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Abstract: The net primary productivity (NPP) of vegetation holds a pivotal character for the global 
carbon balance as a key parameter for characterizing terrestrial ecological processes. The most com-
monly used indices for estimating vegetation NPP, for instance, the normalized difference vegeta-
tion index (NDVI), often suffer from saturation issues that can compromise the accuracy of NPP 
estimation. This research utilizes a new vegetation index based on the radial basis function (RBF) to 
estimate vegetation NPP in Chinese terrestrial ecosystems over the past two decades (2001–2020) 
and investigates the spatiotemporal variation characteristics of NPP and the driving mechanisms. 
The results indicate that the kernel vegetation index (kNDVI) can effectively alleviate the saturation 
problem and significantly improve the accuracy of NPP estimation compared to NDVI. Over the 
past two decades, the NPP of Chinese terrestrial vegetation ranged from 64.13 to 79.72 g C/m2, with 
a mean value of 72.75 g C/m2, showing a fluctuating upward trend. Changes in the NPP of terrestrial 
ecosystems in China are mainly affected by precipitation. The dominant factors influencing NPP 
changes varied over time and had different impacts. For instance, in the period of 2001–2005 the 
climate had a positive effect on NPP changes, with the dominant factors being evaporation and 
precipitation. However, in the period of 2010–2015 the dominant climate factors shifted to evapora-
tion and temperature, and their effect on NPP changes became negative. The outcomes of this re-
search aim to serve as a foundation for carbon cycle research and ecosystem environment construc-
tion in China. 

Keywords: net primary productivity; kernel vegetation index; spatiotemporal variation; driving 
mechanism 
 

1. Introduction 
Net primary productivity (NPP) is the remaining portion of the total organic matter 

produced by photosynthesis per unit area of green vegetation per unit time, excluding its 
autotrophic respiration [1]. It straightforwardly indicates the productivity and quality of 
an ecosystem in the context of natural ambient conditions, and is one of the significant 
elements in deciding the carbon source/sink of an ecosystem [2,3]. In the current context 
of global climate change, the accurate and timely estimation of the NPP in China’s land 
ecosystems is critical to implementing the “Double Carbon Strategy” and the advance-
ment of ecological civilization in the country [4]. 
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The integration of remotely sensed data and ecological models has emerged as the 
primary method for large-scale vegetation NPP estimation owing to its broad coverage, 
low acquisition cost, and short revisit period. The models currently used for NPP estima-
tion include statistical models, process models, and light energy efficiency models [5]. Sta-
tistical models typically rely on the vegetation index (VI) and leaf area index (LAI) for 
estimation, and the model data are relatively accessible. However, the physiological and 
ecological mechanisms underlying these models are not always well understood, which 
can lead to errors in the estimation results [6]. While process-based models, for example 
the Biome BioGeoChemical Cycles model (BIOME-BGC), Boreal Ecosystem Productivity 
Simulator (BEPS), Terrestrial Ecosystem Model (TEM), and Integrated Terrestrial Ecosys-
tem C-budget model (InTEC), have clear mechanisms and produce more accurate NPP 
estimates, their model structures are relatively complexity and require numerous param-
eters, which can be challenging to scale up to the regional level [7–10]. Light energy effi-
ciency models, such as the Carnegie–Ames–Stanford Approach (CASA) and Global Pro-
duction Efficiency Model (GLO-PEM), have been developed [11–13], of which the CASA 
model is based on the theory of plant photosynthesis mechanism and has minimal de-
pendence on ground measurement data. Additionally, the CASA model is relatively 
straightforward, with few input parameters and high ease of use and applicability, mak-
ing it one of the most commonly utilized models for NPP estimation across various spatial 
scales [14]. 

Despite these advantages, the CASA model has deficiencies in simulating vegetation 
NPP, such as uncertainties in the estimation of vegetation light energy utilization. To ad-
dress this, researchers have attempted to compensate for these deficiencies by construct-
ing new water stress factors or correcting the maximum light energy utilization for ideal 
contexts, thereby improving the accuracy of vegetation NPP estimation [15–17]. Addition-
ally, the nonlinear relationship between NDVI and vegetation NPP can be a limitation for 
accurate estimation of NPP using the CASA model [18,19]. However, the use of NDVI to 
estimate FPAR has two main issues. First, the relationship between NDVI and vegetation 
NPP is nonlinear and easily reaches saturation, which may affect the accuracy of NPP 
estimation. Second, NDVI is mainly reflective of vegetation leaf conditions rather than 
actual photosynthesis. Several studies have proposed using alternative vegetation indices 
that are less affected by saturation, such as the NDVI2 [20], red-edge normalized vegeta-
tion index [21], and enhanced vegetation index (EVI) [22]. While these methods may im-
prove the estimation accuracy of vegetation NPP to an extent, they cannot fundamentally 
address the nonlinear relationship and saturation issues between vegetation indices and 
NPP. Solar-induced chlorophyll fluorescence (SIF) is a promising alternative to traditional 
reflectance-based vegetation indices, as it directly measures the fluorescence emitted by 
plants during photosynthesis [23]. Recently, SIF has been increasingly used as a tool for 
estimating vegetation carbon stocks due to its ability to directly measure plant photosyn-
thetic activity. However, there remains much debate among scholars regarding the rela-
tionship between SIF and vegetation green biomass. Additionally, the spatial resolution 
of SIF is limited, with values ranging from 40 × 80 km2 to 0.05°, which makes it difficult to 
obtain detailed information on green vegetation biomass [24]. Therefore, the construction 
of a new remotely sensed vegetation index to improve the accuracy of NPP estimation by 
solving the problem of linearity and saturation is a pressing issue. 

Previous research has attempted to improve the performance of vegetation indices 
using empirical or parameter transformations. However, these methods only construct 
new vegetation indices that try to utilize information from bands other than the NIR and 
red bands, and it is not clear whether all available information is being used. Moreover, 
these methods fail to address the saturation problem that occurs in vegetation indices. In 
contrast, the kernel function approach takes a machine learning perspective and can de-
rive nonlinear approaches from linear algorithms while remaining reliant on linear arith-
metic for operations [25]. This approach is universal, meaning that any index of kernel 
vegetation embedded in a Gaussian kernel can optimize the use of spectral information, 
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leading to lower uncertainty in the propagation of kernelized vegetation indices com-
pared to non-kernelized ones. 

Therefore, in this study, a new vegetation index is used to address the saturation 
phenomenon in estimating the vegetation NPP of Chinese terrestrial ecosystems over the 
past two decades, then the Theil–Sen median and Mann–Kendall trend are used to explore 
the trends of vegetation NPP in Chinese terrestrial ecosystems. Second-order partial cor-
relation, multiple correlation analysis, the differential equation method, and the PLS-SEM 
method are used to analyze the role of each influencing factor on the change in vegetation 
NPP in Chinese terrestrial ecosystems. This study can provide a valuable scientific refer-
ence for ecological environmental conservation, carbon cycle, and resource allocation re-
search in China. 

2. Research Region and Data 
2.1. Research Region 

China is located in the southeastern part of Eurasia, along the western coast of the 
Pacific Ocean, and is characterized by a strong thermal contrast between land and sea 
[26,27] (Figure 1). China possesses the world’s most typical monsoon climate zone, with 
high temperatures and heavy precipitation in summer and cold and poor precipitation in 
winter, when the high-temperature period coincides with the rainy period [28]. China is 
home to a rich diversity of vegetation types, ranging from cold boreal coniferous forests 
to warm subtropical broadleaf evergreen forests and tropical rainforests. The main vege-
tation types include broadleaf evergreen forests, deciduous broadleaf forests, coniferous 
forests, grasslands, and deserts [29]. These unique characteristics make China an im-
portant area for ecological research and natural resource management. 

 
Figure 1. Map of the research region. 

2.2. Material and Processing 
(1) Remote-sensing data 
For the research, the remote sensing data we required included vegetation-type data 

and NDVI data. Vegetation-type data images with a spatial resolution of 500 m (Figure 2) 
were retrieved from https://lpdaac.usgs.gov (accessed on 10 August 2022) and were main-
tained by the NASA EOSDIS Land Processes Distributed Activity Archive Center (LP 
DAAC) at the USGS Earth Resources Observation and Science (EROS) Center 
(https://doi.org/10.5067/MODIS/MCD12Q1.006, accessed on 10 August 2022). The vegeta-
tion-type data were then reclassified into thirteen categories according to the needs of the 
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study (Table 1). The spatial distribution dataset of China’s monthly 1 km vegetation index 
(NDVI) was based on the ten-day 1 km vegetation index data of SPOT/VEGETATION 
PROBA-V 1 km PRODUCTS (http://www.vito-eodata.be, accessed on 6 June 2022) using 
the maximum value synthesis method. 

 
Figure 2. Spatial arrangement of vegetation types in China. 

Table 1. Reclassified vegetation types. 

Class Class Names Acronym εmax 
1 Deciduous Needleleaf Forest DNF 0.485 
2 Evergreen Needleleaf Forest ENF 0.389 
3 Evergreen Broadleaf Forest EBF 0.985 
4 Deciduous Broadleaf Forest DBF 0.692 
5 Shrublands SHR 0.429 
6 Sparse forests SPF 0.475 

12 Grasslands GRA 0.542 
13 Urban and built-up URB 0.542 
15 Water WAT 0.542 
16 Wetlands WET 0.542 
17 Snow and ice SNO 0.542 
20 Deserts DES 0.542 
21 Croplands CRO 0.542 

εmax indicates maximum light use efficiency. 

(2) Meteorological data 
This research required the following meteorological data: monthly average tempera-

ture, monthly total precipitation, monthly total solar radiation, and potential evapotran-
spiration data. The temperature, precipitation, and evaporation data were obtained from 
National Earth System Science Data Center and National Science and Technology Infra-
structure of China (http://www.geodata.cn, accessed on 2 September 2022), with a spatial 
resolution of 1 km. The solar radiation data were obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) (https://doi.org/10.24381/cds.68d2bb30, ac-
cessed on 30 August 2022), with a spatial resolution of 1 km. 

(3) NPP validation data 
The NPP validation data required for the study included both station data and NPP 

product data. The data of eight carbon flux observation stations were downloaded from 
the China National Ecological Science Data Centre Resource Sharing Service Platform 
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(http://www.cnern.org.cn, accessed on 30 October 2022); the specifics of the eight sites are 
listed in Table 2, with the shared flux data comprising the net ecosystem exchange (NEE) 
and ecosystem respiration (Re). To validate and evaluate the reliability of the NPP simula-
tion results, this study converted the flux tower observations from January to December 
2010 to NPP (GPP = Re − NEE, NPPEC = α × GPP) [30]. The NPP simulation results of the 
sites were extracted based on the latitude and longitude information, and a linear corre-
lation analysis was used for NPP validation. The NPP product data used for validation 
were MOD17A3HGF images obtained from https://lpdaac.usgs.gov (accessed on 30 Octo-
ber 2022) and maintained by the NASA EOSDIS Land Processes Distributed Activity Ar-
chive Center (LP DAAC) at the USGS Earth Resources Observation and Science (EROS) 
Center (https://doi.org/10.5067/MODIS/MOD17A3HGF.061, accessed on 30 October 
2022). Chinese NPP data for 2001–2010 were provided by the Resource and Environmental 
Science and Data Centre (acronym “GLO-PEM”) (https://www.resdc.cn/, accessed on 30 
October 2022), and the Global Change Science Research Data Publishing (http://www.ge-
odoi.ac.cn/, accessed on 30 October 2022) ChinaNPP_1985_2015 data were provided by 
the Global Change Science Research Data Publishing System (abbreviated as “Chi-
nanpp”). 

Table 2. Details of the observation stations of carbon flux. 

Station Name Longitude (°) Latitude (°) Vegetation Type 
Changbaishan 128.096 42.402 Forest 
Qianyanzhou 115.063 26.747 Forest 
Dinghushan 112.536 23.173 Forest 

Xishuangbanna 101.266 21.950 Forest 
Haibei 101.331 37.665 Shrub 

Dang Xiong 91.066 30.497 Grassland 
Inner Mongolia 116.675 43.545 Grassland 

Yucheng 116.640 36.958 Farmland 

(4) Additional data 
Additional data considered for the study comprised administrative boundary data, 

soil data, socio-economic data, and topographical data. Data on administrative divisions 
were taken from the National Centre for Basic Geographical Information 
(http://ngcc.sbsm.gov.cn/, accessed on 15 June 2022). GDP and population data were taken 
from the Resource and Environmental Science and Data Centre (https://www.resdc.cn/, 
accessed on 19 September 2022). Soil texture data were acquired from the Harmonized 
world soil data base v1.2 of the Geographical FAO database of the Chinese Academy of 
Sciences. The 30 m resolution DEM data were downloaded from the Geospatial Data 
Cloud (http://www.gscloud.cn/, accessed on 15 June 2022) and slope data were extracted 
on the basis of these data (Table 3). 

Table 3. The datasets used in this paper. 

Data Types Data Sources 
vegetation type https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 10 August 2022) 

NDVI http://www.vito-eodata.be (accessed on 6 June 2022) 
temperature http://www.geodata.cn (accessed on 2 September 2022) 
precipitation http://www.geodata.cn (accessed on 2 September 2022) 
evaporation http://www.geodata.cn (accessed on 2 September 2022) 

radiation https://doi.org/10.24381/cds.68d2bb30 (accessed on 30 August 2022) 
carbon flux http://www.cnern.org.cn (accessed on 30 October 2022) 

MOD17A3HGF https://doi.org/10.5067/MODIS/MOD17A3HGF.061 (accessed on 30 October 2022) 
ChinaNPP_1985_2015 http://www.geodoi.ac.cn/ (accessed on 30 October 2022) 

GLO-PEM NPP https://www.resdc.cn/ (accessed on 30 October 2022) 
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administrative divisions http://ngcc.sbsm.gov.cn/ (accessed on 15 June 2022) 
soil http://dx.doi.org/10.3334/ORNLDAAC/1247 (accessed on 19 September 2022) 

GDP https://www.resdc.cn/ (accessed on 19 September 2022) 
population https://www.resdc.cn/ (accessed on 19 September 2022) 

DEM http://www.gscloud.cn/ (accessed on 15 June 2022) 

3. Methods 
The technical route for this study encompassed the four main aspects illustrated in 

Figure 3: (1) Data Acquisition, which involves obtaining remote-sensing data, meteoro-
logical data, validation data, and other relevant data sources; (2) Construction of the ker-
nel function by referencing the RBF algorithm in machine learning to optimize the nor-
malized vegetation index NDVI; (3) Estimation and Accuracy Validation of the net pri-
mary productivity (NPP) utilizing the CASA model to estimate vegetation NPP in Chinese 
terrestrial ecosystems in the past two decades and validating the results using the valida-
tion data; and (4) Analysis of the spatiotemporal evolution of NPP, including trend anal-
ysis and examination of the driving mechanisms. 

 
Figure 3. Technical flow chart. 
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3.1. Construction of kNDVI 
With reference to the RBF machine learning algorithm [25], this study used linear 

algebra to perform operations and derive a nonlinear algorithm from the linear algorithm 
to ensure that the normalized vegetation index NDVI could be optimized. 

This study refers to [25] and uses the RBF kernel function k(a,b) = exp(−(a − b)2/((2σ2)) 
in all cases, where the σ parameter controls the concept of the distance between the IR and 
NIR bands. This kernel function is calculated as follows: 

( )
( )

21 ,
NDVI tanh

1 , 2
k n r n rk
k n r σ

 − − = =    +   
 (1) 

The kNDVI is calculated by taking the length scale parameter σ to the average dis-
tance between the NIR and IR bands with σ = 0.5 (n + r). Thus, the equation for kNDVI can 
be further simplified as provided below.  

( )2NDVI tanh NDVIk =  (2)

3.2. NPP Estimation Model 
Based on the modified CASA model from [31], the parameters required for the mod-

els were processed accordingly to finally estimate the vegetation NPP with a temporal 
resolution of one month and a spatial resolution of 1 km. The model estimation equation 
is 

( ) ( ) ( )N P P , , ,x t APAR x t x tε= ×   (3)

where NPP(x,t) is the NPP of pixel x in month t (g C/m2·month1), APAR(x,t) is the photo-
synthetically active radiation absorbed by pixel x in month t (g C/m2·month1), and ε(x,t) is 
the actual light energy utilization of pixel x in month t (g C/MJ). 

3.3. NPP Trend Analysis 
The combination of the Theil–Sen median trend analysis with the Mann–Kendall 

trend test approach is a valuable method to identify trends in long-term sequence data 
[32]. This method has become increasingly popular for analyzing long-term vegetation 
data. For this research, we utilized the Theil–Sen median to examine the trends in vegeta-
tion NPP over the past two decades in Chinese terrestrial ecosystems. 

Theil–Sen median trend analysis is a reliable non-parametric statistical approach to 
trend analysis that can reduce the impact of outliers [33]. Its formula is 

NPP NPP
, 2001 2020j imedian i j

j i
β

− 
= ≤ < ≤ − 

 (4)

where median is the median function and NPPj and NPPi are the NPP in year j and year 
I, respectively. When β > 0, it means that NPP shows an increasing trend, while the shows 
a decreasing trend. 

The Mann–Kendall test is a non-parametric test that neither demands a sample to 
obey a specific distribution nor is influenced by a few outliers [34]. During the test, the 
vegetation NPP results for the period from 2001–2020 were constructed as a set of time 
series with per-pixel metavalues to determine significance differences: 

1 , 0
var( )

0, 0
1 , 0

var( )

S S
S

Z S
S S
S

− >
= =
 + <
  

(5)
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( )
1

1 1
sgn NPP NPP

n n

j i
j i j

S
−

= = +

= −   (6)

( )
1, NPP NPP 0

sgn NPP NPP 0, NPP NPP 0
1, NPP NPP 0

j i

j i j i

j i

 − >


− = − =
− − <

 (7)

( ) ( )( )1 2 5
var

18
n n n

S
− +

=  (8)

where Z is the statistic of the NPP series, S refers to the test statistic, var(S) is the variance 
of the S statistic, n denotes the time series length, sgn denotes a symbolic function, and 
NPPi and NPPj are the time series datasets. In the double-lateral trend test, Z > 0 shows an 
uptrend, Z < 0 shows a downtrend, and Z = 0 shows unchanged. Thus, provided the level 
of importance α, if |Z| > u1−α/2 this implies the fact that the NPP time series shows signifi-
cant changes at the α level. In this paper, we determined the importance of change trends 
in vegetation NPP time series at the 0.05 confidence level. 

3.4. Driving Mechanisms of NPP Changes 
3.4.1. Response of NPP to Climatic Factors 

Vegetation NPP is usually influenced by climate elements such as temperature, pre-
cipitation, and radiation. Therefore, in this study, temperature, precipitation, and radia-
tion were used as climatological influences on NPP, as well as correlation and significance 
levels among vegetation NPP, with temperature and precipitation investigated on pixel-
by-pixel bases using partial and multiple correlation analyses. 

The second-order partial correlation coefficient allows the correlation between the 
remaining two variables to be analyzed by excluding the interference of two of the four 
variables [35]. It is calculated as shown below: 

( )( )
, , ,

, 2 2
, ,1 1

ab c ad c bd c
ab cd

ad c bd c

r r r
r

r r

−
=

− −
 

(9)

where rab,cd denotes the partial correlation coefficients for variables a and b with the con-
stant variables c and d, and rab,c, rad,c, and rbd,c denote the partial correlation coefficients for 
variables a and b, a and d, and b and d, respectively. 

A t-test was used to test the significance of the statistics: 

12,34, ,

2
12,32, ,

1
1

m

m

r
t n m

r
= − −

−


  
(10)

where r12,34,...,m indicates the bias correlation coefficient, n indicates the sample size, and m 
indicates the quantity of independent variables. In this study, p ≤ 0.05 was accepted as 
statistically meaningful. 

Multiple correlation analysis focuses on the influence of multiple factors on one fac-
tor [36]. Assuming that y and z are independent variables and x is the dependent variable, 
the multiple correlation coefficient between them is calculated as follows: 

( )( )2 2
, z ,1 1 1x y xy xz yr r r= − − −  (11)

where x is the time series NPP, y represents temperature, and z represents precipitation. 
An F-test was conducted as well: 

2
,

2
,

1
1

x yz

x yz

r n kF
r k

− −=
−  

(12)

where rx,yz is the multiple correlation coefficient, n is the sample size, and k is the inde-
pendent variable number. 
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In order to discriminate the impacts of climatic factors on vegetation NPP in different 
areas, the relative response of climatic factors to NPP was classified into five categories 
based on previous studies (Table 4). 

Table 4. Relative types of impacts of temperature and precipitation on NPP. 

Driving Factor FC PT PP 
Strong common influence FC ≤ F0.05 PT < P0.05 PP < P0.05 
Weak common influence FC ≤ F0.05 PT > P0.05 PP > P0.05 
Temperature influence FC ≤ F0.05 PT < P0.05 PP > P0.05 
Precipitation influence FC ≤ F0.05 PT > P0.05 PP > P0.05 
Non-climatic influence FC ≥ F0.05 / / 

FC is the result of the F-test of the multiple correlation coefficient between NPP and temperature and 
precipitation; PT and PP are the p-values of the partial correlation coefficients between NPP and tem-
perature and precipitation, respectively. 

3.4.2. The Role of Climate and Human Activities in NPP Changes 
Overall, temperature, precipitation, and solar radiation were used as climate-influ-

encing factors for NPP, and differential equations were used to assess the contributions of 
climate change and human activities to the vegetation NPP of the terrestrial ecosystems 
of China for 2001–2020. On each stage, the drivers of vegetation NPP change were dis-
cussed using a partial least squares-structural equation (PLS-SEM) approach with a five-
year period, integrating four types of influencing factors—meteorological, topographic, 
soil, and socio-economic—to reveal how vegetation NPP responded to climatic factors 
across terrestrial ecosystems of the country. 

(1) Differential equation method 
Differential equation methods can quantitate the response for climate change and 

human activities to changes in vegetation NPP for a function y = f (x1, x2, …). The variability 
of the dependent factor y may be represented as [37]: 

=i i
i

i

dx dxdy f f
dt x dt dt

∂ ′=
∂ 

 
(13)

It then follows that: 

 NPP NPP NPP NPPd dtem dpre dradi
dt tem dt pre dt radi dt

ε∂ ∂ ∂= − − +
∂ ∂ ∂

 (14)

Alternatively, 

NPP
NP  P

tem pre radi cc ha
dTR C C C C C
dt

ε= = + + + = +  (15)

where dNPP/dt is the trend in the long time series NPP and dNPP/dt, dtem/dt, dpre/dt, and dradi/dt 
represent the slope of the linear regression of NPP, temperature, precipitation, and solar 
radiation at time t, respectively. Moreover, Ccc = Ctem + Cpre+ Cradi, Cha = Ɛ, Ctem, Cpre, and Cradi 
are the response of climate change, human activity, temperature, precipitation, and radi-
ation to the long-term trend in NPP, respectively, and Ɛ is the systematic error. Although 
there are many drivers other than climate change that affect NPP changes, human activi-
ties constitute the dominant part. Finally, the individual proportional contributions of cli-
mate change (Equation (16)) and human activity (Equation (17)) to NPP trends, p(x), can 
be estimated as follows: 

cc 100 %cc

cc ha

C
C C

ρ = ×
+

 (16)

100% ha
ha

cc ha

C
C C

ρ = ×
+  

(17)

(2) PLS-SEM method 
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The advantages of PLS-SEM are that it fully exploits the information in the data, min-
imizes the error term, and does not require a particular (high) sample size, model identi-
fication problems, or distribution state of the data. Therefore, the problem of covariance 
between variables can be dealt with effectively. The model is composed of two major com-
ponents; one is a measuring model characterizing the relationship between latent and ex-
plicit variables, and the other is a structuring model characterizing the relationship of la-
tent and explicit variables [38]. Its methodology for estimating the parameterization is 
separated into two procedures: (1) iteration to obtain the estimates of the latent variables, 
and (2) linear regression using partial least squares to obtain the estimates of the parame-
ters for structural and measurement models. In this study, using a stratified random sam-
pling method, 50,000 sample points were selected to analyze the effect of each influencing 
factor on the changes in NPP. 

Considering k latent variables and each of k sets of dominant variables which each 
contain m variables, each dominant variable set may be denoted as 

{ } { }1 2 3, , , ,   1,2,3, ,i i i i imX x x x x i k= =   (18)

It is assumed that the latent variables are all linearly combined with the latent varia-
bles and the latent variables are linearly combined with the dominant variables. As each 
dominant variable is correlated as a distinct latent variable, the equation for measuring 
the model is 

( )1,2,3,..., ; 1,2,3,...,ij ij i ij ix i k j mλ ξ σ= + = =  (19)

The equation of the structural model is as follows: 

i i j ij j iξ β ξ ε≠= +  (20)

where ξi is the standardized latent variable, λij is the factor loading, βij is the path coeffi-
cient, and σij and εi are error correction terms with mean zero and that are uncorrelated 
with the predictor. 

4. Results and Analysis 
4.1. Accuracy Validation of NPP 

This research compared simulated NPP values with data from eight flux sites during 
the same period. In addition, it compared NPP simulations for forests, shrubs, and grass-
lands in 2005–2010 with time series data from the Dinghu Mountain, Haibei, and 
Dangxiong sites. To further evaluate the NPP estimates for various vegetation types, this 
study included three NPP products (MOD17A3HGF, GLO_PEM, and Chinanpp). 

The study results show that the simulated NPP values based on the CASA model are 
strongly correlated with the measured values at the stations (R2 > 0.6) (Figure 4). Interest-
ingly, the NPP estimated with kNDVI (R2 = 0.74) had a better correlation than that esti-
mated with NDVI (R2 = 0.65). This finding suggests that the NPP values estimated using 
kNDVI were more accurate than those obtained using NDVI. Compared with NDVI, the 
NPP values estimated based on kNDVI were closer to the measured NPP values in both 
densely vegetated and sparsely vegetated sites (Figure 5), and more closely matched the 
phenological cycle measured at the flux stations, making this approach more suitable for 
estimating terrestrial vegetation NPP on a national scale. 

The comparison revealed that the mean values of the three NPP products and NPP 
estimated by this study varied (Figure 6), with GLO-PEM NPP (1431.95 g C/m2) > NDVI 
NPP (1161.43 g C/m2) > kNDVI NPP (942.46 g C/m2) > MOD17A3HGF NPP (864.17 g C/m2) 
> Chinanpp NPP (397.33 g C/m2). The authors of [39] demonstrated that the NPP values 
estimated by the GLO-PEM model were generally higher than the MOD17A3HGF prod-
uct NPP values and [40] produced the Chinanpp dataset, with the maximum light energy 
utilization determined as 0.55, while the maximum light energy utilization estimated by 
the other two products and in this study was defined according to each vegetation type 
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(Table 1); thus, the NPP values of Chinanpp products were low. The NPP mean estimated 
by NDVI in this study was high compared with the NPP mean of the MOD17A3HGF 
product, which was overestimated, while the NPP mean estimated by kNDVI was close 
to the NPP mean of MOD17A3HGF, and both of them were in better concordance. Gener-
ally, the NPP values estimated using kNDVI in this study were reliable and could be used 
in subsequent analysis. 

 
Figure 4. Model validation. 
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Figure 5. NPP time series of (a) forest at Dinghushan station, (b) scrub at Haibei station, and (c) 
grassland at Dangxiong station from 2005 to 2010. 

 
Figure 6. Box plot of the correlation between the NPP of different vegetation types for different 
products. 

4.2. Characteristics of Spatiotemporal Variation in NPP 
4.2.1. Temporal Trends 

On an interannual scale, the NPP variation within the research area from 2001 to 2020 
showed a fluctuating upward trend between 64.13 and 79.72 g C/m2 with a rate of increase 
of 0.7235 g C/m2 (R2 = 0.82) and a mean value of 72.75 g C/m2 (Figure 7). The trend of NPP 
changes during the study period was not continuous, with large ups and downs and fluc-
tuating characteristics during 2001–2016 and leveling off during 2017–2020. The maximum 
value of NPP over the studied period occurred in 2016, exceeding the average by 6.97 g 
C/m2, while the minimum value of NPP occurred in 2001 and was below the mean value 
of 8.62 g C/m2. 

On a monthly scale, the NPP trend line for the study area over the studied period 
from January to December generally showed an inverted “V” shape (Figure 8), with the 
NPP peaking in July each year. The monthly variation features of NPP are similar to the 
climate characteristics, with higher NPP values in summer and lower NPP values in win-
ter. Because the changes in vegetation NPP are influenced by the control of vegetation 
growing process and light energy utilization, in turn, light energy utilization is affected 
by different circumstantial factors, which include temperature, precipitation, and solar 
radiation. The hot and humid environment in summer is suitable for vegetation growth, 
while the cold and poor rainfall in winter is not conducive to the accumulation of vegeta-
tion organic matter. 
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Figure 7. Graph of the average NPP in 2001–2020. 

 
Figure 8. Graph of the monthly NPP averages in 2001–2020.  

4.2.2. Spatial Distribution Characteristics 
In the study area, there was a clear pattern of regional variation in the multi-annual 

NPP averages, with a general spatial trend showing a decrease from the southeast coast 
to northwest inland (Figures 9 and 10). High NPP regions were focused in the eastern and 
southern portions of the mainland, mainly in southwestern Hainan Province, Fujian Prov-
ince, and most of Taiwan Province. These regions have low latitudes, sufficient heat, and 
abundant precipitation, which are conducive to the accumulation of organic compounds 
in vegetation. Low NPP regions were clustered in the western and northern parts of the 
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continent, mainly in China’s Inner Mongolia Autonomous Region, Xinjiang Uygur Auton-
omous Region, Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and 
Tibet Autonomous Region. These areas have an arid climate, poorer soils, and low vege-
tation cover, which are not beneficial for the accumulation of organic material in vegeta-
tion. 

The number of NPP values in the domain of 0–150 g C/m2 was the highest, with 
56.03%, followed by 300–450 g C/m2, 450–600 g C/m2, and 150–300 g C/m2 with 22.82%, 
12.90%, and 6.36%, respectively, and finally >600 g C/m2 with the lowest percentage of 
1.89%. In terms of the statistical histogram by province (Figure 9), Taiwan Province had 
the largest mean multi-annual NPP values of 984.44 g C/m2, followed by Hainan Province 
(724.04 g C/m2) and Fujian Province (638.46 g C/m2). The mean multi-year NPP value in 
Xinjiang Uygur Autonomous Region was the smallest, at 30.79 g C/m2. 

 
Figure 9. Average value of NPP in China, 2001–2020. (a) Spatial distribution of NPP averages in 
China; (b) spatial distribution of NPP averages by province; and (c) histogram of NPP averages by 
province. 
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Figure 10. NPP of vegetation in terrestrial ecosystems in China, 2001–2020. 

4.2.3. Spatial Variation Characteristics 
The proportion of areas with increasing and decreasing NPP trends was 72.96% and 

27.04%, respectively (Figure 11). This study presents the spatial distribution of NPP for 
the two subregions for 2005, 2010, 2015, and 2020, as well as the overall trend distribution 
for these twenty years (Figure 11). It is obvious that the NPP in subregion A gradually 
increases and the NPP in subregion B progressively decreases as time passes. The signifi-
cance tests of the NPP trend results indicated that the percentage of significant and very 
significant changes in regional NPP were 17.10% and 30.10%, respectively (Figure 12a). 
The results of the overlay analysis of the NPP trend and significance show a significant 
increase and a very significant increase of 12.07% and 28.86% in these areas, respectively 
(Figure 12b), while the regions with significant and very significant decreases are 3.46% 
and 3.31%, respectively. 

There were significant and very significant increases in NPP concentrated in the 
Northeast Plain, Loess Plateau, and Sichuan Basin in a band-like distribution, which is 
related to the national policy guidance. For example, major items such as the return of 
cultivated land to forest and grass, the “Three-North” Shelterbelt Program, and the ame-
lioration of saline–alkaline soil all achieved certain results [41]. Regions with significant 
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and very significant decreases in NPP were primarily in the eastern Xinjiang Uygur Au-
tonomous Region, western Inner Mongolia, northwestern Qinghai and Gansu Provinces, 
and most of the Tibet Autonomous Region, which is climate-related. These areas are lo-
cated in the interior of China, with low precipitation, low vegetation cover, and vast desert 
areas (Taklamakan Desert, 357,300 km2; Gurbantunggut Desert, 56,800 km2; Badain Jaran 
Desert, 55,000 km2; and Tengger Desert, 41,900 km2), thus, the vegetation productivity 
level is considered low.  

 
Figure 11. Theil–Sen medium trend distribution. 

 
Figure 12. Significance graphs. (a) Mann-Kendall trend test results; (b) Theil-Sen median trend 
analysis and Mann-Kendall trend test superimposed analysis results. 
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4.3. Analysis of the Mechanisms Driving the Spatiotemporal Evolution of NPP in China in the 
Studied Period 
4.3.1. Trends in Climate Change and Their Impact on Vegetation NPP 

Over the studied period, there was an overall upward trend in the average annual 
temperature in the research region (Figure 13), with a rate of increase of 0.004 °C. How-
ever, a downward trend was evident from 2007 onwards, dropping to a minimum of 2.04 
°C in 2012 before turning into a significant upward trend. The annual average solar radi-
ation as a whole shows a decreasing trend with a rate of −1.7791 MJ/m2, with significant 
decreasing trends in 2009–2010, 2013–2016, and 2019–2020, especially from 2019 to 2020, 
with a decrease of 17.40 MJ/m2. The average annual precipitation fluctuated relatively 
smoothly, with the lowest average annual precipitation in 2011 (63.82 mm) and the highest 
in 2010 (75.20 mm). 

The impacts of temperature, precipitation, and radiation on vegetation NPP were an-
alyzed separately, eliminating the impacts of additional elements. The main positive cor-
relation was among vegetation NPP and temperature, precipitation, and radiation in the 
research region (Figure 14d). The areas where NPP showed a positive correlation with the 
temperature accounted for 62.19% of the total, primarily in East China and South China, 
the southern part of Central China, the eastern and southern parts of North and Northeast 
China, the northern and eastern parts of Northwest China, and the western and eastern 
parts of Southwest China (Figure 14a). The areas where NPP was positively correlated 
with precipitation were as high as 79.65%, mainly in Northeast and North China, the 
northern part of East China, and the northern and eastern parts of Northwest China (Fig-
ure 14b). The precipitation in certain regions was negatively correlated with the NPP pro-
cess, mainly in southern China, central China, and southern East China. The areas where 
NPP was positively correlated with solar radiation accounted for 69.86% and were mainly 
located in North China and Central China, the eastern part of Southwest China, most of 
Northwest China, North China, and East China (Figure 14c). 

The part of the research region in which NPP was positively correlated with precipi-
tation, temperature, and radiation for only twenty years was larger than the area occupied 
by a negative correlation (Figure 15). The percentage of area with a significant positive 
correlation between temperature and NPP was 10.15%, and the percentage of area with a 
significant negative correlation was 3.53%. The precipitation and NPP had a significant 
positive correlation between the areas with a percentage of 31.82%, and only 1.34% of the 
area had a significant negative correlation. The percentage of areas with a significant pos-
itive correlation between the radiation and NPP was 13.79%, and the percentage of areas 
with a significant negative correlation was 1.82%. 

The combined investigation of the impacts of the temperature and precipitation fac-
tors on the vegetation NPP demonstrated that the multiple correlation coefficients of tem-
perature, precipitation, and vegetation NPP ranged from 0 to 1 (Figure 16a). The correla-
tion between temperature, precipitation, and vegetation NPP was predominantly non-sig-
nificant by the F-significance test (Figure 16b). The relative role of temperature and pre-
cipitation on NPP was further explored (Figure 17), with climatic factors affecting up to 
64.18% of the area. The highest percentage of regions with a weak common influence was 
42.23%. This was followed by precipitation and temperature, with 16.67% and 4.02%, re-
spectively. The strong common influence saw the lowest percentage of regions, with only 
1.25%. 
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Figure 13. Trends in temperature (a), precipitation (b), and radiation (c) over the studied period of 
2001–2020. 
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Figure 14. Plots of the bias correlation coefficients with NPP for (a) temperature, (b) precipitation, 
and (c) solar radiation; (d) Histograms of the bias correlation coefficients for all three factors. 

 
Figure 15. Significance test plots: (a) temperature, (b) precipitation, (c) radiation and NPP bias cor-
relation coefficient test; (d) significance histograms. 
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Figure 16. Plot of the multiple correlation coefficient (a) and F-test (b). 

 
Figure 17. Spatial distribution of the compound effect of (a) temperature and (b) precipitation on 
NPP. 

4.3.2. Relative Contributions of Climate and Human Activities to NPP Changes 
The predicted NPP change rate over the past two decades in the study area ranged 

from −88.5608 to 127.417, and the anthropogenic NPP slope ranged from −99.4355 to 92.722 
(Figure 18). The combination of the results of climate change and human activity contri-
butions to NPP can be found in Figure 19. The percentage of the area where NPP increased 
owing to climate change was 61.87%, of which 6.63% was contributed by >80%, primarily 
in the eastern part of Northeast and North China. The decrease was 38.13%, mainly in the 
southeastern part of the Qinghai–Tibet Plateau. The region of NPP increased by human 
activities was 73.92%, of which 38.01% was contributed by >80%, mainly in Central China 
and South China, central parts of North China, north and south parts of Northeast China, 
east and south parts of Northwest China, and the Qinghai–Tibet Plateau. The decrease 
accounted for 26.08%, mainly in the northeastern part of Northwest China and the western 
part of North China. 



Remote Sens. 2023, 15, 2871 21 of 28 
 

 

 
Figure 18. Spatial distribution of (a) the slope of the predicted NPP and (b) the slope of the NPP 
generated by human activities. 

 
Figure 19. Spatial distribution of the contribution of (a) climate change and (b) human activities to 
NPP changes. 

5. Discussion 
5.1. Relationship between Drivers and NPP Changes at Each Stage 

The driving factors affecting vegetation NPP changes may differ at different stages, 
and the main contributors may differ for each time period. In this study, the relationships 
between each driver and vegetation NPP changes were analyzed using a structural equa-
tion PLS-SEM with a five-year cycle by integrating soil, climate, socioeconomic, and topo-
graphical factors. 

This research first validated the reliability and validity of the PLS-SEM model (Table 
5). VIF was used to detect multicollinearity in the variables and provided values between 
1 and 5, indicating that there was no significant covariance between the factors. A compo-
site reliability (CR) greater than 0.7 and not lower than 0.6 indicated that the model was 
reliable, and an average variance extracted (AVE) greater than 0.5 demonstrated that the 
model was valid. The data in this study satisfied the above conditions well and prove that 
the model was reasonable and reliable [42]. 
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Table 5. PLS-SEM reliability and validity assessment. 

Time Periods 2001–2005 2005–2010 2010–2015 2015–2020 
Construct VIF Loading CR AVE VIF Loading CR AVE VIF Loading CR AVE VIF Loading CR AVE 

Soil   0.669 0.548   0.712 0.569   0.896 0.811     
pH 1.030 0.978   1.030 0.925   * *   1.028 1.000   

Clay * *   * *   1.729 0.958   * *   
Silt 1.030 0.373   1.030 0.533   1.729 0.839   * *   

Climate   0.685 0.538   0.857 0.750   0.908 0.832   0.703 0.563 
Evaporation 1.008 0.897   1.335 0.877   1.820 0.880   1.027 0.933   
Temperature * *   1.335 0.855   1.820 0.943   * *   
Precipitation 1.008 0.521   * *   * *   * *   

Radiation * *   * *   * *   1.027 0.504   
Human activity   – –   0.738 0.607   0.713 0.576   0.953 0.910 

GDP 1.000 1.000   1.107 0.976   1.042 0.948   3.222 0.976   
Population * *   1.107 0.521   1.042 0.504   3.222 0.931   

Terrain   0.827 0.707   0.824 0.704   0.814 0.692   0.827 0.707 
DEM 1.238 0.925   1.241 0.936   1.236 0.952   1.235 0.922   
Slope 1.238 0.746   1.241 0.729   1.236 0.691   1.235 0.751   

CR > 0.65; AVE > 0.5; values that did not meet the conditional hypothesis or were not significant 
were removed and are denoted by *. 

The PLS-SEM model of the relationship between the latent and explicit variables for 
the changes in NPP in 2001–2020 is shown in Figure 20. The results show that changes in 
human activities always had a negative impact on NPP changes, with path coefficients of 
−0.017, −0.075, −0.041, and −0.006 for 2001–2005, 2005–2010, 2010–2015, and 2015–2020, re-
spectively. For the periods 2001–2005 and 2015–2020, topographical change had a positive 
impact, with path coefficients of 0.096 and 0.234, respectively. Soil change had a positive 
impact in 2001–2005, 2010–2015, and 2015–2020, with path coefficients of 0.078, 0.463, and 
0.220, respectively. In addition, the path coefficients and main impact factors of the climate 
changed. The impact of climate (evaporation and precipitation) on NPP changes in 2001–
2005 was positive (β = 0.375). The impact of climate (evaporation and temperature) was 
positive (β = 0.092) in 2005–2010 and became negative in 2010–2015. The impact of climate 
on NPP changes (evaporation and solar radiation) was positive (β = 0.151) for the period 
of 2015–2020. 

The amount of fertilizer used has an effect on vegetation NPP changes; unfortunately, 
raster data on fertilizer inputs such as N and P were lacking in this study. In a forthcoming 
follow-up study, we intend to obtain raster data on various types of fertilizer inputs to 
enhance the accuracy and reliability of the influence factors of vegetation NPP. 
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Figure 20. PLS-SEM model plots: (a) 2001–2005, (b) 2005–2010, (c) 2010–2015, and (d) 2015–2020 for 
the relationship between changes in each variable and changes in NPP. Ovals indicate latent varia-
bles, rounded rectangles indicate explicit variables, arrows indicate their association, red dashed 
lines indicate negative correlations, and green solid lines indicate positive correlations. 

5.2. Comparison with Other NPP Reports 
The data sources used in NPP studies can be broadly divided into two categories: 

existing NPP products [43–47] (Table 6), which have a fixed spatial resolution, and esti-
mations of NPP using NDVI and FPAR. To analyze the relationship between NPP changes 
and influencing factors, studies have mainly explored the overall response mechanism of 
NPP to climate change and human activities; in addition, they have considered mainly the 
effects of temperature and precipitation [36,43,46,48,49]. Other studies have considered 
additional influencing factors, such as relative humidity, sunshine hours, chlorophyll-a, 
photosynthetic availability, wind stress curl, salinity, nitrates, phosphates, and CO2 con-
centration [44,47,50]. Compared with other studies, this paper conducted a relatively com-
prehensive study of the climatic and anthropogenic influences on vegetation NPP; how-
ever, other influencing factors, such as CO2 concentrations, nitrates, and phosphates, 
could be considered in subsequent studies. 
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Table 6. Comparison with other NPP research. 

Study Remote-Sensing Indicator Sources Impact Factors 

This study NDVI (MOD13Q1) 
temperature, precipitation, solar radiation, evaporation, GDP, population, 

pH, clay, silt, DEM, slope 
[45] NPP (MOD17A3HGF) - 
[48] - temperature, precipitation 
[44] NDVI (AVHRR/MOD13A3) precipitation, relative humidity, sunshine hours, temperature, wind speed 
[43] NPP (MOD17A3HGF) temperature, precipitation 
[36] NPP (MOD17A3HGF) temperature, precipitation 
[49] FPAR (MCD43A1 and MCD43A2) temperature, precipitation 
[46] ANPP (ChinaNPP_1985_2015) temperature, precipitation 

[47] NPP(Aqua-MODIS) 
temperature, Chlorophyll-a, photosynthetically available radiation, relative 

surface density, wind stress curl, salinity, nitrates, phosphates 
[50] NDVI (GIMMS) CO2 concentration, climate, land use change 

5.3. Limitations and Prospects 
Although the accuracy of kNDVI estimates at the site scale was higher than that of 

NDVI, unfortunately, ChinaFLUX shared flux observations only for certain stations. This 
makes it difficult to rely on observational data alone when assessing the quality of NPP 
data at the national scale. In the future, more measured data will be sought as much as 
possible to improve the quality of the estimated NPP data. 

For accuracy validation, direct real NPP data were not available in this research, and 
were obtained by converting flux data. It is worth noting that the value of the NPP/GPP 
ratio α used in conversion varies with geography, meteorology, and vegetation type, 
while in this study we used the regional average NPP/GPP ratio (α = 0.64), which could 
potentially have an impact on the NPP conversion value. 

6. Conclusions 
Based on an improved CASA model driven by the new kNDVI vegetation index, this 

paper estimated the NPP of China’s terrestrial ecosystem vegetation from 2001 to 2020 
and used the Theil–Sen median, Mann–Kendall trend, second-order partial correlation, 
multiple correlation analysis, differential equation method, and PLS-SEM method to ana-
lyze the temporal and spatial evolution of vegetation NPP in China’s terrestrial ecosys-
tems. The results show that kNDVI can effectively improve the saturation problem, cope 
with complex phenological changes, and improve the precision of NPP estimation. The 
NPP of Chinese vegetation presented a fluctuating upward trend on the time scale from 
2001 to 2020. It increased by a mean of 0.7235 g C/m2 each year, showing a low northwest 
to high southeast pattern in the spatial distribution, with the highest average multi-year 
NPP value by province in Taiwan Province and the lowest in Xinjiang Uygur Autonomous 
Region. The changes in NPP were dominated by an increasing trend (72.96%), and the 
areas showing significant and very significant increases were concentrated in the North-
east Plain, Loess Plateau, and Sichuan Basin. In Northeast and North China, vegetation 
NPP was mainly influenced by precipitation, while in Southwest and South China it was 
mainly influenced by temperature and in Central China by solar radiation. With the pas-
sage of time, the dominant factors influencing the changes in NPP change and have dif-
ferent impacts. The main influencing factors of the climate in 2001–2005 were evaporation 
and precipitation, and the main influencing factors of the climate in 2005–2010 were evap-
oration and temperature; moreover, the influences of both phases were positive. However, 
in 2010–2015 the impact of the climate was negative. Climate change and human activities 
have a major positive effect on NPP change. The areas where the NPP increased due to 
climate change were mainly located in Northeast and North China, and the areas where 
the NPP increased due to human activities were mainly located in Central and South 
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China. The results of this research can be used in China and around the world to better 
prepare for and respond to climate change. 
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