
Citation: Tang, G.; Zhao, H.;

Claramunt, C.; Zhu, W.; Wang, S.;

Wang, Y.; Ding, Y. PPA-Net: Pyramid

Pooling Attention Network for

Multi-Scale Ship Detection in SAR

Images. Remote Sens. 2023, 15, 2855.

https://doi.org/10.3390/rs15112855

Academic Editors: Jukka Heikkonen,

Fahimeh Farahnakian and

Pouya Jafarzadeh

Received: 22 March 2023

Revised: 6 May 2023

Accepted: 16 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

PPA-Net: Pyramid Pooling Attention Network for Multi-Scale
Ship Detection in SAR Images
Gang Tang 1 , Hongren Zhao 1 , Christophe Claramunt 2 , Weidong Zhu 3 , Shiming Wang 4, Yide Wang 5

and Yuehua Ding 6,*

1 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
2 Naval Academy, Brest Naval, Lanveoc-Poulmic, BP 600, F-29240 Brest, France
3 Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
4 Shanghai Engineering Research Center of Marine Renewable Energy, Shanghai Ocean University,

Shanghai 201306, China
5 Institut d’Electronique et Des Technologies du NumeRique (IETR), CNRS UMR6164, Nantes Université,

F-44000 Nantes, France
6 School of Electronic and Information Engineering, South China University of Technology,

Guangzhou 510640, China
* Correspondence: eeyhding@scut.edu.cn

Abstract: In light of recent advances in deep learning and Synthetic Aperture Radar (SAR) technol-
ogy, there has been a growing adoption of ship detection models that are based on deep learning
methodologies. However, the efficiency of SAR ship detection models is significantly impacted by
complex backgrounds, noise, and multi-scale ships (the number of pixels occupied by ships in SAR
images varies significantly). To address the aforementioned issues, this research proposes a Pyramid
Pooling Attention Network (PPA-Net) for SAR multi-scale ship detection. Firstly, a Pyramid Pooled
Attention Module (PPAM) is designed to alleviate the influence of background noise on ship detection
while its parallel component favors the processing of multiple ship sizes. Different from the previ-
ous attention module, the PPAM module can better suppress the background noise in SAR images
because it considers the saliency of ships in SAR images. Secondly, an Adaptive Feature Balancing
Module (AFBM) is developed, which can automatically balance the conflict between ship semantic
information and location information. Finally, the detection capabilities of the ship detection model
for multi-scale ships are further improved by introducing the Atrous Spatial Pyramid Pooling (ASPP)
module. This innovative module enhances the detection model’s ability to detect ships of varying
scales by extracting features from multiple scales using atrous convolutions and spatial pyramid
pooling. PPA-Net achieved detection accuracies of 95.19% and 89.27% on the High-Resolution SAR
Images Dataset (HRSID) and the SAR Ship Detection Dataset (SSDD), respectively. The experimental
results demonstrate that PPA-Net outperforms other ship detection models.

Keywords: convolutional neural network; synthetic aperture radar (SAR); pyramid pooled attention
module (PPAM); adaptive feature balancing module (AFBM); atrous spatial pyramid pooling (ASPP);
ship detection

1. Introduction

In the era of rapid development of radar technology, more and more countries and
scholars are applying radar technology to various fields [1–3]. Synthetic Aperture Radar
(SAR) was first proposed in the 1950s as a high-resolution imaging radar [4]. Compared
with common passive imaging sensors such as infrared and optical sensors, SAR is more
stable during the imaging process and less affected by background factors [5]. In addition,
SAR has high resolution and wide field of view, which allows it to detect smaller vessels
and effectively monitor a larger area for vessel detection [6]. Moreover, SAR can work
in any weather and lighting conditions, and is not affected by the environment, enabling
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fast acquisition of real-time ship positions [7]. These advantages make SAR an impor-
tant technological support for maritime safety monitoring and maritime transportation
management [8].

In recent years, numerous methods for detecting ships in SAR images have been
proposed. These methods can be broadly categorized into two groups based on their
feature design approaches: traditional methods and deep learning-based methods.

Most traditional ship detection algorithms preprocess SAR images to enhance the
contrast between the ship and the background and then use geometric features to identify
the ship target [9–11]. These features include many properties, such as geometric and
image properties, oriented gradient histograms, and scattering features. The Constant False
Alarm Rate (CFAR) algorithm and its derivatives, such as Greatest Of CFAR, Cell Averaging
CFAR, Order Statistic CFAR, and Smallest Of CFAR, are among the most commonly
employed methods in the research [12–15]. Such methods mainly determine a threshold
after processing the input noise and compare this threshold with the input signal. If the
input signal exceeds this threshold, a target is identified. Some researchers have also
exploited the difference in gray value between ships and background regions to detect
ships at the superpixel level. For example, Liu et al. [16] used superpixel segmentation
technology to segment sea and land areas to suppress the interference of land areas and
then combined CFAR to achieve ship detection. Wang et al. [17] utilized a superpixel-
based local contrast measure which is computed using simple linear iterative clustering
and patch-based intensity dissimilarity measures. Li et al. [18] proposed a superpixel-
based method for detecting targets in SAR images, which utilizes statistical differences in
intensity distributions between target and clutter superpixels, and integrates global and
local contrasts to achieve better target detection performance compared to backscattering-
based methods. These methods require a good distribution model to describe the sea clutter
and the selection of appropriate parameter settings to ensure good performance. However,
the complex and variable environment in the ocean region makes it difficult to build a
successful distribution model [19].

With the rapid development of the computer technology, deep learning has been
widely applied in various fields [20–22]. In the field of object detection, deep learning-based
object detection models automatically extract the features of targets through convolutional
neural networks, reducing human involvement and making the extracted target features
more accurate [23]. Especially in some complex background Synthetic Aperture Radar
(SAR) images, deep learning-based object detection algorithms can effectively extract and
recognize targets in images compared to traditional object detection algorithms [24]. Object
detection algorithms based on deep learning can be divided into one-stage and two-stage
object detection algorithms according to whether region proposals are executed on feature
maps. R-CNN, Fast R-CNN, and Faster R-CNN are typical one-stage object detection
algorithms which have high detection accuracy but require large computing power and
long model inference time [25–27]. One-stage object detection algorithms include You Only
Look Once (YOLO), Single Shot Multibox Detector (SSD), etc. Compared to two-stage
object detection algorithms, one-stage object detection algorithms have a faster inference
speed. However, the lack of a region proposal step in one-stage algorithms results in a
loss of accuracy [28–31]. Hu et al. [32] proposed the Squeeze-and-Excitation (SE) block,
which first introduced attention mechanism into the field of object recognition. SE weights
the channels of the convolutional neural network, enabling the network to focus more
on important channel features. Woo et al. [33] proposed the Convolutional Block Atten-
tion Module (CBAM), which suppresses non-object features in the image by combining
channel attention mechanism with a spatial attention mechanism. Wang et al. [34] sug-
gested that feature weights could be generated more efficiently by selecting an appropriate
number of adjacent channels. Lin et al. [35] proposed that shallow features have better
positional information and deep features have better semantic information in convolutional
neural networks. To address this, they proposed Feature Pyramid Network (FPN) for
fusing shallow and deep features. To better balance semantic and positional information,



Remote Sens. 2023, 15, 2855 3 of 19

Wang et al. [36] constructed the Path Aggregation Network (PANet) by adding a top-down
feature fusion path to FPN. Residual structures are also a way to optimize the expressive
power of Convolutional Neural Network (CNN). For example, Bochkovskiy et al. [37]
designed Cross Stage Partial Darknet53 (CSPDarknet53) as the backbone structure for
object detection networks. CSPDarknet53 effectively alleviates the loss of small object infor-
mation by introducing residual connections. In addition, they also added spatial pyramid
pooling (SPP) to enhance the network’s ability to detect multi-scale objects. Li et al. [38]
used residual structures to preserve more object information in the deep network of DetNet.
Chen et al. [39] proposed the Atrous Spatial Pyramid Pooling (ASPP), which replaces the
pooling operation in SPP with dilated convolution to reduce the loss of object information.

To achieve better SAR ship detection performance, researchers have gradually applied
deep learning-based object detection methods and techniques to this field. Deep learning-
based ship detection methods require a large amount of data to train the model. However,
in the initial stage of SAR ship detection, researchers often face the challenge of a small
dataset size. Lu et al. [40] improved the detection accuracy of ship detection models applied
to a relatively small dataset by combining data augmentation and transfer learning methods,
achieving a 1–3% improvement. Rostami et al. [41] proposed transferring knowledge from
the electro-optical domain to the SAR domain by learning a shared invariant cross-domain
embedding space, enabling electro-optical domain images to be used to train SAR domain
object detection models. Zhang et al. [42] proposed a few-shot multi-class ship detection
algorithm with an attention feature map and multi-relation detector. Truong et al. [43]
constructed a convolutional neural network model using transfer learning techniques.
Zhang et al. [44] built the first publicly available dataset for SAR ship detection, called
the SAR Ship Detection Dataset (SSDD). Wei et al. [45] constructed the High-Resolution
SAR Images Dataset (HRSID) for ship detection, and they applied residual structures and
feature pyramid networks to build HR-SDNet. Currently, some researchers are focusing
on model lightweighting. For example, Jin et al. [46] introduced an atrous convolution
kernel to reduce the number of parameters while keeping the receptive field unchanged.
Ma et al. [47] suggested a compact detection model, which uses lasso regularization to set
the unimportant feature parameters to zero, thereby greatly reducing the parameters of
You Only Look Once V4 (YOLOV4).

To deal with SAP image noise and background interference, incorporating attention
mechanisms into SAR ship detection has been suggested. For example, Cui et al. [48]
proposed a densely attentive pyramid network that embeds CBAM into FPN to weigh
feature maps of different scales, highlighting ship features. Zhang et al. [49] proposed
replacing traditional convolutions in CBAM with dilated convolutions to suppress back-
ground information while reducing the number of parameters. Wang et al. [50] integrated
the Spatial Shuffle-Group Enhance attention module into the target detection network to al-
leviate interference from complex environments. Yang et al. [51] introduced the Coordinate
Attention Module, which decodes features into one-dimensional vertical and horizontal
features using two global pooling operations, suppressing clutter while further focusing on
the ship position information. Since attention mechanisms suppress non-ship information
in the image by assigning different region weights to feature maps, the correctness of
weight generation has a significant impact on ship detection performance. However, the
initial design of attention mechanisms such as CBAM was aimed at optical images and did
not consider the influence of complex background information and large amounts of noise
in SAR images on weight generation.

To address the problem of multi-scale ship detection, researchers have proposed
approaches that focus on feature fusion or increasing the receptive field of the detec-
tion model. For example, Li et al. [52] proposed a Hierarchical Selective Filtering (HSF)
layer to extract feature maps using three convolution kernels of different sizes. This de-
sign is similar to SPP, which increases the receptive field of the ship detection model.
Zhu et al. [53] introduced FPN into the SAR ship detection model. Zhang et al. [54] pro-
posed four different feature fusion methods based on FPN to alleviate the conflict between
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ship semantic information and position information in convolutional neural networks.
Gao et al. [55] improved Path Aggregation Network (PANet). First, the feature fusion net-
work was used to fuse the three-layer features of the backbone output. Then the information
between different feature layers was further fused through variable convolution. However,
these feature fusion methods only directly add adjacent features without considering the
contribution of different input features to the output feature. Therefore, more sophisticated
feature fusion methods are needed to improve the performance of the model.

Based on the above analysis, this paper first constructs Pooling Pyramid Attention
Module (PPAM) from the perspective that attention mechanisms such as CBAM, SSE,
and CAM do not consider the impact of non-ship information in SAR images on weight
generation. Secondly, the Adaptive Feature Balancing Module (AFBM) is constructed to
address the problem that FPN and other feature fusion methods directly combine adjacent
features without considering different contributions of input features to the output feature.
In addition, to further enhance the ship detection ability of the model for multi-scale ships,
the Atrous Spatial Pyramid Pooling (ASPP) structure is introduced. Finally, we combine
these three modules with CSPDarknet53 to build a multi-scale ship detection model for
SAR complex backgrounds called Pyramid Pooling Attention Network (PPA-Net). The
main contributions of this paper are as follows:

(1) By analyzing the limitations of existing attention mechanisms in SAR ship detection,
we propose a new attention module called PPAM. This module utilizes a pooling
structure to reduce the impact of noise and background information on weight gener-
ation. Correct weight generation is more conducive to the suppression of noise and
background information by attention mechanisms;

(2) We designed AFBM, in which we propose using adaptive weighted feature fusion to
selectively utilize semantic and positional information contained in different feature
layers to improve the performance of the ship detection model;

(3) An ASPP is introduced to enrich the receptive field while reducing information loss.
This structure is particularly adapted to the detection of multi-scale ships.

The rest of the paper is structured as follows. Section 2 presents the materials and
methods principles, Section 3 reports the experiments and comparisons with previous
works, Section 4 discusses the experiments. Finally, Section 5 summarizes the paper and
suggests directions for future work.

2. Materials and Methods

As shown in Figure 1, PPA-Net consists of three parts: the backbone structure, the neck
structure, and the head structure. The workflow can be divided into three stages. Firstly, the
sub-scenes SAR images are input into the backbone structure composed of CSPDarknet53
and PPAM for feature extraction. CSPDarknet53 includes one CBM (Conv + BN + Mish)
block and 5 Resblock_body, which contain a large residual edge and small residual edges.
The introduction of residual edges can effectively prevent the loss of information of small
targets. In addition, to better suppress non-ship features in SAR images, we insert a PPAM
after each Resblock_body. PPAM is a newly designed attention module used to suppress
the influence of noise and background information in SAR images. Unlike previous works,
when designing PPAM, we consider the influence of noise and background information
in SAR images on the generation of attention mechanism weights. Next, the feature map
obtained after feature extraction is optimized by AFBM and ASPP. AFBM is a feature
fusion module designed to fully combine the semantic and positional information of ships.
ASPP captures multi-scale ship information in the image through dilated convolutions with
different dilation rates. Finally, the feature map optimized by ASPP and AFBM is further
decoded by the head structure with convolution to generate the sub-scenes SAR images
with annotation boxes.
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Figure 1. Overall structure of our proposed method.

2.1. Pooling Pyramid Attention Module (PPAM)

As the attention mechanism suppresses non-ship information in the image by assign-
ing different area weights to the feature map, the correctness of weight generation has a
significant impact on ship detection performance. However, the design of attention mecha-
nisms such as CBAM did not consider the influence of complex background information
and a large amount of noise in SAR images on weight generation. To address this issue, we
have enhanced the previous attention mechanism by incorporating saliency cues of ships
in SAR images. The overall structure of the introduced PPAM is shown in Figure 2. In this
module, firstly, the pooling layer is used to augment the contrast between the ship and
background information; secondly, the feature dimension is reduced by means of global
average pooling, then the convolution operation is applied to obtain the weights of the
three branches; and finally, the final channel weights are obtained by Sigmoid activation
function. We use pooling cores of different sizes to construct three parallel branches with
different fields of view, which makes PPAM more suitable for multi-scale ship detection.
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Figure 2. PPAM architecture details. The M: 5 × 5 and M: 9 × 9 are the pooling layers with pooling
kernels of 5× 5 and 9× 9, respectively. GAP is the global average pooling. Conv is a one-dimensional
convolutional layer with kernel size K. Add is the addition of the eigenvalues at the same position of
the feature map generated by the parallel structure. S is the sigmoid activation function.
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2.1.1. Suppression of Background Information in the Channel

In mechanisms such as CBAM and SE that have previously gained attention, the
input feature first reduces the feature dimension through the pooling layer, and then
obtains the channel weight through the convolution layer or the fully connected layer.
However, this weight generation method suffers from several limitations. That is, the
information contained in the channel with a large amount of background information
and the channel with ship information may become the same after global average pool-
ing, which will make it difficult for the attention mechanism to distinguish the channel
conducive to ship identification. Besides the shipping area, coast and noise areas might
appear in SAR images, but the scattering intensity of these areas is usually weaker than
that of the target area. This leads us to apply the max pooling operation to elevate the
difference between background and object information. Shown in Figure 3a,b are two
different channels. Based on the saliency of ships in SAR images, we assume that in
the channel, values lower than 100 denote background features, and values greater than
100 denote the ship features. It can be seen that only ship features appear in Figure 3a
and only background features appear in Figure 3b, but both contain the same eigenvalues
after global average pooling. Therefore, it is difficult for the neural network to learn the
correct weight. We added max pooling before global average pooling to effectively enhance
differences in the information contained between the two.
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2.1.2. Weight Generation

We apply one-dimensional convolution to replace the fully connected layer in the
previous attention mechanism. K adjacent channels are selected to calculate the weight of
the attention mechanism. The K value can be calculated as follows:

K =

∣∣∣∣ log2 C
2

+ 1
∣∣∣∣
odd

, (1)

where K is the nearest odd number to |k| and C is the number of channels that input the
feature graph.
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Let Xi ∈ RW×H×C be the output after the ith pooled operation, where W, H and C are
width, height, and channel dimensions, respectively. Accordingly, the weights of channels
in the PPAM block can be computed as:

ω = σ(∑3
i=1 Convk(g(Xi))), (2)

where g(Xi) =
1

W×H

W,H
∑

w=1,h=1
(Xi)w,h is channel-wise global average pooling (GAP) and σ is

a Sigmoid function; Convk represents the convolution operation with convolution kernel
size K.

2.2. Adaptive Feature Balancing Module (AFBM)

In a convolutional neural network, deep features embed rich semantic information,
while shallow features have better location information. Therefore, a feature fusion module
is added to most ship detection models to improve ship detection. FPN and PANet are often
added to SAR ship detection models as classic feature fusion modules. FPN introduced
the concept of feature fusion, which uses feature fusion from top to bottom to better detect
target features. However, as the feature fusion path is too long, bottom information cannot
be fully utilized; therefore, PANet has improved it. Compared with FPN, PANet adds an
additional feature fusion path from the bottom to the top, alleviating the loss of feature
information (Figure 4).
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Although FPN and PANet improve the accuracy of ship detection, they only directly
fuse the two adjacent feature layers after adjusting the dimensions (as shown in Figure 5a)
without considering their contribution to the output. Therefore, we proposed an adaptive
weighted feature fusion method and designed AFBM (shown in Figure 5b) based on PANet.
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The overall workflow of AFBM is shown in Figure 5b, which can be divided into two
stages: the first stage generates fusion weights α and β, while the second stage generates
the fused output feature. In the first stage, the channel numbers of the two features to be
fused (C2′ and C3′) are adjusted to 16 using a 1 × 1 convolution. Then, the two features
with adjusted channel numbers are superimposed. Further, the relationship between the
channel of the superimposed feature is established through convolution, and the channel
number is adjusted to 2. Finally, the function Softmax function is used to generate the
fusion weights α and β from the two channels. The generation of output feature P2 in the
second stage is as follows:

P2 = C2′·α+ C3′·β, (3)

where C2′ and C3′ are the two adjacent input features, and α and β are the weights of the
features learned by the convolutional neural network.

Compared with PANet, AFBM not only considers the degree of contribution of dif-
ferent feature layers to the output, but also omits the process of repeatedly adjusting the
number of channels using five convolutional layers.

2.3. Atrous Spatial Pyramid Pooling (ASPP)

Detection capabilities of SAR ship detection models should consider variable ship
sizes. To enhance the multi-scale ship detection capability of the ship detection model
while reducing the loss of feature information, we introduce the ASPP module, as shown
in Figure 6. The module has four parallel branches. The four branches contain three atrous
convolutions with different dilation rates (rate = 2, 4, 6) and one regular convolution (kernel
size = 1). Compared with pooling, atrous convolution has less information loss while
obtaining different receptive field information. We apply this with normal convolutions to
further integrate the semantic information of the input features. Finally, to make the output
features retain as much receptive field information as possible, we further stack the output
features of the four branches.

The introduction of parallel convolutional layers in the ASPP module increases the
number of network parameters; therefore, to reduce the number of parameters, we intro-
duce a Depthwise Separable Convolution (DSC) to decode ship location (Figure 7). DSC
divides the traditional convolution process into regional convolution and inter-channel
convolution. The regional convolution extracts the features of each channel of the feature
layer, and the inter-channel convolution uses a 1 × 1 convolution kernel to integrate these
feature channels. The Batch Normalization prevent the ship detection model from overfit-
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ting. The activation function increases the nonlinear expression ability of convolutional
neural network.
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3. Results

This section describes the experiments conducted to verify the effectiveness of PPA-
Net. Firstly, the SAR ship dataset and hardware configuration used in the experiments
are introduced. A series of ablative experiments were carried out, and the results were
described. Finally, the proposed ship detection model was compared with previous algo-
rithms on the SSDD and HRSID datasets. Through the analysis and comparison of the
experimental results, the feasibility of the designed ship detection model was verified.

3.1. Dataset Introduction and Experimental Configuration

SSDD is the first widely used dataset for performance evaluation of ship detection
models in the SAR ship detection field. The dataset is made up of ship images captured
by synthetic aperture radar (SAR) using different polarization modes and created by
professionals familiar with radar principles, target recognition and tagging tools. The
dataset includes 1160 SAR images, covering ships of various sizes ranging from a few to
hundreds of pixels, and 2578 ships distributed in various sea conditions. Therefore, in this
experiment, SSDD is used as one of the datasets to evaluate the performance of PPA-Net.
The images in the SSDD dataset are captured by synthetic aperture radars of different
satellites, such as Radarsat-2, TerraSAR-X, and Sentinel-1, and include four polarization
modes: HH, HV, VV, and VH. Some of the images in SSDD are shown in Figure 8.
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In recent years, HRSID has also been frequently used to evaluate the performance of
ship detection models in SAR ship detection field. HRSID is constructed using synthetic
aperture radar with Sentinel-1 and TerraSAR-X, and includes three polarizations: HH, HV,
and VV. HRSID contains a total of 5604 SAR images and 16,951 ships, and the images in the
dataset are cropped to 800 × 800 pixels, which is more convenient for model training. In
addition, compared to SSDD, HRSID contains more data, which can lead to better training
of deep learning-based ship detection models. Some SAR images from HRSID are shown
in Figure 9.
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Ship targets from the dataset are classified into large, medium, and small objects based
on the proportion of object detection in MS COCO (Microsoft coco: Common Objects in
Context) [56]. Bounding boxes with an area smaller than 32 × 32 pixels correspond to
small objects, those with an area between 32 × 32 pixels and 96 × 96 pixels correspond
to medium objects, and those with an area larger than 96 × 96 pixels correspond to large
objects. Statistical data of the SSDD and HRSID datasets are shown in Table 1.
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Table 1. Statistics of SSDD and HRSID.

Datasets
Size of Ships (num) Size of Images (Pixels) Images

(Num)Small Medium Large Height Width

SSDD 1529 935 76 190~526 214~668 1160
HRSID 9242 7388 321 800 800 5604

We ensured the fairness and effectiveness of our experiments in three aspects: hardware
configuration, hyperparameter setting of the ship detection model, and dataset configuration.

(1) Hardware configuration: All our experiments were conducted on Windows 10 with
Pytorch 1.10, CUDA11.5, and RTX3090 with 24 GB of memory;

(2) During the training process, a learning rate of 0.01 and a batch size of 32 were used
for all model training. The training was carried out iteratively for 300 rounds;

(3) The experiments were conducted on the SSDD and HRSID datasets, respectively. We
randomly divided the SSDD and HRSID datasets into training and testing sets in an
8:2 ratio. Specifically, the SSDD dataset contains 1160 images, with 928 images used
for training and 232 images used for testing. The HRSID dataset contains 5604 images,
with 4483 images used for training and 1121 images used for testing. The partitioning
of the datasets ensures that the images used for training the models are not used for
testing them. Additionally, the evaluation of all ship detection models was conducted
on the aforementioned partitioned datasets, where all models used the same training
and testing data. This ensures that all models were trained on the same data and
tested on the same data.

To evaluate the performance of different methods, we used average precision (AP) as
the main evaluation metric. Precision (P), recall (R), and F1 score were used as auxiliary
evaluation metrics.

3.2. Ablation Experiment and Module Performance Analysis

To evaluate the effectiveness of the three modules, we conducted ablation experiments
on PPA-Net by removing each module and using it as a baseline to demonstrate the impact
of different combinations of these modules on ship detection. The experimental results are
shown in Table 2.

Table 2. Experimental results of the proposed modules on SSDD DATASE. The X indicates the
addition of the corresponding module.

PPAM ASPP AFBM AP P R F1

90.23% 90.56% 83.47% 0.87
X 94.08% 95.30% 86.02% 0.90

X 93.63% 92.51% 85.11% 0.88
X 94.73% 93.00% 86.26% 0.90

X X 94.81% 95.05% 90.42% 0.92
X X 94.42% 95.87% 88.55% 0.92

X X 93.93% 92.37% 87.64% 0.90
X X X 95.19% 95.22% 91.22% 0.93

3.2.1. PPAM

PPAM was added separately to the backbone of the baseline to suppress the impact of
noise in SAR images on ship feature extraction. As shown in the data in Table 2, the ship
detection model with PPAM added achieved an improvement of 3.85% in AP, 4.74% in P,
2.55% in R, and 0.03 in F1 compared to the baseline.

To illustrate the effectiveness of PPAM more intuitively, a visual comparison of the
detection results is shown in Figure 10. The image in Figure 10 contains a large amount of
noise, which leads to a smaller difference between ships and the surrounding background,
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affecting the feature extraction capability of the backbone of the ship detection model. As
shown in Figure 10a, there are missed detections when using the baseline to detect ships,
while the model with PPAM added in the baseline correctly detects the ship target, as
shown in Figure 10b. This result further demonstrates the effectiveness of PPAM.
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3.2.2. ASPP

To verify whether ASPP can enhance the ship detection model’s ability to detect
multi-scale ships, we added ASPP separately to the baseline. As shown in Table 2, the ship
detection model with ASPP added achieved an improvement of 3.4% in AP, 1.95% in P,
1.66% in R, and 0.01 in F1 compared to the baseline.

To further illustrate the effectiveness of the proposed ASPP module, a visual compari-
son of detection results is provided in Figure 11. The ships in this image vary slightly in
scale, which greatly tests the model’s ability to detect different sizes of ships simultaneously.
As shown in Figure 11a, in the baseline, the small ship in the lower left corner of the image
is ignored because the model did not consider the detection of multi-scale ships. However,
after adding ASPP to the baseline, the ship detection model correctly detects the ships (as
shown in Figure 11b). This result further demonstrates that ASPP can enhance the ship
detection model’s ability to detect multi-scale ships.
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3.2.3. AFBM

To verify whether AFBM can improve the performance of the ship detection model,
we added AFBM to the baseline model separately. As shown in Table 2, the ship detection
model with AFBM achieved an increase of 4.5% in AP, 1.95% in P, 2.79% in R, and 0.03 in F1
compared to the baseline.

To further demonstrate the effectiveness of our AFBM, we provide visual comparisons
of detection results in Figure 12. The image in Figure 12 contains a complex coastal
environment, which poses a challenge for the ship detection model to have better robustness.
As shown in Figure 12a, the baseline did not detect the ship in the image, but after adding
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AFBM to the model, the ship was correctly detected (as shown in Figure 12b). This
fully demonstrates that our adaptive weighted feature fusion method, by balancing the
language and location information of features, can enhance the performance of the ship
detection model.
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3.2.4. Combination of Different Modules

To investigate the potential negative impact of combining different modules on the
ship detection model, we first added pairwise combinations of PPAM, ASPP, and AFBM
modules to the baseline. As shown in Table 2, adding two modules simultaneously to the
baseline led to a slight decrease in P compared to adding a single module. However, the
combined use of two modules always outperformed the single use of any one module
when considering the comprehensive evaluation metric AP. Finally, when all three modules
were added to the baseline, AP increased by 4.96%, R increased by 4.66%, P increased by
7.75%, and F1 increased by 0.06%. The experiments combining different modules further
validated the effectiveness of the three modules in enhancing the performance of the ship
detection model.

3.3. Validation of Module Advancement

In this section, we conducted comparative experiments on the proposed PPAM and
AFBM modules with commonly used attention and feature fusion modules in the SAR ship
detection field on the SSDD dataset. The experimental results are shown in Tables 3 and 4.
Compared with CBAM, ECA, and SE, PPAM achieved improvements of 1.88%, 1.25%, and
1.33%, respectively, in terms of AP. In terms of P, PPAM achieved improvements of 1.74%,
2.96%, and 3.1%, respectively, compared with CBAM, ECA, and SE. Compared with CBAM,
ECA, and SE, PPAM achieved improvements of −0.08%, 1.04%, and 0.89%, respectively, in
terms of R. PPAM achieved improvements of 0.01, 0.02, and 0.01 in terms of F, respectively,
compared with CBAM, ECA, and SE.

Table 3. The results of experiments on SSDD datasets after adding different attention modules into
the backbone of PPA-Net.

Model AP P R F1

PPAM 94.08% 95.30% 86.02% 0.90
CBAM 92.20% 93.56% 86.10% 0.89
ECA 92.83% 92.34% 84.98% 0.88
SE 92.75% 92.25% 85.13% 0.89



Remote Sens. 2023, 15, 2855 14 of 19

Table 4. The results of experiments on the SSDD dataset after adding different feature fusion modules
to PPA-Net.

Model AP P R F1

AFBM 94.73% 93.00% 86.26% 0.90
PANet 93.32% 90.04% 85.22% 0.89
FPN 92.08% 92.25% 84.65% 0.89

Compared with PANet and FPN, AFBM achieved improvements of 1.41% and 2.56%,
respectively, in terms of AP. In terms of P, AFBM achieved improvements of 2.96% and
0.75%, respectively, compared with PANet and FPN. Compared with PANet and FPN,
AFBM achieved improvements of 1.04 and 1.61%, respectively, in terms of R. PPAM
achieved improvements of 0.01 and 0.01, respectively, in terms of F, compared with PANet
and FPN.

3.4. Comparison with Other Advanced Ship Detection Models

In order to verify the effectiveness of PPA-Net for SAR ship detection, we conducted
comparative tests with other advanced algorithms (YOLOV4, YOLOV5, HR-SDNet, Det-
Net). The comparative experiment was conducted on the SSDD and HRSID datasets, and
the results are shown in Tables 5 and 6. The experimental results on the SSDD dataset show
that compared with YOLOV4, YOLOV5, HR-SDNet, and DetNet, PPA-Net improved the
AP by 3%, 2.26%, 1.45%, and 2.51%, respectively. The precision was improved by 2.36%,
5.14%, 1.18%, and 1.68%, respectively, while the recall was improved by 6.87%, 4.58%,
1.01%, and 1.32%, respectively. The F1 score was improved by 0.05, 0.05, 0.01, and 0.04,
respectively. The experimental results on the HRSID dataset show that compared with
YOLOV4, YOLOV5, HR-SDNet, and DetNet, PPA-Net improved the AP by 7.56%, 3.34%,
2.62%, and 6.06%, respectively. The precision was improved by 4.44%, 4.68%, 1.69%, and
6.03%, respectively, while the recall was improved by 11.9%, 2.66%, 1.56%, and 7.56%,
respectively. The F1 score was improved by 0.08, 0.05, 0.02, and 0.07, respectively.

Table 5. Comparison of detection effects with other advanced ship detection models on SSDD.

Model AP P R F1

PPA-Net 95.19% 95.22% 91.22% 0.93
YOLOV4 92.19% 92.86% 84.35% 0.88
YOLOV5 92.93% 90.08% 86.64% 0.88

HR-SDNet 93.74% 94.04% 90.21% 0.92
DetNet 92.68% 93.54% 89.90% 0.89

Table 6. Comparison of detection effects with other advanced ship detection models on HRSID.

Model AP P R F1

PPA-Net 89.27% 90.34% 88.20% 0.89
YOLOV4 81.71% 85.90% 76.30% 0.81
YOLOV5 85.93% 85.66% 85.54% 0.84

HR-SDNet 86.65% 88.65% 86.64% 0.87
DetNet 83.21% 84.31% 80.64% 0.82

To further ensure the reliability of the model performance, three additional experi-
ments have been conducted on the SSDD dataset, and AP values were reported for all
models in each experiment. We ensured that all models used the same training and testing
sets for each experiment. The experimental results are shown in Table 7.
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Table 7. Three rounds of comparison with other ship detection models on SSDD dataset.

Model 1 2 3 Average Standard
Deviation

PPA-Net 95.34% 94.63% 94.93% 94.97% 0.29%
YOLOV4 92.13% 90.34% 91.65% 91.37% 0.76%
YOLOV5 92.99% 92.12% 92.34% 92.48% 0.37%

HR-SDNet 93.76% 92.54% 93.01% 93.10% 0.50%
DetNet 92.73% 91.68% 91.72% 92.04% 0.49%

The superiority of PPA-Net over other ship detection models has been evaluated
using multi-scale detection metrics for object detection in the MC COCO. These metrics
are AP [IoU = 0.50:0.95] and AR [IoU = 0.50:0.95]. IoU = 0.50:0.95 represents the average
precision and average recall at different IoU thresholds (ranging from 0.50 to 0.95 with an
interval of 0.05). The experiment was conducted on the SSDD dataset, and the results are
shown in Table 8. Compared with other object detection algorithms, PPA-Net achieved
an improvement of 0.063–0.118 in detection precision and 0.042–0.073 in recall for small
objects. For medium objects, PPA-Net achieved an improvement of 0.021–0.032 in detection
precision and 0.043–0.056 in recall compared with other object detection algorithms. For
large objects, PPA-Net achieved an improvement of 0.128–0.204 in detection precision and
0.015–0.024 in recall compared with other object detection algorithms.

Table 8. Multi-scale Ship Detection Performance Evaluation.

Model
AP [IOU = 0.50:0.95] AR [IOU = 0.50:0.95]

Small Medium Large Small Medium Large

PPA-Net 0.518 0.542 0.428 0.576 0.632 0.556
YOLOV4 0.400 0.517 0.236 0.503 0.585 0.536
YOLOV5 0.432 0.510 0.258 0.511 0.589 0.541

HR-SDNet 0.455 0.520 0.300 0.534 0.584 0.539
DetNet 0.431 0.521 0.224 0.523 0.576 0.532

3.5. Visualization Comparison of Detection Results

In order to further verify the stronger robustness of PPA-Net compared with other
ship detection models, we choose the other two detection models (YOLOV5, HR-SDNet)
with good performance to make comparative tests with PPA-Net in four different scenarios.
These four scenarios include ships affected by the coastal environment, ships affected by
noise, dense small-scale ships, and sparse large-scale ships. The detection output is shown
in Figure 11.

3.5.1. Detection of Near-Shore Ships

As shown in Figure 13, in the first row of images, the impact of the coastal environment
increases the difficulty of ship detection. HR-SDNet did not detect the ship. Although
YOLOV5 identified the ship, there was such a false inspection that the coast was mistaken
for a ship. In addition, for the detected ships, YOLOv5 achieved a confidence score of 0.6,
while PPA-Net achieved 0.8.

3.5.2. Ship Detection Affected by Noise

As shown in Figure 13, in the second row of images, ships are not easy to detect due
to the influence of noise. We can see that neither HR-SDNet nor YOLOV5 detected the ship
at the bottom of the image and that HR-SDNet mistook the shore at the top of the image
for a ship. Our proposed PPA-Net correctly identified the ship with a confidence of 0.75.
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3.5.3. Multi-Scale Ship Detection

As shown in Figure 13, in the third and fourth rows’ images, we verified the ship
detection model’s detection effect on small and large ships, respectively. In the third-row
image, there are 17 ships, while HR-SDNet only identifies 16 ships. Both YOLOV5 and
our proposed PPA-Net correctly detected the ships in the image. However, in terms of
detection confidence, PPA-Net typically achieves a confidence level of around 0.9, while
YOLOV5 achieves around 0.7. In the fourth row of images, HR-SDNet did not recognize
the ship due to the large size of the ship, while YOLOV5 had a false detection.

4. Discussion

This study proposes two novel modules, PPAM and AFBM, for improving the perfor-
mance of the SAR ship detection model. Our experiments on the SSDD dataset demonstrate
that these two modules outperform commonly used attention and feature fusion modules.
First, we evaluate the superiority of PPAM by comparing it with SE, ECA, and CBAM.
The results show that PPAM achieves 1.25–1.88% higher ship detection accuracy than SE,
ECA, and CBAM. Furthermore, the improvement of PPAM over ECA can be attributed
to the pooling operation that suppresses the impact of noise on weight generation. This
finding confirms the previously mentioned issue that noise can affect weight generation in
attention mechanisms. However, compared with CBAM, the recall rate of PPAM decreases
by 0.08% due to the potential damage to ship features caused by the introduction of pooling
operation. Second, we evaluate the superiority of AFBM by comparing it with other com-
monly used feature fusion modules. The results show that AFBM achieves 1.41% and 2.56%
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higher ship detection accuracy than PANet and FPN, respectively. This advantage is due to
the ability of AFBM to balance the semantic and positional information of ships through
weighted feature fusion. However, the limitation of AFBM is the increased computational
cost caused by using convolutional operations to automatically learn the contribution of
different feature maps to the output features. Furthermore, through comparative experi-
ments, we found that the improvement of the ship detection model can be better reflected
in large-scale datasets because larger datasets provide a more diverse range of ship image
variations, including changes in size, shape, and orientation. With more data, the model
can better learn complex features and patterns that distinguish ships from backgrounds,
which helps to improve the accuracy of the model.

In summary, our proposed PPAM and AFBM achieve state-of-the-art performance
in SAR ship detection. Although they have limitations compared with commonly used
attention and feature fusion modules, they have more significant advantages. Our future
work will focus on optimizing these modules to address their limitations and further
improve the performance of ship detection models.

5. Conclusions

This paper introduces a robust ship detection model, named PPA-Net, to improve SAR
ship detection. Specifically, considering the influence of noise and background information
on ship detection, PPAM is designed and added to the backbone of the ship detection
model to reduce the influence of background noise and complex background on ship
detection. Different from previous attention modules, the structural design of PPAM takes
into account the influence of background information on weight generation. Next, we
proposed the AFBM module, which adopts the weighted feature fusion method to make
the neural network better balance the location information and semantic information in
feature fusion. Finally, the ASPP module is introduced to enhance the detection ability
of multi-scale ships. Experimental results show that our PPA-Net performs better than
previous ship detection models. In addition, since the addition of multiple modules in
PPA-Net may increase the computational cost of the ship detection model, our future
research will focus on the lightweight design of the ship detection model.
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shipping and ship schedule recovery: A state-of-the-art review. J. Mar. Sci. Eng. 2022, 10, 563. [CrossRef]
4. Freeman, A.; Zink, M.; Caro, E.; Moreira, A.; Veilleux, L.; Werner, M. The legacy of the SIR-C/X-SAR radar system: 25 years on.

Remote Sens. Environ. 2019, 231, 111255. [CrossRef]

https://github.com/mrzhao158/ship-detection
https://github.com/mrzhao158/ship-detection
https://doi.org/10.2174/1573405617666210218100641
https://www.ncbi.nlm.nih.gov/pubmed/33602101
https://doi.org/10.1016/j.oceaneng.2021.110162
https://doi.org/10.3390/jmse10050563
https://doi.org/10.1016/j.rse.2019.111255


Remote Sens. 2023, 15, 2855 18 of 19

5. Zhou, L.; Yu, H.; Lan, Y. Artificial intelligence in interferometric synthetic aperture radar phase unwrapping: A review. IEEE
Geosci. Remote Sens. Mag. 2021, 9, 10–28. [CrossRef]

6. Huang, L.; Pena, B.; Liu, Y.; Anderlini, E. Machine learning in sustainable ship design and operation: A review. Ocean Eng. 2022,
266, 112907. [CrossRef]

7. Zhang, L.; Gao, G.; Chen, C.; Gao, S.; Yao, L. Compact polarimetric synthetic aperture radar for target detection: A review. IEEE
Geosci. Remote Sens. Mag. 2022, 10, 115–152. [CrossRef]

8. Liu, C.; Chen, Z.X.; Yun, S.H.A.O.; Chen, J.S.; Hasi, T.; PAN, H.Z. Research advances of SAR remote sensing for agriculture
applications: A review. J. Integr. Agric. 2019, 18, 506–525. [CrossRef]

9. Yang, M.; Guo, C.; Zhong, H.; Yin, H. A curvature-based saliency method for ship detection in SAR images. IEEE Geosci. Remote
Sens. Lett. 2020, 18, 1590–1594. [CrossRef]

10. Zhang, C.; Gao, G.; Zhang, L.; Chen, C.; Gao, S.; Yao, L.; Bai, Q.; Gou, S. A novel full-polarization SAR image ship detector based
on scattering mechanisms and wave polarization anisotropy. ISPRS J. Photogramm. Remote Sens. 2022, 190, 129–143. [CrossRef]

11. Wang, X.; Chen, C.; Pan, Z.; Pan, Z. Fast and automatic ship detection for SAR imagery based on multiscale contrast measure.
IEEE Geosci. Remote Sens. Lett. 2019, 16, 1834–1838. [CrossRef]

12. Kuttikkad, S.; Chellappa, R. Non-Gaussian CFAR techniques for target detection in high resolution SAR images. Proc. ICIP 1994,
1, 910–914.

13. Hofele, F.X. An innovative CFAR algorithm. In Proceedings of the 2001 CIE International Conference on Radar, Beijing, China,
15–18 October 2001; pp. 329–333.

14. Novak, L.M.; Hesse, S.R. On the performance of order-statistics CFAR detectors. In Proceedings of the IEEE 25th Asilomar
Conference on Signals, Systems & Computer, Pacific Grove, CA, USA, 4–6 November 1991; Volume 2, pp. 835–840.

15. di Bisceglie, M.; Galdi, C. CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens.
2005, 43, 833–843. [CrossRef]

16. Liu, M.; Chen, S.; Lu, F.; Xing, M.; Wei, J. Realizing Target Detection in SAR Images Based on Multiscale Superpixel Fusion.
Sensors 2021, 21, 1643. [CrossRef]

17. Wang, X.; Chen, C.; Pan, Z.; Pan, Z. Superpixel-based LCM detector for faint ships hidden in strong noise background SAR
imagery. IEEE Geosci. Remote Sens. Lett. 2018, 16, 417–421. [CrossRef]

18. Li, T.; Liu, Z.; Ran, L.; Xie, R. Target detection by exploiting superpixel-level statistical dissimilarity for SAR imagery. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 562–566. [CrossRef]

19. Yang, R.; Pan, Z.; Jia, X.; Zhang, L.; Deng, Y. A Novel CNN-Based Detector for Ship Detection Based on Rotatable Bounding Box
in SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1938–1958. [CrossRef]

20. Martinez-Diaz, Y.; Nicolas-Diaz, M.; Mendez-Vazquez, H.; Luevano, L.S.; Chang, L.; Gonzalez-Mendoza, M.; Sucar, L.E.
Benchmarking lightweight face architectures on specific face recognition scenarios. Artif. Intell. Rev. 2021, 54, 6201–6244.
[CrossRef]

21. Viola, J.; Chen, Y.Q.; Wang, J. FaultFace: Deep convolutional generative adversarial network (DCGAN) based ball-bearing failure
detection method. Inf. Sci. 2021, 542, 195–211. [CrossRef]

22. Xun, Y.; Qin, J.; Liu, J. Deep Learning Enhanced Driving Behavior Evaluation Based on Vehicle-Edge-Cloud Architecture. IEEE
Trans. Veh. Technol. 2021, 70, 6172–6177. [CrossRef]

23. Tang, G.; Zhuge, Y.; Claramunt, C.; Wang, Y.; Men, S. N-Yolo: A SAR ship detection using noise-classifying and complete-target
extraction. Remote Sens. 2021, 13, 871. [CrossRef]

24. Tang, G.; Zhao, H.; Claramunt, C.; Men, S. FLNet: A Near-shore Ship Detection Method Based on Image Enhancement Technology.
Remote Sens. 2022, 14, 4857. [CrossRef]

25. Ma, C.; Chen, L.; Yong, J.H. AU R-CNN: Encoding expert prior knowledge into R-CNN for action unit detection. Neurocomputing
2019, 355, 35–47. [CrossRef]

26. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
1–18 December 2015; pp. 1440–1448. [CrossRef]

27. Ding, X.; Li, Q.; Cheng, Y.; Wang, J.; Bian, W.; Jie, B. Local keypoint-based Faster R-CNN. Appl. Intell. 2020, 50, 3007–3022.
[CrossRef]

28. Li, J.L.; Huo, Q.S.; Xing, J. Multiobject Detection Algorithm Based on Adaptive Default Box Mechanism. Complexity 2020,
2020, 5763476. [CrossRef]

29. Yoshida, T.; Ouchi, K. Detection of Ships Cruising in the Azimuth Direction Using Spotlight SAR Images with a Deep Learning
Method. Remote Sens. 2022, 14, 4691. [CrossRef]

30. Tang, G.; Liu, S.; Fujino, I.; Claramunt, C.; Wang, Y.; Men, S. H-YOLO: A Single-Shot Ship Detection Approach Based on Region
of Interest Preselected Network. Remote Sens. 2020, 12, 4192. [CrossRef]

31. Shi, P.; Qi, Q.; Qin, Y.; Scott, P.J.; Jiang, X. Intersecting Machining Feature Localization and Recognition via Single Shot Multibox
Detector. IEEE Trans. Ind. Inform. 2021, 17, 3292–3302. [CrossRef]

32. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

33. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer VISION (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

https://doi.org/10.1109/MGRS.2021.3065811
https://doi.org/10.1016/j.oceaneng.2022.112907
https://doi.org/10.1109/MGRS.2022.3186904
https://doi.org/10.1016/S2095-3119(18)62016-7
https://doi.org/10.1109/LGRS.2020.3005197
https://doi.org/10.1016/j.isprsjprs.2022.06.006
https://doi.org/10.1109/LGRS.2019.2913873
https://doi.org/10.1109/TGRS.2004.843190
https://doi.org/10.3390/s21051643
https://doi.org/10.1109/LGRS.2018.2873637
https://doi.org/10.1109/LGRS.2018.2805714
https://doi.org/10.1109/JSTARS.2021.3049851
https://doi.org/10.1007/s10462-021-09974-2
https://doi.org/10.1016/j.ins.2020.06.060
https://doi.org/10.1109/TVT.2021.3078482
https://doi.org/10.3390/rs13050871
https://doi.org/10.3390/rs14194857
https://doi.org/10.1016/j.neucom.2019.03.082
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1007/s10489-020-01665-9
https://doi.org/10.1155/2020/5763476
https://doi.org/10.3390/rs14194691
https://doi.org/10.3390/rs12244192
https://doi.org/10.1109/TII.2020.3030620


Remote Sens. 2023, 15, 2855 19 of 19

34. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neu-
ral Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, Washington, DC, USA, 14–19 June 2020.

35. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

36. Wang, K.; Liew, J.H.; Zou, Y.; Zhou, D.; Feng, J. Panet: Few-shot image semantic segmentation with prototype alignment. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9197–9206.

37. Bochkovskiy, A.; Wang, C.Y.; Liao HY, M. YOLOv4: Optimal speed and a acuracy of object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 198–215.

38. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Detnet: A backbone network for object detection. arXiv 2018, arXiv:1804.06215.
39. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
40. Lu, C.; Li, W. Ship classification in high-resolution SAR images via transfer learning with small training dataset. Sensors 2018,

19, 63. [CrossRef] [PubMed]
41. Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep transfer learning for few-shot SAR image classification. Remote Sens. 2019,

11, 1374. [CrossRef]
42. Zhang, H.; Zhang, X.; Meng, G.; Guo, C.; Jiang, Z. Few-Shot Multi-Class Ship Detection in Remote Sensing Images Using

Attention Feature Map and Multi-Relation Detector. Remote Sens. 2022, 14, 2790. [CrossRef]
43. Truong, T.N.; Do Ngoc, T.; Quang, B.N.; Le Tran, S. Combining Multi-Threshold Saliency with Transfer Learning for Ship Detection

and Information Extraction from Optical Satellite Images. In Proceedings of the 2019 IEEE 14th International Conference on
Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 14–16 November 2019; pp. 974–980.

44. Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. Sar ship detection dataset (ssdd):
Official release and comprehensive data analysis. Remote Sens. 2021, 13, 3690. [CrossRef]

45. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance
segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

46. Jin, K.; Chen, Y.; Xu, B.; Yin, J.; Wang, X.; Yang, J. A patch-to-pixel convolutional neural network for small ship detection with
PolSAR images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6623–6638. [CrossRef]

47. Ma, X.; Ji, K.; Xiong, B.; Zhang, L.; Feng, S.; Kuang, G. Light-YOLOv4: An Edge-Device Oriented Target Detection Method for
Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10808–10820. [CrossRef]

48. Cui, Z.; Li, Q.; Cao, Z.; Liu, N. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 8983–8997. [CrossRef]

49. Zhang, T.; Zhang, X.; Shi, J.; Wei, S. HyperLi-Net: A hyper-light deep learning network for high-accurate and high-speed ship
detection from synthetic aperture radar imagery. ISPRS J. Photogramm. Remote Sens. 2020, 167, 123–153. [CrossRef]

50. Cui, Z.; Wang, X.; Liu, N.; Cao, Z.; Yang, J. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 379–391. [CrossRef]

51. Yang, X.; Zhang, X.; Wang, N.; Gao, X. A Robust One-Stage Detector for Multiscale Ship Detection with Complex Background in
Massive SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5217712. [CrossRef]

52. Li, Q.; Mou, L.; Liu, Q.; Wang, Y.; Zhu, X.X. HSF-Net: Multiscale deep feature embedding for ship detection in optical remote
sensing imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7147–7161. [CrossRef]

53. Zhu, M.; Hu, G.; Zhou, H.; Wang, S. Multiscale Ship Detection Method in SAR Images Based on Information Compensation and
Feature Enhancement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

54. Zhang, T.; Zhang, X.; Ke, X. Quad-FPN: A novel quad feature pyramid network for SAR ship detection. Remote Sens. 2021,
13, 2771. [CrossRef]

55. Gao, S.; Liu, J.M.; Miao, Y.H.; He, Z.J. A High-Effective Implementation of Ship Detector for SAR Images. IEEE Geosci. Remote
Sens. Lett. 2021, 19, 1–5. [CrossRef]

56. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September
2014; Part V 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.3390/s19010063
https://www.ncbi.nlm.nih.gov/pubmed/30586950
https://doi.org/10.3390/rs11111374
https://doi.org/10.3390/rs14122790
https://doi.org/10.3390/rs13183690
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.1109/TGRS.2020.2978268
https://doi.org/10.1109/JSTARS.2021.3120009
https://doi.org/10.1109/TGRS.2019.2923988
https://doi.org/10.1016/j.isprsjprs.2020.05.016
https://doi.org/10.1109/TGRS.2020.2997200
https://doi.org/10.1109/TGRS.2021.3128060
https://doi.org/10.1109/TGRS.2018.2848901
https://doi.org/10.1109/TGRS.2022.3202495
https://doi.org/10.3390/rs13142771
https://doi.org/10.1109/LGRS.2021.3115121

	Introduction 
	Materials and Methods 
	Pooling Pyramid Attention Module (PPAM) 
	Suppression of Background Information in the Channel 
	Weight Generation 

	Adaptive Feature Balancing Module (AFBM) 
	Atrous Spatial Pyramid Pooling (ASPP) 

	Results 
	Dataset Introduction and Experimental Configuration 
	Ablation Experiment and Module Performance Analysis 
	PPAM 
	ASPP 
	AFBM 
	Combination of Different Modules 

	Validation of Module Advancement 
	Comparison with Other Advanced Ship Detection Models 
	Visualization Comparison of Detection Results 
	Detection of Near-Shore Ships 
	Ship Detection Affected by Noise 
	Multi-Scale Ship Detection 


	Discussion 
	Conclusions 
	References

