ± 1.67 0.922 99.48 ± 0.11 0.994 99.92 ± 0.12 0.999

SFMF 91.57 ± 0.84 0.897 91.31 ± 0.36 0.896 93.08 ± 1.50 0.922 99.60 ± 0.10 0.996 99.95 ± 0.06 0.999
SFD 91.68 ± 0.79 0.907 91.58 ± 0.20 0.905 93.19 ± 1.72 0.924 99.64 ± 0.07 0.996 99.97 ± 0.01 0.999

According to Table 8, it can be found that on the Indian Pines dataset, the AOA and
average Kappa coefficient of the deep SFD feature are significantly higher than those of
the deep Spe feature, deep Spe-1st feature, deep Spe-2nd feature, and SFMF on the five
network models under 3%, 5%, and 10% training samples, and the deep Spe-1st and deep
Spe-2nd features, generally, have lower AOA and average Kappa coefficient compared
to the deep Spe feature. This indicates that the SFD feature extracted using fractional-
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order differentiation can enhance recognition performance compared to features extracted
using first-order differentiation and second-order differentiation. In addition, when the
proportion of training samples is small, the deep SFD feature performs relatively better in
terrain classification accuracy compared to other features, such as the results of 3DCNNPCA
and HybridSN models. Under the condition of 3% training samples, the number of training
samples in each class is lower than 30 (except for classes 2, 11, and 14, the number of 3%
samples per class is 42, 73, and 37, respectively), this indicates that even under the condition
of small-size training samples, the SFD feature is superior to other features. Meanwhile,
through comparison, it can be seen that the SD value of the deep SFD feature is also smaller
compared to the deep Spe feature, indicating that the classification effect of the deep SFD
feature has a better stability. In terms of running time, using the 3DCNNPCA model with
5% training samples as an example, the testing times for the Spe feature, Spe-1st feature,
Spe-2nd feature, SFMF, and SFD feature are 0.475 s, 0.476 s, 0.475 s, 0.531 s, and 0.476 s,
respectively. The result indicates that the extracted SFD feature can effectively improve
accuracy while maintaining runtime.

Figure 6 shows the classification maps of the Indian Pines dataset of deep Spe feature
and deep SFD feature on five network models under 5% training samples. Through
comparison, it can be found that the classification results of the deep SFD feature are,
generally, better than those of the deep Spe feature on the five network models, with fewer
misclassified pixels.
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Figure 6. Indian Pines dataset classification map: (a) Spe feature in FCN model with 69.36% AOA;
(b) Spe feature in 1DCNN model with 77.12% AOA; (c) Spe feature in 3DCNN model with 81.53%
AOA; (d) Spe feature in 3DCNNPCA model with 90.77% AOA; (e) Spe feature in HybridSN model
with 93.81% AOA; (f) SFD feature in FCN model with 73.88% AOA; (g) SFD feature in 1DCNN
model with 79.77% AOA; (h) SFD feature in 3DCNN model with 85.39% AOA; (i) SFD feature in
3DCNNPCA model with 91.44% AOA; (j) SFD feature in HybridSN model with 95.47% AOA.

Table 9 shows the classification results of the presented SFD feature compared to the
Spe feature, Spe-1st feature, Spe-2nd feature, and SFMF on five network models for the
Botswana dataset with 3%, 5%, and 10% training samples. It can be found that the AOA of
the SFD feature proposed in this paper has improved compared to the other three features
on all five models, making it more effective for terrain classification. Additionally, when
the proportion of training samples is smaller, the AOA and average Kappa coefficient of the
SFD feature are significantly improved compared to other features. Under the condition
of 3% training samples, the number of training samples in each class is far lower than 30,
indicating that in the case of small-size training samples, the SFD feature can better exert
its advantages compared to other features. At the same time, it can be found that the SD
values of the SFD feature are, generally, smaller than those of other features, indicating
that the SFD feature is more stable in the classification. In terms of running time, using
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the 3DCNNPCA model with 5% training samples as an example, the testing times for the
Spe feature, Spe-1st feature, Spe-2nd feature, SFMF, and SFD feature are 0.349 s, 0.349 s,
0.348 s, 0.481 s, and 0.312 s, respectively. The result indicates that the extracted SFD feature
not only improves the accuracy of terrain classification but also has a more efficient running
rate compared to other features.

Figure 7 shows the classification results of the Spe and the presented SFD features
of the Botswana dataset on five network models under 5% training samples. Through
comparison, it can be seen that the classification results of the SFD feature are, generally,
better than those of the Spe feature on the five network models, further demonstrating the
effectiveness of the SFD feature in terrain classification.
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Figure 7. Botswana dataset classification map: (a) Spe feature in FCN model with 82.48% AOA;
(b) Spe feature in 1DCNN model with 82.76% AOA; (c) Spe feature in 3DCNN model with 89.02%
AOA; (d) Spe feature in 3DCNNPCA model with 98.57% AOA; (e) Spe feature in HybridSN model
with 96.45% AOA; (f) SFD feature in FCN model with 87.37% AOA; (g) SFD feature in 1DCNN
model with 84.58% AOA; (h) SFD feature in 3DCNN model with 91.92% AOA; (i) SFD feature in
3DCNNPCA model with 99.16% AOA; (j) SFD feature in HybridSN model with 97.93% AOA.

From Table 10, it can be seen that on the Pavia University dataset, the presented SFD
feature has higher AOA and average Kappa coefficient compared to the Spe feature, Spe-1st
feature, Spe-2nd feature, and SFMF on the five network models at 3%, 5%, and 10% of the
training samples. Additionally, the smaller the proportion of training samples, the more
significant the improvement in the AOA of the SFD feature on certain models. For example,
on 3DCNN, the AOA of the SFD feature increased by 2.98%, 0.95%, and 0.49% compared
to Spe feature under 3%, 5%, and 10% training samples, respectively. Meanwhile, the
SD values of the SFD feature are also smaller than those of other features, indicating that
the presented SFD feature is more stable in the classification compared to other features.
In terms of running time, using the 3DCNNPCA model with 5% training samples as an
example, the testing times for the Spe feature, Spe-1st feature, Spe-2nd feature, SFMF, and
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SFD feature are 1.648 s, 1.646 s, 1.647 s, 2.068 s, and 1.634 s, respectively. The result indicates
that the extracted SFD feature can effectively improve accuracy while maintaining runtime.

Figure 8 shows the classification maps of the Spe feature and the presented SFD
feature on five network models for the Pavia University dataset under 5% training samples.
Through comparison, it can be found that the classification results of the SFD feature are,
generally, better than those of the Spe feature, which further proves the effectiveness of the
extracted SFD feature in terrain classification.
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Figure 8. Pavia University dataset classification map: (a) Spe feature in FCN model with 85.36%
AOA; (b) Spe feature in 1DCNN model with 81.66% AOA; (c) Spe feature in 3DCNN model with
93.03% AOA; (d) Spe feature in 3DCNNPCA model with 98.89% AOA; (e) Spe feature in HybridSN
model with 99.29% AOA; (f) SFD feature in FCN model with 87.73% AOA; (g) SFD feature in 1DCNN
model with 83.39% AOA; (h) SFD feature in 3DCNN model with 94.34% AOA; (i) SFD feature in
3DCNNPCA model with 99.12% AOA; (j) SFD feature in HybridSN model with 99.79% AOA.

Figure 9 shows the classification maps of the Spe feature and SFD feature of the
Salinas dataset on five network models under 5% training samples. It can be found that
the classification results of the presented SFD feature are, generally, better than those of
the Spe feature on five network models, and the misclassification rate of the SFD feature is
lower compared to the Spe feature, indicating that the extracted SFD feature can effectively
improve the classification accuracy.

From Table 11, it can be seen that at 3%, 5%, and 10% of the training samples, the SFD
feature extracted from the Salinas dataset has a certain improvement in AOA and average
Kappa coefficient compared to the Spe feature, Spe-1st feature, Spe-2nd feature, and SFMF
on the five network models. Moreover, when the proportion of training samples is small,
the AOA of the presented SFD feature is more significantly improved. For example, on the
3DCNN model, when the proportion of training samples is 3%, 5%, and 10%, the AOA of the
SFD feature increased by 0.75%, 0.62%, and 0.25% compared to the Spe feature, respectively.
In addition, the SD values of the SFD feature are, generally, smaller compared to other
features, further indicating that the SFD feature has higher stability in the classification.
In terms of running time, using the 3DCNNPCA model with 5% training samples as an
example, the testing times for the Spe feature, Spe-1st feature, Spe-2nd feature, SFMF, and
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SFD feature are 2.021 s, 2.136 s, 2.056 s, 2.499 s, and 2.093 s, respectively. The result indicates
that the extracted SFD feature can effectively improve accuracy while maintaining runtime.
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Spe 75.01 ± 2.00 0.654 74.86 ± 0.81 0.654 77.23 ± 5.10 0.705 72.63 ± 0.77 0.611 85.65 ± 1.63 0.817 

Spe-1st
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SFMF
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SFD
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Salinas 

Spe
 

83.10 ± 1.54 0.811 85.05 ± 0.41 0.834 83.16 ± 3.48 0.812 81.69 ± 1.18 0.795 98.92 ± 0.56 0.988 

Spe-1st 83.65 ± 0.68 0.817 80.35 ± 3.16 0.780 81.25 ± 3.75 0.792 85.97 ± 0.44 0.844 98.97 ± 0.22 0.989 

Figure 9. Salinas dataset classification map: (a) Spe feature in FCN model with 88.77% AOA; (b) Spe
feature in 1DCNN model with 87.14% AOA; (c) Spe feature in 3DCNN model with 91.02% AOA;
(d) Spe feature in 3DCNNPCA model with 97.89% AOA; (e) Spe feature in HybridSN model with
99.78% AOA; (f) SFD feature in FCN model with 90.95% AOA; (g) SFD feature in 1DCNN model with
89.35% AOA; (h) SFD feature in 3DCNN model with 92.98% AOA; (i) SFD feature in 3DCNNPCA

model with 98.86% AOA; (j) SFD feature in HybridSN model with 99.94% AOA.

Table 12 shows the small-size training samples experiments on the Pavia University
and Salinas datasets under the condition of 30 training samples per class, the optimal
classification results are shown in bold. From Table 12, it can be concluded that, in the case
of small-size training samples, the SFD feature has greater advantages compared to other
features on the Pavia University and Salinas datasets.

Table 12. Classification results of Pavia University and Salinas datasets on network models under
30 training samples per class.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

Pavia University

Spe 75.01 ± 2.00 0.654 74.86 ± 0.81 0.654 77.23 ± 5.10 0.705 72.63 ± 0.77 0.611 85.65 ± 1.63 0.817
Spe-1st 67.08 ± 1.54 0.554 64.63 ± 1.40 0.503 68.03 ± 3.02 0.566 74.96 ± 1.06 0.664 91.37 ± 1.78 0.885

Spe-
2nd 55.05 ± 1.05 0.353 53.17 ± 3.90 0.274 58.33 ± 3.86 0.400 74.39 ± 0.45 0.662 90.70 ± 2.19 0.876

SFMF 76.94 ± 2.24 0.695 73.03 ± 1.70 0.632 79.12 ± 1.46 0.720 71.38 ± 1.12 0.609 87.79 ± 1.06 0.836
SFD 77.28 ± 1.91 0.696 78.02 ± 0.72 0.704 82.04 ± 2.14 0.762 76.34 ± 1.05 0.682 92.81 ± 1.58 0.904
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Table 12. Cont.

Model
FCN 1DCNN 3DCNN 3DCNNPCA HybridSN

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

AOA (%) ±
SD (%)

Avg.
Kap.

Salinas

Spe 83.10 ± 1.54 0.811 85.05 ± 0.41 0.834 83.16 ± 3.48 0.812 81.69 ± 1.18 0.795 98.92 ± 0.56 0.988
Spe-1st 83.65 ± 0.68 0.817 80.35 ± 3.16 0.780 81.25 ± 3.75 0.792 85.97 ± 0.44 0.844 98.97 ± 0.22 0.989

Spe-
2nd 83.46 ± 2.47 0.805 82.43 ± 2.47 0.804 83.59 ± 4.30 0.818 85.09 ± 0.52 0.834 98.87 ± 0.36 0.987

SFMF 83.50 ± 3.18 0.817 84.03 ± 3.35 0.822 83.51 ± 3.20 0.816 79.89 ± 1.24 0.774 98.02 ± 0.75 0.978
SFD 85.02 ± 2.39 0.834 85.78 ± 0.87 0.841 84.44 ± 3.99 0.828 86.93 ± 0.52 0.854 99.02 ± 0.11 0.989

4.4. Discussion of Classification Results

From the above experimental results, it can be seen that the proposed SFD feature
can effectively improve the classification accuracy of HRSIs. In the four HRSI datasets,
the SFD feature has improved the accuracy of terrain classification to varying degrees. To
demonstrate the effectiveness of the proposed criteria, Table 13 takes the MD classifier
as an example and shows the AOA and SD vary with the SFD order v in the range of
0.1 to 0.9 at step 0.1 on four HRSIs datasets. For each dataset, 20% of each class data is
randomly selected as a training sample and the rest are testing samples. The best result of
each column is shown in bold.

Table 13. Classification results of MD classifier with SFD order in the range of 0~0.9.

Dataset Indian Pines Botswana Pavia
University Salinas

SFD Order v AOA (%) ± SD (%)

0 46.15 ± 0.89 80.76 ± 0.68 59.54 ± 0.44 75.57 ± 0.27
0.1 46.60 ± 0.89 81.01 ± 0.58 59.84 ± 0.33 76.13 ± 0.28
0.2 47.02 ± 0.82 81.61 ± 0.66 60.35 ± 0.39 76.54 ± 0.29
0.3 47.67 ± 0.85 82.01 ± 0.53 60.77 ± 0.42 76.73 ± 0.35
0.4 48.29 ± 0.82 81.96 ± 0.47 61.32 ± 0.43 76.80 ± 0.31
0.5 48.85 ± 0.75 81.44 ± 0.48 61.86 ± 0.40 76.75 ± 0.26
0.6 48.95 ± 0.71 80.49 ± 0.41 62.34 ± 0.35 76.55 ± 0.23
0.7 48.56 ± 0.55 78.68 ± 0.47 61.93 ± 0.42 76.32 ± 0.21
0.8 47.72 ± 0.48 76.12 ± 0.63 60.16 ± 0.51 75.99 ± 0.19
0.9 46.54 ± 0.58 74.25 ± 0.71 57.21 ± 0.54 75.67 ± 0.15

Table 13 shows that the SFD order v corresponding to the highest AOA of each
dataset is mainly within the range of the peaks of criterion J in Figure 3. Additionally,
the variation trend of classification accuracy with SFD order is also similar to that of
criterion J with SFD order, which proves the feasibility of the presented SFD order selection
criterion. It can be concluded that the presented criterion J is an effective method to select
appropriate SFD order v, and performing fractional differentiation on the pixel spectral
curves with the selected order v will achieve the efficient SFD feature that can improve the
classification accuracy.

For two classes that are easily misclassified, the SFD feature shows its advantage and
can enhance the separability between these two classes. Taking the Salinas dataset as an
example, Table 14 shows the classification accuracy of each class and the overall accuracy,
the significantly improved class at order 0.5 is shown in bold. It is shown in Table 14 that
for most classes, the results of the SFD feature are better or equal to the original spectral
feature. Because most classes in the Salinas dataset are vegetation and crops, which leads to
different subjects with similar spectra, in this case, the local burrs characteristics of the pixel
spectral curves, which correspond to the high-frequency components, contribute most to
the identification. The extracted SFD feature can enhance the high-frequency components
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while sufficiently retaining the low-frequency components of the spectral pixel, thus, the
separability of these similar classes will increase and the classification accuracy will be
improved, which confirms the results discussed in Section 2.3.

Table 14. Classification accuracy of each class and overall accuracy of Salinas dataset by MD classifier
with SFD order in the range of 0~0.9.

SFD Order v 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Class 1 98.20 98.26 98.32 98.44 98.57 98.76 98.82 98.82 98.88 99.00
Class 2 79.44 80.41 80.81 80.61 80.64 81.08 81.15 81.08 80.98 80.68
Class 3 73.50 76.98 77.29 77.42 76.72 76.03 75.14 73.50 72.42 72.17
Class 4 98.57 98.57 98.57 98.57 98.57 98.48 98.39 98.30 98.21 98.21
Class 5 95.33 95.47 95.61 95.80 96.13 96.50 96.64 96.78 96.78 96.73
Class 6 96.68 97.00 97.19 97.16 97.16 97.16 97.19 97.19 97.22 97.10
Class 7 98.64 98.46 98.46 98.39 98.36 98.36 98.32 98.29 98.11 97.94
Class 8 60.67 61.18 61.57 62.02 62.19 62.32 62.35 62.37 62.29 62.07
Class 9 89.76 90.81 91.60 92.64 93.09 93.53 94.03 94.18 94.24 94.18

Class 10 23.11 23.42 23.23 21.85 20.90 20.06 19.03 18.31 18.12 18.12
Class 11 80.45 81.62 82.55 83.14 84.54 86.18 86.89 86.77 87.35 87.35
Class 12 89.82 91.76 93.19 93.19 92.54 90.73 87.87 84.89 81.00 78.92
Class 13 98.50 98.50 98.50 98.50 98.50 98.50 98.36 98.50 98.36 98.36
Class 14 88.79 88.43 88.32 88.32 88.32 88.32 88.43 88.32 88.32 88.20
Class 15 61.56 62.04 62.59 62.80 63.24 63.26 63.36 63.52 63.09 62.90
Class 16 52.35 52.49 52.90 53.46 54.22 54.50 53.53 51.11 49.31 47.51

OA 75.18 75.80 76.17 76.36 76.47 76.51 76.38 76.13 75.80 75.54

The experimental results have verified the validity of the proposed SFD feature-
extraction method. The reason behind the experimental phenomenon is that the pre-
sented SFD feature-extraction method uses fractional differentiation to extract both the
low-frequency components characteristics and high-frequency components characteristics
of the pixel spectral curves of HRSIs, which can preserve both the overall curve shape and
local burrs characteristics of the pixel spectral curves of HRSIs. On the other hand, the
experimental results also show the effectiveness of the presented criterion for selecting
the fractional-differentiation order. The network models perform deep-feature extraction
based on importing the SFD feature and, thus, achieve efficient deep features that can
further improve terrain classification accuracy. Especially under the condition of small-size
training samples, the terrain classification accuracy is improved more significantly.

5. Conclusions

In this paper, a spectral fractional-differentiation (SFD) feature of HRSIs is presented,
and a fractional-differentiation order selection criterion is proposed. The MD classifier,
SVM classifier, K-NN classifier, and LR classifier are used to evaluate the performance
of the presented SFD feature. The obtained SFD feature is sent to the FCN and 1DCNN
for deep-feature extraction and classification, and the SFD-Spa feature cube containing
spatial information is sent to 3DCNN for deep-feature extraction and classification. The
SFD-Spa feature after performing PCA on spectral pixels is directly connected with the
first principal component of the original data and sent to 3DCNNPCA and HybridSN
models to extract deep features. The experimental results on four real HRSIs show that
the extracted SFD feature can effectively improve the accuracy of terrain classification,
and sending SFD feature to deep-learning environments can further improve the accuracy
of terrain classification for HRSIs, especially in the case of small-size training samples.
The presented SFD feature-extraction method has limitations, such as the fact that the
fractional-differentiation order needs to be selected, the SFD feature-extraction method
cannot reduce the dimensionality of data, and the presented method should be performed
on the datum one by one because there is no projection matrix that suits LDA or PCA.
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