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Abstract: A robust and effective method for the identification of point-distributed coded targets
(IPCT) in a video-simultaneous triangulation and resection system (V-STARS) was reported recently.
However, its limitations were the setting of critical parameters, it being non-adaptive, making
misidentifications in certain conditions, having low positioning precision, and its identification effect
being slightly inferior to that of the V-STARS. Aiming to address these shortcomings of IPCT, an
improved IPCT, named I-IPCT, with an adaptive binarization, a more precise ellipse-center local-
ization, and especially an invariance of the point–line distance ratio (PLDR), was proposed. In the
process of edge extraction, the adaptive threshold Gaussian function was adopted to realize the
acquisition of an adaptive binarization threshold. For the process of center positioning of round
targets, the gray cubic weighted centroid algorithm was adopted to realize high-precision center
localization. In the template point recognition procedure, the invariant of the PLDR was used to
realize the determination of template points adaptively. In the decoding procedure, the invariant of
the PLDR was adopted to eliminate confusion. Experiments in indoor, outdoor, and unmanned aerial
vehicle (UAV) settings were carried out; meanwhile, sufficient comparisons with IPCT and V-STARS
were performed. The results show that the improvements can make the identification approximately
parameter-free and more accurate. Meanwhile, it presented a high three-dimensional measurement
precision in close-range photogrammetry. The improved IPCT performed equally well as the com-
mercial software V-STARS on the whole and was slightly superior to it in the UAV test, in which it
provided a fantastic open solution using these kinds of coded targets and making it convenient for
researchers to freely apply the coded targets in many aspects, including UAV photogrammetry for
high-precision automatic image matching and three-dimensional real-scene reconstruction.

Keywords: coded target identification; gray cubic weighted centroid; invariance of point–line
distance ratio; photogrammetry

1. Introduction

Coded targets play an important role in close-range photogrammetry, machine vision,
computer vision, and industrial measurements [1,2]. Each coded target has its distinct
number of coding sequences, so they always serve as tie points or control points. For
this reason, coded targets can be specially applied in fast image matching, object tracking,
and automatic high-precision camera orientation [3–5]. According to their application
areas, coded targets can be used in robot navigation, augmented reality, close-range/UAV
photogrammetry, and many other fields [6,7]. For example, Chan et al. adopted coded
targets to realize self-localization of an uncalibrated camera [5]. The authors of [8] used
coded targets as tie points between images to help realize bundle adjustment and in [9],
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they used coded targets as control points to perform automatic resection to obtain the
camera’s external orientation elements.

The coded targets include two representative common types: the ring-distributed
type and the point-distributed type. The ring-distributed type is represented by Schneider
circular coded targets (SCTs) [10] and the point-distributed type is represented by Geodetic
Systems Inc. (GSI) coded targets (GCTs) [11].

Before using the coded targets above, it is key to identify the coding sequence number.
The identification methods for SCTs were reported publicly and used in the professional
photogrammetric software Agisoft Metashape [12,13] to automatically perform image
matching and three-dimensional (3D) reality reconstruction in unmanned aerial vehicle
(UAV) photogrammetry. The GCTs are mainly used and embedded in an industrial digital
close-range photogrammetric system, named the video-simultaneous triangulation and
resection system (V-STARS) [14]. As V-STARS is closed-source software, the detailed
method of GCT identification is not publicly available [15]. There were few open-access
peer-reviewed articles until the authors of [16] recently shared their detailed identification
method for GCTs. As the authors of [16] mentioned, the structure of a GCT is more
complex, but it is more stable for identification. Thus, it is of great significance to study the
identification of GCTs.

The authors of [16] detail the groundbreaking work previously carried out by our
group, in which clear ideas were provided for the identification of GCTs and the software
program was made public. This software showed nearly equivalent results compared
to V-STARS, and can be regarded as a state-of-the-art method for the identification of
point-distributed coded targets (IPCTs). It is known that different sizes of measured
objects in different scenarios require different shooting distances, which also correspond
to the different sizes of the coded targets. As Brown et al. [14] introduced in V-STARS,
3 mm, 6 mm, and 12 mm are the most commonly used for close-range photogrammetry.
It is important to keep the parameters unchangeable to obtain the correct results under
different scenarios. However, in Ref. [16], the precision of center positioning was low and it
produced misidentifications under certain conditions. In addition, some critical parameters
needed to be tuned manually, which proved not to be flexible or self-adaptive when facing
different scenarios. To improve the performance of IPCT, we propose an improved IPCT
(I-IPCT) to address these shortcomings, where a more precise ellipse center positioning
method and an invariance of the point–line distance ratio (PLDR) were adopted in the
identity verification of a GCT and in the decoding procedure. Through these improvements,
the identification of GCTs reached a perfect level with parameter self-adaptation, which
approximates parameter-free conditions and is more accurate.

2. Methods

Before introducing the improved method, I-IPCT, our previous work on developing
IPCT and the existing problems are discussed.

2.1. Previous Work

IPCT includes three main parts: round target extraction and center positioning, tem-
plate point recognition, and decoding point determination. In the following section, the
related knowledge and identification method of IPCT is briefly discussed.

2.1.1. The Structure of a GCT

As shown in Figure 1, a GCT consists of eight round target points, including five
template points and three coding/decoding points. Taking CODE18 as an example, it
consists of template points A, B, C, D, and E and coding/decoding points 4, 6, and 14.
Different combinations of coding points may obtain different coding sequence numbers.
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Figure 1. The construction of a GCT called CODE18.

2.1.2. Round Target Extraction and Center Positioning

The round targets are obtained through contour extraction, an ellipse filter with
geometric constraints, and ellipse fitting. Then, the center of each target is obtained by
center positioning through solving the ellipse equation.

2.1.3. Template Point Recognition

Based on Figure 2, IPCT uses the projective and permutation invariant (P2-Invariant)
to achieve template point recognition. The five black dots and three green dots represent
the template point and decoding point, respectively.
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The value of P2-Invariant is the key to achieving template point recognition. The
workflow of template point recognition is as follows:

(1) Find the three collinear points C, E, and A. (2) Find the suitable points D and B
from the remaining five points. The suitable condition is the one where the calculated
P2-Invariant is equal to the designed P2-Invariant.

To avoid false choices, D and B are constrained by the geometric distance restricted
condition.

max
(
dDE, dBE

)
≤ βmin

(
dDE, dBE

)
, (1)
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where d is the distance from E to D or B, and β is empirically calculated as 2.5.

2.1.4. Decoding Point Determination

After the five template points are determined, the affine transformation parameters
between the designed plane and the imaging plane can be obtained.

Then, the three decoding points under the image coordinate system are transformed
by the affine transformation parameters to obtain their corresponding calculated points
under the designed coordinate system. Comparing the calculated points Pcal with the
designed points Pdes in the coding library, the decoding points which satisfy the distance
constraint are selected:

dis(Pcal , Pdes) ≤ h, (2)

where h is empirically set as 1.0.
After the five template points and the three decoding points are determined, a GCT

can be identified.

2.1.5. Identification Process of GCTs

The identification process of GCTs in IPCT contains six main procedures: (1) binariza-
tion; (2) edge extraction; (3) geometric constraints, ellipse fitting, and center positioning;
(4) template point identification; (5) decoding point identification; and (6) coding serial
number acquisition. The details can be found in Ref. [16].

2.1.6. Existing Problems

In the procedure of the above identification process in IPCT, there exist mainly three
problems.

Firstly, at the edge extraction stage, the binarization threshold is manually set with a
given value according to specific lighting conditions and is not adaptive under challenging
lighting conditions.

Secondly, at the center positioning stage, the centers of round targets are obtained by
fitting the ellipse edge, whose localization precision is as low as 0.2–0.3 px. As V-STARS has
a precision of center positioning as high as 0.02 px, which can be regarded as the standard,
it is urgent to improve the center positioning precision of IPCT.

Thirdly, at the template point recognition stage and decoding point determination
stage, two empirical parameters, β in Equation (1) and h in Equation (2), which are directly
related to the Euclidean distances, are not flexible and cannot be adjusted self-adaptively.
Tests have shown that when the shooting angle is larger, the method will be restricted by
the constraints to some extent as the image deformation is larger. Evidently, as shown
in Figure 2, when the image deformation increases, the distance difference between DE
and BE increases, and β should be adjusted manually. In addition, when the potential
decoding points are too close or there exists some interference, misidentifications will occur.
Obviously, h is not anti-jamming. In brief, β and h should be manually tuned according to
different application scenes and they cannot be easily controlled.

Due to these limitations, we developed an improved IPCT, which includes three
aspects of improvement, to optimize the identification. I-IPCT includes an adaptive bina-
rization for edge detection, a more precise center localization for round targets, and an
invariance of the PLDR to replace the constraint conditions in Equations (1) and (2) for
template point recognition and decoding point determination.

2.2. Adaptive Binarization for Edge Detection

The manual binarization threshold in IPCT is not convenient for complex scenarios.
Here, we adopted adaptive threshold Gaussian functions to automatically calculate the
threshold value for binarization.

dst(x, y) =
{

maxValue, i f Src(x, y) > T(x, y)
0, Otherwise

(3)
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where Src(x, y) is the original gray value of (x, y) and T(x, y) is a threshold calculated
individually for each pixel.

T(x, y) = ∑K−1
i=0 ∑K−1

j=0 G(i, j) · Src(i, j)− C (4)

where the threshold value T(x, y) is a weighted sum of the K×K neighborhood of (x, y)
minus C and K is the block size of a pixel neighborhood that is used to calculate a thresh-
old value for the pixel: 3, 5, 7, and so on. C is a constant. G(i, j) are the Gaussian
filter coefficients.

G(i, j) = α · exp

(
− (i− (K− 1)/2)2

2σ2 − (j− (K− 1)/2)2

2σ2

)
(5)

where i = 0, 1, . . . , K − 1, j = 0, 1, . . . , K − 1, and α is the scale factor chosen so that
∑i ∑j G(i, j) = 1. σ is the Gaussian standard deviation and is computed from
Kσ = 0.3((K− 1)/2− 1) + 0.8.

2.3. More Precise Ellipse-Center Localization

Ellipse fitting in IPCT is not applicable to high-precision 3D measurements. Here,
we adopted an advanced gray weighted centroid algorithm to achieve a more precise
localization for the ellipse center.

The unified model of gray weighted centroid algorithm is:
u0 =

∑
i2
i=i1

∑
j2
j=j1

ui[g(ui ,vj)−T]
k

∑
i2
i=i1

∑
j2
j=j1

[g(ui ,vj)−T]
k ,

v0 =
∑

i2
i=i1

∑
j2
j=j1

vj[g(ui ,vj)−T]
k

∑
i2
i=i1

∑
j2
j=j1

[g(ui ,vj)−T]
k .

(6)

where (u0, v0) is the centroid of a round target, g
(
ui, vj

)
is the gray value at

(
ui, vj

)
inside a

round target, T is a parameter threshold related to the gray value, and k is the weighted
index for the gray value (k = 1, 2, 3 . . . ). It is equivalent to the traditional gray weighted
centroid calculation formula when T = 0 and k = 1, and to the gray square weighted
centroid method when k = 2. Through sufficient experiments, we found the best parameters
were T = 0 and k = 3.

2.4. The Invariance Theory of PLDR

The theory of invariance of PLDR was originally from Refs. [17,18], which imple-
mented line-feature matching for two images. The theory adopted point matches from
scale invariant feature transform (SIFT) [19] to guide line matching. Here, we regarded the
coded target identification as feature matching for two images because the designed GCT
plane can be regarded as the left image and the affined GCT plane can be regarded as the
right image.

2.4.1. The Invariance of the PLDR for Line Matching

As shown in Figure 3, there exists a three-dimensional line L on the object space plane.
l and l′ are the corresponding two-dimensional lines on the two images. Xi and Xi

′ (i = 1,
2) are the corresponding points, and Qi (i = 1, 2) are the intersections of Xi and Xi

′ on the
object plane.
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The invariance of the point–line distance ratio is expressed as the ratio of the distance
between two points and the line. When Q1, Q2, and L are coplanar, the points and lines
on the two camera planes can be associated by a homograph. A more special affine
transformation matrix Ha can be used in the local small plane region.{

Xi
′ = HaXi, i = 1, 2

l′ = sH−T
a l

, (7)

where s is the scale factor.
On the two camera planes, the distance ratio between two points and a line can be

expressed as: {
DRatio(X1, X2, l) = lTX1/lTX2

DRatio
(
X1
′, X2

′, l′
)
= l′TX1

′/l′TX2
′ , (8)

Substituting Equation (7) into Equation (8), we obtain Equation (9):

DRatio(X1, X2, l) = DRatio
(
X1
′, X2

′, l′
)
, (9)

Equation (9) indicates that the distance ratio between two points, and the reference line
on the left image is equal to the distance ratio between the two corresponding points and
the corresponding line on the right image. This invariant serves as a basis for line matching.

The matching degree is measured by the similarity expressed in Equation (10). The
larger the similarity, the higher the matching degree. The maximum of the similarity is 1.0.

sim(X1, X2)= exp{ −
∥∥DRatio(X1, X2, l)− DRatio

(
X1
′, X2

′, l′
)∥∥}, (10)

The above shows the principle of PLDR invariance for line matching. It should be
pointed out that the corresponding points are known and the line is to be matched.

2.4.2. The Invariance of the PLDR for Template Point Recognition

The essence of template point recognition is template point matching. That is, what we
should address is how to match the affined template points (Figure 4b) with the designed
template points (Figure 4a). Here, we apply the invariance of the PLDR in reverse. CEA is
the line to be matched and (D,D′) and (B,B′) are the corresponding points. To recognize the
template points, how to match D and B with D′ and B′, respectively, becomes a problem
when the corresponding line CEA is known.
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Here, we replace Equation (1) with Equation (11) to constrain the template point matching.

DRatio
(

D, B, CEA
)
= DRatio

(
D′, B′, C′E′A′

)
, (11)

As D and B are symmetrical with respect to line CEA as designed, the ideal PLDR
value DRatio

(
D, B, CEA

)
associated with the template points remains constant as 1.0 under

any affined transformation. However, the actual PLDR value DRatio

(
D′, B′, C′E′A′

)
will

have a divergence δ of 1.0. Then, Equation (12) can be served as the criterion by which to
find D and B.

abs
(

DRatio

(
D′, B′, C′E′A′

)
− 1.0

)
< δ (12)

2.4.3. The Invariance of the PLDR for Decoding Point Determination

Similar to template point matching, decoding point determination depends on the
matching of three decoding points. That is, we should address how to match the affined
decoding points (Figure 5b) with the designed decoding points (Figure 5a). Different from
Equation (6), which provides a predefined distance threshold directly, we first roughly set
an initial sufficient range constraint for the distance difference (refer to the green dashed
circle shown in Figure 5), as shown in Equation (13); then, we adopted the invariance of the
PLDR associated with the decoding points to constrain the matching precisely, as shown in
Equation (14).

dis(Pcal , Pdes) ≤ εM (13)

where M represents the average diameter length of all ellipses of a GCT. ε is a constant scale
factor. Because M can be self-adapted and ε is built-in, the threshold εM is also self-adapted.

DRatio
(

I, J, CEA
)
= DRatio

(
I′, J′, C′E′A′

)
DRatio

(
J, K, CEA

)
= DRatio

(
J′, K′, C′E′A′

)
DRatio

(
I, K, CEA

)
= DRatio

(
I′, K′, C′E′A′

) , (14)

The three decoding points should satisfy the constraint in Equation (14) at the same
time. To screen out the optimal three decoding points from the twenty-eight points in the
coding library, the maximum of the average of the sum of similarities serves as the criterion,
as shown in Equation (15):

arg max
[I,J,K]

(Avg(sim(I, J) + sim(J, K) + sim(I, K))) (15)
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2.5. The Identification Process of the Improved IPCT

The complete procedures of the improved IPCT are shown in Figure 6. I, J, and K
correspond to decoding points 4, 6, and 14, respectively. Steps 2 and 6 are the same as
the procedures in IPCT. Steps 1, 3, 4, and 5 are the important innovative parts of I-IPCT.
In IPCT, the binarization is not self-adaptive; the center positioning precision is low by
ellipse fitting; the template point identification is based on the P2-Invariant embedded
with the geometric distance restricted condition (Equation (1)); and the decoding point
identification is based on affine transformation embedded with the geometric distance
restricted condition (Equation (6)). In the improved IPCT, the binarization is self-adaptive
under changing lighting conditions; the positioning precision of the ellipse center is high
using an advanced gray weighted centroid algorithm; the template point identification is
based on the P2-Invariant embedded with the PLDR (Equation (12)), and the decoding point
identification is based on affine transformation embedded with the PLDR (Equation (15)).
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3. Results

The experimental data GSI_CodedTarget_Identification (GCTI) provided by IPCT was
used as the object of the test. The test data included images captured from indoor, outdoor,
and UAV scenes. The identification results of V-STARS and IPCT served as comparisons,
which will not be shown here again as they can be found in Ref. [16]. We provide the
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detailed identification results of the improved IPCT visually. The cross intersection marked
by the green color is the positioning center of each GCT. The parameters below each image
denote the viewing angle, correct identifications, and accurate identification rate. For
outdoor and UAV scenes, different scenes were distinguished by brightness and shooting
height, respectively. Empirically, I-IPCT is applicable to any experimental conditions when
δ is set as 0.06 and ε is set as 0.2.

Before the final results are presented, taking a sample as an example, the intermediate
results of adaptive binarization and gray cubic weighted centroid calculation are shown in
Figures 7 and 8.
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localization with ellipse fitting and (b) the ellipse-center localization with advanced gray cubic
weighted centroid.

3.1. Experiment for Indoor Scenes
3.1.1. Experiments with Different Viewing Angles of Medium-Sized GCTs

The first indoor test used twenty 6 mm diameter GCTs and the shooting distance was
2 m. The viewing angles included 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, and 80◦. To depict the
legend better, the result at a viewing angle of 65◦ served as a representative result (Figure 9)
and the results using the other viewing angles are shown in the Appendix A (Figure A1).
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Figure 9. The identification results for middle-sized GCTs at viewing angle of 65◦.

As shown in Figures 9 and A1, and Ref. [16], compared with IPCT, the improved IPCT
results were approximate when the viewing angle was within 60◦ but obviously prevailed
when the viewing angle was larger than 60◦. That is, the effect improved significantly when
the viewing angle was 65◦, 70◦, 75◦, and 80◦. In addition, compared with V-STARS, the
improved IPCT performed better overall when the viewing angle was within 70◦, and it
was slightly inferior to V-STARS at 75◦ and 80◦.

3.1.2. Experiments with Small-Sized GCTs

The second indoor test used twenty 3 mm diameter GCTs; the shooting distance
was 1 m at viewing angles of 0, 30, and 60◦. The result at viewing angle 0◦ served as a
representative result (Figure 10) and the results using the other viewing angles are shown
in the Appendix A (Figure A2).

The identification results of the improved IPCT were better than those of IPCT and
slightly inferior to those of V-STARS, as shown in Figures 10 and A2, and Ref. [16]. Com-
pared with IPCT, the accurate identification rate of the improved IPCT increased by 15%
when the viewing angle was 60◦. In particular, processed by IPCT at 0◦, CODE83 (marked
with a red rectangle in Figure 10) was misidentified as CODE21, but the improved IPCT
correctly identified CODE83. Through observation and analysis from the outline shape
of CODE21 (Figure 11a) and CODE83 (Figure 11b), the positions of some individual de-
coding points of CODE21 and CODE83 were very close to one another, which is prone to
inducing misidentification.
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3.1.3. Experiments with Mixed GCTs

Six 6 mm diameter GCTs and six 3 mm diameter GCTs were mixed and pasted on a
wall. The shooting distance was 1.5 m at viewing angles of 0, 30, and 60◦. The result at a
viewing angle of 0◦ served as a representative result (Figure 12), and the results using the
other viewing angles are shown in the Appendix A (Figure A3).
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Comparing the results shown in Figures 12 and A3, and Ref. [16], we can see that the
improved IPCT identified all of the GCTs correctly in any situation, which was similar
to the performance of IPCT. As V-STARS could only correctly identify half of the GCTs
at a viewing angle of 60◦, the improved IPCT was superior in performance. Through
careful observation of the image at a viewing angle of 60◦, we found that the area where
the GCTs were not identified was a little bit fuzzy. As this will affect ellipse extraction,
we can infer that the method of ellipse extraction in V-STARS is different from that of the
improved IPCT.

3.2. Experiment for Outdoor Scenes

The outdoor test used eleven 6 mm diameter GCTs, and the brightness was challenging
to some extent. The result of scene 3 served as a representative result (Figure 13), and the
results of the other scenes are shown in the Appendix A (Figure A4).

Referring to the results in Ref. [16], the performance of the improved IPCT was similar
to those of IPCT and V-STARS according to the results of scene 1 and scene 2. However, it
prevailed over the other two methods as it correctly identified all the GCTs, as shown from
the results of scene 3.



Remote Sens. 2023, 15, 2859 13 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 26 
 

 

 
Scene 3 (11/11, 100%) 

Figure 13. The identification results of scene 3 for outdoor GCTs. 

Referring to the results in Ref. [16], the performance of the improved IPCT was simi-
lar to those of IPCT and V-STARS according to the results of scene 1 and scene 2. However, 
it prevailed over the other two methods as it correctly identified all the GCTs, as shown 
from the results of scene 3. 

3.3. Experiment for UAV Scenes 
The UAV test, with shooting heights of 4, 7, and 8 m, used nine 12 mm diameter 

GCTs. The result at a height of 4 m served as a representative result (Figure 14), and the 
results at the other heights are shown in the Appendix (Figure A5). 

Figure 13. The identification results of scene 3 for outdoor GCTs.

3.3. Experiment for UAV Scenes

The UAV test, with shooting heights of 4, 7, and 8 m, used nine 12 mm diameter GCTs.
The result at a height of 4 m served as a representative result (Figure 14), and the results at
the other heights are shown in the Appendix A (Figure A5).

From Figures 14 and A5, and Ref. [16], the improved IPCT obtained the best results
which surpassed the results of IPCT and V-STARS. When the height was 7 m and 8 m, the
improved IPCT behaved quite satisfactorily with obvious improvement compared to IPCT.
In particular, for the image taken at a height of 7 m, we can see that the sunlight was not
uniform. For IPCT, the GCTs in the shade could not be identified with the GCTs in the
sunlight at the same time, but they were identified successfully here using I-IPCT, which
demonstrates the effectiveness of adaptive binarization for challenging illumination. It
should be pointed out that, compared with the shooting distance, the size of the 12 mm
diameter GCTs was slightly small for the UAV when the shooting height was greater
than 4 m. If larger-sized GCTs are adopted, better identifications could be obtained.
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As well as the examples of the visible results in the main text and the Appendix A,
detailed comparisons of the accurate identification rate between V-STARS, IPCT, and
the improved IPCT are listed in Table 1. It is clear that the improved IPCT provides a
comprehensive upgrade in its accurate identification rate compared with IPCT. It also
performed equally as well as V-STARS on the whole and behaved better than V-STARS for
the UAV test.

Table 1. Comparisons of V-STARS, IPCT, and I-IPCT in correct identifications.

Test Cases
Accurate Identification Rate

V-STARS IPCT I-IPCT

Indoors with
medium-sized GCTs

0◦ 100% 100% 100%
10◦ 100% 100% 100%
20◦ 100% 100% 100%
30◦ 100% 100% 100%
40◦ 100% 100% 100%
50◦ 85% 100% 100%
60◦ 75% 100% 100%
65◦ 100% 85% 100%
70◦ 70% 65% 75%
75◦ 80% 5% 30%
80◦ 50% 0% 10%
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Table 1. Cont.

Test Cases
Accurate Identification Rate

V-STARS IPCT I-IPCT

Indoors with
small-sized GCTs

0◦ 100% 95% 100%
30◦ 100% 100% 100%
60◦ 100% 55% 75%

Indoors with
mixed GCTs

0◦ 100% 100% 100%
30◦ 100% 100% 100%
60◦ 50% 100% 100%

Outdoors
Scene 1 100% 100% 100%
Scene 2 100% 100% 100%
Scene 3 90.9% 90.9% 100%

UAV
4 m 75% 100% 100%
7 m 81.8% 72.7% 81.8%
8 m 55.6% 44.4% 66.7%

4. Discussion

The key to the improvement seen with I-IPCT was the adoption of the advanced
gray cubic weighted centroid method and the invariance theory of PLDR; therefore, we
performed a validation analysis regarding the precision of ellipse-center localization and
the robustness of the PLDR. Six milimeter diameter GCTs are the most widely used in
common scenarios [14], so this size of GCT was adopted for the experiments and analysis.
The validation analysis used every viewing angle with increasing steps ranging from
0 to 80◦.

4.1. The Precision of Ellipse-Center Localization

Bias_RMS_X, Bias_RMS_Y, and Bias_RMS_XY represent the root-mean-square error
(RMSE) of the biases between the improved IPCT and V-STARS at image coordinates in
the X and Y directions and plane, respectively. The detailed information of the localization
precision using a viewing angle of 0◦ can be seen in Table 2. The improved IPCT obtained
a high center-localization precision with a plane bias RMSE of 0.047, which is a great
breakthrough compared with the plane bias RMSE of 0.217 using IPCT.

Table 2. The coordinates and bias of center localization compared with V-STARS using a viewing
angle of 0◦.

Coding Center Positioning Coordinate (x,y) (Unit: px) Positioning Bias (Unit: px)

Serial Number V-STARS The Improved IPCT ∆x ∆y
√

∆x2 + ∆y2

3 (2950.418,2222.000) (2950.430,2222.032) −0.012 −0.032 0.034
8 (1266.945,670.800) (1266.910,670.769) 0.035 0.031 0.047

13 (1116.764,1912.218) (1116.745,1912.251) 0.019 −0.033 0.038
18 (2365.036,1127.382) (2365.085,1127.405) −0.049 −0.023 0.054
23 (3019.909,412.727) (3019.936,412.734) −0.027 −0.007 0.028
28 (1307.745,2373.909) (1307.781,2373.976) −0.036 −0.067 0.076
33 (1650.145,1127.909) (1650.124,1127.886) 0.021 0.023 0.031
38 (2470.600,1883.091) (2470.627,1883.129) −0.027 −0.038 0.047
43 (2463.727,401.327) (2463.748,401.324) −0.021 0.003 0.021
48 (3299.764,1770.691) (3299.834,1770.704) −0.070 −0.013 0.071
53 (3372.509,1097.691) (3372.512,1097.681) −0.003 0.010 0.010
58 (2002.491,686.655) (2002.503,686.621) −0.012 0.034 0.036
63 (2165.400,2388.618) (2165.397,2388.648) 0.003 −0.030 0.030
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Table 2. Cont.

Coding Center Positioning Coordinate (x,y) (Unit: px) Positioning Bias (Unit: px)

Serial Number V-STARS The Improved IPCT ∆x ∆y
√

∆x2 + ∆y2

68 (2833.673,856.636) (2833.734,856.617) −0.061 0.019 0.064
73 (1645.036,253.364) (1645.045,253.319) −0.009 0.045 0.046
78 (2885.182,1407.964) (2885.242,1407.954) −0.060 0.010 0.061
83 (2052.600,1632.600) (2052.636,1632.609) −0.036 −0.009 0.037
88 (1510.909,1611.400) (1510.934,1611.455) −0.025 −0.055 0.060
93 (1728.127,2075.018) (1728.090,2075.064) 0.037 −0.046 0.059
98 (1108.182,1199.545) (1108.207,1199.545) −0.025 0.000 0.025

RMSE 0.035 0.032 0.047

The details of the comparisons of IPCT and improved IPCT for center localization
precision using different viewing angles are shown in Figure 15. The center positioning
precision of IPCT is marked with the symbol (0) with broken lines and the precision of
the improved IPCT is presented as solid lines. The RMSE of bias was from approximately
0.04 px to 0.08 px when the viewing angle was less than 65◦. The improved IPCT had a
worse performance compared to IPCT when the viewing angle was 75◦ (0.158 vs. 0.104,
respectively). The reason is that, as the GCTs were not made of retro-reflective materials
and no flash lamp was used, the gray values’ distribution of the round target was not even
when the viewing angle was too large. Therefore, the precision of ellipse-center localization
by the gray weighted centroid method was worse. On the whole, the improved IPCT can
obtain four times better precision. Compared with ellipse fitting, it was obvious that the
improved IPCT with the gray cubic weighted centroid algorithm was more suitable for
GCT identification and performed more similarly to V-STARS.
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4.2. The Robustness of the PLDR

The variance in the PLDR for template point recognition was used for analysis. We
counted the minimum, maximum, and average of the PLDR values. As shown in Figure 16,
the average of the PLDR using each viewing angle was close to 1.0. The minimum and
maximum PLDR values were 0.944 and 1.051, respectively. The vibration of the PLDR was
smaller than 0.06. In addition, the minimum and maximum PLDR values for the outdoor
and UAV tests were 0.972 and 0.961 and 1.026 and 1.043, respectively. Thus, the PLDR was
very robust and could be adapted for common scenarios when the vibration threshold of
the PLDR is set as 0.06.
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Next, we provide the statistics on the maximum bias value of the PLDR and the direct
positioning for decoding points using different viewing angles (Figure 17). The maximum
bias of direct positioning of IPCT was about 0.7 (unit: mm) [16] and the maximum bias
of the PLDR was about 0.2 (non-dimensional number). Because the statistic was aimed at
the 6 mm diameter GCTs, the maximum bias of direct positioning would be larger than
0.7 mm as the increasing size of the GCTs renders them liable to trigger false decoding.
However, the maximum bias of the PLDR was kept invariable as it is irrelevant to the size
of the GCTs, and can guarantee the correct decoding. Thus, it is more suitable to use I-IPCT
for UAV photogrammetry where large-sized GCTs are needed.
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Combined with the PLDR theory and the above results, it can be confirmed that
the application of the PLDR is very valid as it is based on the distance ratio constraint,
which can be self-adaptive according to the change in image size and image distortion.
There is no doubt that it surpasses the distance constraint which should manually tune
the parameters according to different application scenarios. On the other hand, the PLDR
is very robust as the distance ratio can withstand more error disturbance or uncertainty.
As described and tested in the work of Ref. [17], their proposed methods used matched
points for line matching, which is rather robust to mismatches from SIFT. They were robust
and achieved very good performance even when the percentage of points matching the
outlier was as high as 50%. Therefore, the stability of the point–line distance ratio theory
could not be easily disturbed by image deformation, and the improved IPCT could achieve
parameter-free and more accurate identification.

How can the improved IPCT produce such a good effect? We conclude that the
improved IPCT combines three excellent theories together, the gray cubic weighted centroid
algorithm, the P2-Invariant, and the invariance of PLDR. Firstly, the gray cubic weighted
centroid can provide a precise center positioning for round targets. Secondly, just as the
authors of [20,21] mentioned, the P2-Invariant is very stable, scale-invariant, and fast to
achieve point registration. Thirdly, based on the work in [16] and [20], the coplanar P2-
Invariant assisted by the PLDR can be used to detect template points. Based on the work in
Ref. [16] and Ref. [22], the affine transformation assisted by the PLDR can be used to decode
a GCT. As the key procedures of the improved IPCT are adaptive, robust, and accurate, it
can obtain an excellent identification effect.

4.3. The Precision Validation of 3D Measurement

The high correct-identification rate and the high ellipse-center-positioning precision
do not represent the 3D measurement precision. We should evaluate 3D measurement pre-
cision by recovering the 3D coordinates of the GCTs. As the commercial photogrammetric
system V-STARS remains a closed source [23], the details related to its methods for center
positioning and GCT recognition cannot be accessed. However, V-STARS claims to have a
typical high measurement precision of 5 µm + 5 µm/m [14,15], and the center-positioning
precision is 0.02 px, according to Refs. [14,24,25]. Therefore, the 3D measurement results of
V-STARS can be used as the truth. In the following, we go through the whole process of
photogrammetry, including performing image matching and bundle adjustment, to help
evaluate the center positioning precision and 3D measurement precision further. The same
camera, a NIKON D300S, was used to capture three groups of images for these twenty 6
mm sized GCTs. The number of photos for each group were 14, 14, and 15, respectively.
Through GCT matching and bundle adjustment, the cameras’ exterior orientations and
the 3D coordinates of GCTs were obtained. Taking the first group as an example, the 3D
display is shown in Figure 18.
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Figure 18. Cameras’ exterior orientations and 3D coordinates of GCTs of group 1. The 3D coordinates
of each GCT calculated by our method was compared with the 3D coordinates of the corresponding
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GCT through registration. The bias of the 3D coordinates was regarded as the precision of 3D
measurement. The 3D coordinates of a total of twenty GCTs were obtained. The biases of group 1,
group 2, and group 3 are represented by different colors, as shown in Figure 19.
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Figure 19. Bias of GCTs’ 3D coordinates for the three test groups compared to V-STARS.

From Figure 19, we can see that the maximum 3D bias was as low as 67 um, and
the mean 3D bias was about 20–30 um. The RMS of each group was 25, 25, and 32 um,
respectively. For these three tests, the repeated 3D precision was stable and rather good.
This indicates the potential for using this method to perform 3D measurements in close-
range photogrammetry. In addition, it also reflects the high precision of elliptic-center
positioning based on the gray cube weighted centroid method.

In this paper, we used a gray cubic weighted centroid method to obtain the center
positions of all points, which may not be the best method to perform center positioning. In
future research, we will test other high-precision edge extraction and center positioning
methods as mentioned in Ref. [26]. We will also consider a faster ellipse extraction method
through learning from Ref. [27] to adapt to fast processing or dynamic scenarios. In addition,
another piece of close-range photogrammetric software called AUSTRALIS [28,29] should
be considered as a comparison to guide the research.

In the UAV test above, the shooting altitude was 4–8 m. This altitude can be applicable
for small objects or research areas, such as heritage buildings [30,31]. However, the shooting
altitude is about 50 m or higher for most applications in photogrammetric real-scene 3D-
building modeling. Thus, a limitation of the study is that we have not carried out tests with
higher shooting altitudes. According to the authors of [14], the size of the GCTs should
increase as the shooting distance increases. When the shooting altitude is 80 m, the point’s
diameter should be 24 cm and the size of a GCT should be 1.9 m in length and width. As
the improved IPCT demands for every GCT to be on a plane, it is not convenient to make
such a big GCT or carry such a big flat board for a GCT to be attached. Therefore, the
limitations of the improved IPCT are that it is slightly difficult to apply the GCTs in UAV
photogrammetry scenes with higher shooting distances, such as 200 m. Our UAV tests
in this paper are just a preliminary experiment. We expect other researchers will develop
methods with the advantage of using large-sized GCTs and higher shooting altitudes in the
future. Furthermore, as our method is not applicable for situations of occlusion and blur, in
the future, we will try to identify GCTs through referencing deep learning methods [32].
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5. Conclusions

This paper proposed an innovative improved method for GSI-coded target identifica-
tion based on an adaptive thresh Gaussian binarization, a gray cubic weighted centroid
algorithm, and the invariance theory of PLDR, which possesses outstanding performance in
binarization, precise ellipse-center localization, and template-point matching and decoding-
point matching. According to the data from extensive experiments and analyses of indoor,
outdoor, and UAV scenes, the precision of ellipse-center localization by the gray cubic
weighted centroid algorithm was very high and the PLDR was very reliable and effective.
The proposed identification method achieved a comprehensive improvement compared
with the state-of-the-art method and, at the same time, performed comparably to V-STARS
or better for the UAV test. The proposed improvement can make identification more precise,
accurate, robust, and self-adaptive, which is very important for applications with more
complicated scenarios. Additionally, it has presented the potential to be used in 3D high-
precision close-range photogrammetry. The contribution of this paper is that it provides an
excellent and clear solution for identifying GSI-coded targets; thus, scholars and technicians
can carry out research in this area without being constrained by commercial software.
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