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Abstract: Urban tree species identification performs a significant role in tree management and the
sustainable development of cities. Conventionally, multispectral or hyperspectral remote sensing
images are applied to identify species. However, spectral profiles of trees on images are easily
affected by surroundings and illuminations, resulting in urban trees of different species possibly
having similar spectral features. The handheld laser scanning (HLS) technique can capture 3D
structural information of trees and be confirmed to be effective in reducing the problem of spectral
similarity through tree structural properties (TSP). TSP usually varies in different leaf conditions,
especially TSP of tropical tree species. In this study, we investigated the effects of leaves on urban
tropical tree species identification using HLS. A total of 89 metrics that characterized the TSP were
evaluated, including 19 branches, 12 stems, 45 crowns, and 13 entire tree metrics. All metrics were
derived under different leaf conditions. The correlation and importance of these metrics were further
evaluated. Our results demonstrated that crown metrics perform the most important role in urban
species identification in leaf-on and leaf-off conditions and that the combination of metrics derived
in different leaf conditions can improve the identification accuracy. Furthermore, we discovered
9 robust metrics that perform well in all leaf conditions, including 3 crowns, 2 branches, 2 stems, and
2 entire tree metrics. These metrics give a deep understanding of numerous structural properties and
provide a significant reference for the relevant structure-based classification of other tropical species.
This study also illustrated that HLS could help to overcome the spectrum-related limitations and
improve the efficiency of species identification and sustainable forest management.

Keywords: handheld laser scanning; structural properties; metric importance; optimal metric set;
tropical species classification

1. Introduction

Information about species distribution in urban areas performs a significant role in tree
management and conservation. Studies of tree species classification were commonly imple-
mented by identifying spectral features from remote sensing images, such as multispectral
and hyperspectral images [1,2]. However, the performance of spectral features is limited by
the similarity problem, i.e., the spectral features of the same species may be different due to
some factors, such as varying shapes in details and the surrounding environment [3], or
the spectral features of different species may be similar [4]. This problem can be reduced
by considering tree structures that vary between species because of the different branching
patterns and foliage distributions [5]. The light detection and ranging (LiDAR) technology
that measures distances using roundtrip time of pulsed laser energy between targets and
sensors [6] can capture and represent tree structure information via three-dimensional (3D)
point clouds.
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The conventional terrestrial LiDAR (TLS) emits laser pulses from a sensor standing on
the ground. To capture as complete as possible the structural information, time-consuming
preparations and point cloud fusion are required [7]. HLS technology, which places a laser
scanning sensor on a handheld moving platform, is able to capture dense and complete
tree point clouds economically and efficiently [8]. Its flexible mobility not only reduces
the occlusion effect (i.e., the trees far away from the scanner may be occluded by trees
near the scanner, causing an incomplete point cloud of trees away from the scanner) but
also simplifies the complex preparation and co-registration procedures. Additionally,
performance of HLS for forest inventory evaluation has been validated. For instance,
Chen et al. [9] achieved an estimation of the diameter at the breast height (DBH) of an arbor
forest in the Haidian District in Beijing with an RMSE of 1.58 cm using ZEB-REVO-RT.
Oveland et al. [10] and Su et al. [11] accurately estimated the DBH of boreal forest in the
southeastern part of Norway with an RMSE of 14.3% using GeoSLAM ZEB1. However,
many studies used HLS to estimate the inventory of trees in forests, rarely focusing on
inventory surveys of urban trees. To bridge this gap, this study aims to investigate the
potential of HLS for urban tree inventory.

Species identification from 3D point clouds usually relies on tree structural proper-
ties (TSP) characterized by structural metrics, such as tree height, crown diameter, and
DBH [12,13]. Over decades, many structural metrics have been developed and applied
to classify species, such as explicit structural parameters [3], quantitative structural fea-
tures [14], and salient geometric features [15]. These metrics can be divided into two
categories according to their extraction methods. One category is metrics that are ex-
tracted directly from individual tree point clouds. Explicit structural parameters and
salient geometric features both belong to this category. Another category is metrics that
are extracted from the reconstructed 3D tree model, which is hierarchically generated
by cylinder fitting [14]. Metrics extracted from point clouds mainly represent external
geometric characteristics, while metrics extracted from 3D models can describe internal and
external geometric characteristics of trees. Most studies concentrate on optimization and
improvement of identification accuracy by combining diverse types of data or developing
optimized algorithms [16,17]. A comprehensive and thorough understanding of the contri-
bution of structural metrics for species identification is rarely studied [18,19], such as the
relationship between derived metrics and specific structural properties of different species
and the importance of different types of structural metrics for species identification [20].
Therefore, we proposed to estimate the performance and importance of existing structural
metrics for tree species identification using HLS in an urban setting.

A challenge for urban tree species identification based on structural metrics is that
structural metrics would change with leaf conditions [21]. Different leaf conditions result
in different tree structures [22], thus influencing structural metric values and species identi-
fication accuracy. However, related studies demonstrated that leaf condition shows varied
influences on the identification of different species. Hamraz et al. [23] demonstrated that
leaf-off data could provide more useful information for the identification of mixed tem-
perate species in southeastern Kentucky, while Shi et al. [5] indicated no greatly different
performance between leaf-on and leaf-off conditions for the identification of species in
Central Europe but the combination of metrics derived under two leaf conditions could
improve identification accuracy. The influence of leaf conditions on tropical species identifi-
cation was rarely studied. Thus, we propose to evaluate certain influences of leaf conditions
on tropical species identification in an urban setting.

In this study, we collected 89 structural metrics from previous studies, including 19 in
branches, 12 in stems, 45 in crowns, and 13 of entire tree metrics. Under the assumption
that leaf conditions may affect the extraction of structural metrics and urban tropical species
identification results, an experiment evaluating the specific influence of leaf conditions on
species identification was conducted. We removed leaf points by combining the TLSep-
aration [24] algorithm and manual refinement. TLSeparation is a method developed for
the separation of wood and leaf points from individual tree point clouds based on 3D
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geometric features and has been set as a Python library. All metrics were extracted under
two leaf conditions (leaf-on and leaf-off).

2. Materials and Methods
2.1. Study Site and Research Data

Hong Kong (HK) is located south of China (22◦08′–22◦35′N, 113◦49′–114◦31′E). The
certain climate, namely, long rainy summer and tiny temperate differences in four seasons,
creates a great environment for vegetation, resulting in considerable tropical and subtropical
tree species diversity. To improve the sustainable development of HK, the government
invests enormous efforts in managing urban trees. Information on most trees has been
collected and kept, including location, species, and basic structural parameters. Compared
to forests, urban trees tend to have low density, and their structural characteristics are less
affected by neighboring trees [25]. These make HK urban trees good study objects.

For the selection of tree species, we proposed three rules, i.e., separability, availability,
and invariability. Separability means target samples can be greatly separated spatially
to ensure the completion of individual tree point cloud and structural metrics extraction.
There should be clear boundaries between target trees and neighbors. Availability indicates
that enough trees of species are available to be measured. Invariability indicates that
the general shape of the target species is not easily affected by neighbors. Following
these three rules, four species were finally selected from the dominant species in Hong
Kong [26–28], i.e., Aleurites moluccana (L.) Willd (AM), Ficus altissima Blume (FA), Delonix
regia (Boj. ex Hook.) Raf. (DR), and Hibiscus tiliaceus L. (HT). AM and HT have spherical
crowns with simple and complex structures, respectively, while FA and DR have upright
funnel crowns with complex and simple structures, respectively. The simple and complex
structure stands for the number of main branches of a tree. The number of main branches
of AM are relatively smaller than the number of main branches of HT and FA. A total of
85 AM, 69 FA, 65 DR, and 68 HT trees were chosen as research samples (Figure 1). Basic
structural parameters, i.e., tree height (TH), DBH, and crown width (CS) of all trees, were
simultaneously measured in the field (Table 1). TH and CS were measured by a laser
rangefinder. DBH was measured by a tree caliper. The height difference between the lowest
and highest points of a tree is defined as TH. The maximum horizontal difference of a
crown is defined as CS. The trunk diameter at a tree height of 1.3 m is defined as DBH.
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Table 1. Basic structural information of each species. Subscript “avg”, “median”, and “sd” indicate
the average, median, and standard deviation values, respectively. The unit of TH and CS is m and
the unit of DBH is mm.

Species
TH DBH CS

THavg THmedian THsd DBHavg DBHmedian DBHsd CSavg CSmedian CSsd

AM 13.27 12.69 3.31 353.0 335.0 12.64 9.02 8.83 3.79
FA 12.96 13.33 3.53 311.6 311.2 32.54 10.79 9.99 3.81
DR 10.76 10.28 3.63 238.6 284.0 19.28 11.47 11.81 4.61
HT 9.55 9.70 1.56 284.6 346.6 22.21 7.33 7.37 2.22

Tree point clouds (Figure 2) were collected during May and December in the year 2020
by ZEB Horizon (https://geoslam.com/solutions/zeb-horizon/) accessed on 10 May 2023,
which is a lightweight personal HLS developed by GeoSLAM Ltd., consisting of 16 sensors
with a wavelength of 903 nm. This equipment can capture approximately 300,000 points
per second with a relative accuracy of up to 6 mm. The scanning range is up to 100 m. Its
field of view is 360◦ horizontally and 270◦ vertically. A detailed description of ZEB Horizon
is listed in Table 2.
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Figure 2. Point cloud examples of four species. The four species are (a) Aleurites moluccana, (b) Ficus
altissima, (c) Hibiscus tiliaceus, (d) Delonix regia.

To capture as complete as possible information about trees, we held the scanner
and walked around the target trees twice. The captured point cloud was automatically
processed using GeoSLAM Hub software which utilizes simultaneous localization and
mapping (SLAM) algorithm to locate the scanner and register 3D point cloud [29]. The
accuracy of the SLAM algorithm used in GeoSLAM Hub is less than 3 cm [30]. Processed
point clouds are outputted in LAS 1.2 format.

A statistical outlier removal approach was applied to reduce noise points. The average
distances of each point to neighbors were computed. Then, points farther than the sum
value of average distance and standard deviation of point distances were regarded as
noise [31]. Subsequently, ground points were removed using a cloth simulation filtering

https://geoslam.com/solutions/zeb-horizon/
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algorithm, which simulates the drop procedure of cloth to the ground surface [32]. The noise
removal and ground point removal were conducted with CloudCompare 2.0 software [33].

Table 2. Datasheet of ZEB Horizon.

Range 100 m Intensity yes
Laser Class 1/λ 903 nm Real-time processing yes
FOV 360 × 270 degree Scanner points per second 300,000
Protection class IP54 No. of sensors 16
Processing Post Vertical angular resolution 2◦

Scanner weight 1.45 kg Horizontal angular resolution 0.2◦

Datalogger weight
(including battery) 1.4 kg Relative accuracy up to 6 mm

Colorized point cloud yes Raw data file size 25–50 MB/min

2.2. Individual Tree Point Cloud Segmentation

A four-phased approach was employed to segment individual trees (Figure 3). In
phases 1–3, Canopy Height Model (CHM) was first created by rasterizing elevation differ-
ences. Based on CHM, we employed Marker-controlled Watershed Segmentation (MCWS)
algorithm to coarsely segment individual trees. The marker was able to alleviate over-
segmentation by determining segmented object locations [34]. We used tree locations,
which were detected through fitting cylinders to stem using Density-based Spatial Cluster-
ing of Applications with Noise Algorithm (DBSCAN) at tree height of 1.3–1.4 m [35], as
markers of the MCWS algorithm.

Remote Sens. 2023, 15, x FOR PEER REVIEW  6 of 21 
 

 

 

Figure 3. Procedure of individual tree segmentation. 

2.3. Structural Metric Derivation 

Many structural metrics have been developed for species identification. We divided 

existing metrics into four categories based on the part of a tree that structural metrics are 

related to, i.e., branch, stem, crown, and entire tree metrics. Eighty-nine metrics were de-

rived in this study (Tables 3 and 4). Branch and stem metrics were extracted based on the 

construction of TreeQSM which was developed by Raumonen et al. [36]. Before QSM con-

struction,  several parameters  (i.e., PatchDiam1, PatchDiam2Min, and PatchDiam2Max) 

were optimized by grid search based on four tree point clouds (a tree for each species). 

PatchDiam1  was  used  to  control  patch  size  during  the  first  cover  sets  generation. 

PatchDiam2Min and PatchDiam2Max controlled minimum and maximum patch size dur-

ing the second cover sets generation, respectively. Testing ranges of three parameters were 

[0.06, 0.08, 0.12, 0.14]  (PatchDiam1),  [0.02, 0.03, 0.04, 0.05]  (PatchDiam2Min), and  [0.05, 

0.07, 0.11, 0.13] (PatchDiam2Max). 

Table 3. Definition of stem, branch, and entire tree metrics. 

Type  No.  Definition  No.  Definition 

Stem  

S1  DBH  S7  Stem length 

S2  DBH/TH  S8  Stem length/TH 

S3  DBH/tree volume  S9  Stem direction at axis x 

S4  DBH/min stem radius  S10  Stem direction at axis y 

S5  Stem radial irregularity  S11  Stem direction at axis z 

S6  Stem taper  S12  Stem volume 

Branch 

B1  Branch symmetry  B11 
Overall branch length/branch vol-

ume 

B2  Median 1st branch angle   B12  Mean top 10 branch length 

B3  Sum 1st branch angle   B13  Mean 1st branch radius  

B4   Average 1st branch angle   B14  B13/TH 

B5  Branch angle ratio   B15  Mean top 10 branch radius 

B6  SD of 1st branch angle  B16  Average branch distance 

B7  Sum of 1st branch length  B17  B16/DBH 

B8  Mean 1st branch length  B18 
Branch volume below 55% of the 

tree 

B9  B8/TH  B19  Branch density  

B10  B8/DBH     

Figure 3. Procedure of individual tree segmentation.

After coarse segmentation, each 2D segment was assigned a segment ID, and the
segmentation of the 3D point cloud was conducted (i.e., the points located within a segment
were assigned the corresponding segment ID). In phase 4, unsuccessfully segmented trees
were filtered. Subsequently, manual refinement was executed to further separate individual
tree points clouds.

2.3. Structural Metric Derivation

Many structural metrics have been developed for species identification. We divided
existing metrics into four categories based on the part of a tree that structural metrics are
related to, i.e., branch, stem, crown, and entire tree metrics. Eighty-nine metrics were
derived in this study (Tables 3 and 4). Branch and stem metrics were extracted based on
the construction of TreeQSM which was developed by Raumonen et al. [36]. Before QSM
construction, several parameters (i.e., PatchDiam1, PatchDiam2Min, and PatchDiam2Max)
were optimized by grid search based on four tree point clouds (a tree for each species).
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PatchDiam1 was used to control patch size during the first cover sets generation. Patch-
Diam2Min and PatchDiam2Max controlled minimum and maximum patch size during the
second cover sets generation, respectively. Testing ranges of three parameters were [0.06,
0.08, 0.12, 0.14] (PatchDiam1), [0.02, 0.03, 0.04, 0.05] (PatchDiam2Min), and [0.05, 0.07, 0.11,
0.13] (PatchDiam2Max).

Table 3. Definition of stem, branch, and entire tree metrics.

Type No. Definition No. Definition

Stem

S1 DBH S7 Stem length
S2 DBH/TH S8 Stem length/TH
S3 DBH/tree volume S9 Stem direction at axis x
S4 DBH/min stem radius S10 Stem direction at axis y
S5 Stem radial irregularity S11 Stem direction at axis z
S6 Stem taper S12 Stem volume

Branch

B1 Branch symmetry B11 Overall branch length/branch volume
B2 Median 1st branch angle B12 Mean top 10 branch length
B3 Sum 1st branch angle B13 Mean 1st branch radius
B4 Average 1st branch angle B14 B13/TH
B5 Branch angle ratio B15 Mean top 10 branch radius
B6 SD of 1st branch angle B16 Average branch distance
B7 Sum of 1st branch length B17 B16/DBH
B8 Mean 1st branch length B18 Branch volume below 55% of the tree
B9 B8/TH B19 Branch density
B10 B8/DBH

Entire tree

T1 TH T8 Volume below 55% of TH
T2 Mean grid height/TH T9 Total cylinder length/tree volume
T3 Mean grid height T10 Tree volume/crown cover area;
T4 Relative coverage ratio T11 Tree volume/TH
T5 Stem grid ratio T12 Tree volume/crown diameter
T6 Tree volume T13 Total surface area of entire tree
T7 Volume distribution

Where TH is tree height, mean grid height means grid representing a tree with an edge length of 0.1 m.

Table 4. Definition of crown metrics.

No. Definition No. Definition

C1 Highest crown bottom C24 Height of max CS/TH
C2 Lowest crown bottom C25 Height of max CS/C5
C3 Crown start height C26 Crown areaxy/TH
C4 Crown start height/TH C27 Crown areaxy/crown vertical area
C5 Largest crown length C28 Average equivalent center height/C2
C6 Crown length ratio C29 Average crown grid height/C2
C7 Mean crown length C30 C34/C18
C8 C5/crown diameter C31 Crown symmetry
C9 C5/TH C32 Alpha volume/convex hull volume
C10 CDxy/TH C33 Crown top evenness
C11 CDxy/the shortest crown length C34 Standard deviation of C28
C12 CDxy/CCDxy C35 Crown bottom evenness
C13 CDxy C36 Crown volume
C14 CCDxy C37 C36/crown projection area
C15 CDyz/CCDyz C38 C36/number of crown points

C16 CDxz/CCDxz C39 Volume of crown grids with max point
density/corresponding grid volume

C17 Equivalent centers radius/crown radius C40 Standard deviation of grid number of all
crown layers

C18 Standard deviation of C17 of crown profiles C41 Crown difference ratio
C19 Semi-axis x of paraboloid fitted to crown C42 Coefficient variation of crown

C20 Semi-axis y of paraboloid fitted to crown C43 Total area of voxel one-side covers/convex
hull area from two perpendicular side views

C21 Semi-axis z of paraboloid fitted to crown C44 Residual sum of squared errors of ellipsoid
fitting

C22 Crown equivalent diameter C45 shape signature index
C23 Diameter of crown minimum circumscribed circle

Where CDxy, CDyz and CDxz and mean maximum diameter of projected crown on x-y, y-z, x-z plane, respectively.
CCDxy, CCDyz and CCDxz mean maximum distance at the opposite direction of crown diameter of the projected
crown on x-y, y-z, x-z plane, respectively.
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Then, model precision was calculated for each QSM by comparing the average differ-
ence of TH, DBH, and CS between derived and field-measured parameters. The smaller
differences, the more precise the QSM. Optimized parameters were finally selected accord-
ing to model precision. Afterwards, QSM was built five times for each tree using same
input parameters to reduce the uncertainty, unreliability, and stochasticity. The appropriate
model was estimated by calculating mean distance between cylinder models and points
of the trunk and all branches by the select-optimum function of TreeQSM. The optimized
structural parameters were output by this function. In addition, a part of the crown and en-
tire tree metrics were extracted directly from the point cloud. Other metrics were extracted
from gridding tree point clouds (tree points were gridded using an edge with a length
of 0.02). Derivation of all metrics was conducted using MATLAB software. The detailed
definition and format of eighty-nine metrics were listed in Supplementary File.

All metrics were derived under two leaf conditions, respectively, to investigate the
effect of leaf points on tree structures and species identification. Leaf-on condition means
individual tree point clouds contain leaf points, and leaf-off condition means leaf points
were not contained in individual tree point clouds. Leaf-off condition was achieved by
removing leaf points using the TLSeparation algorithm developed by Vicari et al. [24] and
manual refinement. TLSeparation is likely to introduce significant underestimation of
crown structural complexity [25]. Manual refinement thus was used to improve separation
results of TLSeparation and to obtain better leaf-off individual tree point clouds. According
to the work of Demol et al. [37] and Lau et al. [38], TreeQSM has limitations on the 3D
model reconstruction of small branches, especially branches whose diameters are thicker
than 20 cm. Therefore, this study mainly focuses on the extraction of structural metrics of
first- and second-order branches.

Removal of highly related metrics not only saves computing power but also boosts the
performance of identification models. We used Pearson’s correlation coefficient, a measure of
the correlation between two sets of data [39], to analyze the relationship between all metrics.
The threshold of r was used to split highly correlated and lowly correlated metrics [40].
We used a popular threshold of 0.7 to distinguish the correlation coefficient (i.e., |r| > 0.7
demonstrates a high correlation, otherwise demonstrating a low correlation) [41,42].

2.4. Metric Importance Assessment and Metric Selection

A hybrid method was proposed to evaluate the importance of individual metrics (i.e.,
incorporate the importance assessment with identification procedure). During classifier
construction, the metric that made the split, the corresponding changes of Gini impurity
and the number of affected samples were all tracked once a split was done. The times a
metric was used to split a node can be counted by Gini impurity (Equation (1)), which is a
measurement used to determine how the features of a dataset should split nodes to form
the tree [43]. The more frequently a metric is used during a classifier construction, the more
important it is [43]. After classifier construction, the total gain that measures the decrease
in node impurity of each metric can be computed. Accordingly, the importance ranking of
all metrics can be generated. The importance assessment procedure was achieved using
the Python library skicit-learn [44].

Gini = 1−
k

∑
i=1

p2
i (1)

where k is the number of classes. p is the probability of samples belonging to class i at a
given node.

Redundant and irrelevant metrics adversely affect the performance of identification
models with the increase in metric dimensions [45,46]. For example, highly related or
insignificant metrics increase dimensions without improving identification accuracy [16,47].
Metric selection seeks to find appropriate metrics for improving identification efficiency by
maximizing the performance of identification models and minimizing metric numbers [48].
In this study, structural metrics were selected based on correlation analysis and importance
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assessment. In each pair, the metric that had lower importance values (|r| < 0.7) was
removed. When the importance of the two metrics was the same, their total |r| values
were compared. Then, metrics that have relatively higher total |r| values were removed.
In addition, an accumulated importance was introduced to evaluate the importance of
metric types for tropical species identification. The accumulated importance equals to the
total sum of importance values of all metrics of the same type.

2.5. Tropical Species Classification

Machine learning approaches have been commonly applied to solve identification
problems. Among various machine learning models, XGBoost has shown great ability
on a metric-based identification problem in recent years [49]. It is an optimized and
scalable end-to-end tree-boosting system based on a gradient-decision tree and provides
a parallel tree-boosting method which fits many large or small trees to the reweighted
version of the training data [50]. We employed XGBoost to identify species using selected
structural metrics. Overall, trees were divided into two datasets. About 20% of trees were
randomly selected as dataset 2 for evaluating the robustness and reliability of identification
models and selected structural metrics. The rest 80% of the trees were used as dataset 1.
Approximately 70% of trees of dataset 1 were used as training data and 30% as testing data
to show the performance of the identification model. The model trained using training
data in dataset 1 was implemented to identify species of dataset 2. Training and testing of
identification models were implemented under two leaf conditions, respectively, to explore
the effect of leaves on species identification.

The performance of XGBoost model is controlled by a number of parameters. Ob-
taining the performance of each parameter value is time-consuming and computationally
intensive. We integrated a grid search that can exhaustively search subsets from param-
eter space and cross-validation to find optimal parameter sets. A five-step strategy was
proposed for parameter optimization: (1) Determine learning rate and an optimum num-
ber of trees; (2) Tune parameters of each tree; (3) Optimize regularization parameters;
(4) Decrease learning rate and repeat the above-mentioned steps; and (5) Finish parameter
optimization until model accuracy does not increase. The experiment was carried out with
the “scikit-learn” package [44].

The performance of selected metrics and identification model was evaluated by three
assessment approaches (Equations (2)–(4)), namely, overall accuracy (Oa), user’s accu-
racy (Ua), and procedure’s accuracy (Pa). Oa illustrated the general performance of the
identification model on four species. Ua and Pa were used for each species to reduce the
influence of imbalanced samples between species on result assessment. Ua evaluates iden-
tification results from the point of view of species, and Pa evaluates identification results
from perspective of model. To each species, Ua demonstrated rate of correct prediction
made by identification model compared to all predictions. Pa demonstrated rate of correct
predictions compared to true sample.

Oa =
NCorrPred_all

Ntotal
, (2)

Ua =
NCorrPred

Npred
, (3)

Pa =
NCorrPred

Ntrue
, (4)

where NCorrPred_all is the number of precisely predicted samples, Ntotal is the count of all
samples, Npred is the number of predicted samples of a species, NCorrpred is the number of
samples predicted as that species, and Ntrue is the number of true samples of a species.
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3. Results
3.1. Validation of HLS-Based Tree Structure Characterization

The differences between manually measured and HLS-derived metrics, including
mean, standard deviation (SD), and median of difference values, are listed in Table 5.
Overall mean differences of DBH, TH, and CS are 4.35 mm, 0.69 m, and 0.82 m, respectively,
demonstrating that HLS can effectively capture basic structural information of trees. In
terms of specific species, FA has relatively larger errors than others in TH and DBH. This
may be because some aerial roots of FA influenced the automated measurement of structural
metrics. For CS, the possible reason for the large differences between manually measured
and HLS-derived metrics is human vision error.

Table 5. Difference between manual measured and HLS-derived metrics. Sd means standard
deviation. MPE means the mean percentage error (unit is %).

Species
TH (m) DBH (mm) CS (m)

Mean Median Sd MPE Mean Median Sd MPE Mean Median Sd MPE

AM 0.67 0.65 0.45 6.14 3.27 4.03 2.01 3.80 0.83 0.84 0.43 4.34
FA 0.71 0.79 0.44 5.97 4.88 4.54 2.79 4.17 0.80 0.81 0.39 4.91
DR 0.57 0.51 0.35 4.78 3.62 3.77 1.94 3.89 0.84 0.91 0.55 5.36
HT 0.79 0.58 0.45 5.56 5.01 5.12 2.88 3.78 0.82 0.86 0.52 5.63

Overall 0.69 0.65 0.44 5.52 4.35 4.73 2.42 4.30 0.82 0.84 0.47 4.18

3.2. Correlation of Structural Metrics and Metric Selection

The number of highly correlated metrics in leaf-on conditions is larger than in leaf-off
conditions (Figures 4 and 5), demonstrating that the diversity of inner structures rep-
resented by metrics derived under leaf-off conditions is more remarkable than external
structures represented by metrics derived under leaf-on conditions. With regard to metric
types, the correlation coefficient of metrics, especially branch and crown metrics, tends to
be larger in leaf-on than in leaf-off conditions. About half of crown metrics have high corre-
lation coefficient values under two-leaf conditions. This notion may be explained by two
possible situations: (1) existing crown metrics represent the same or similar characteristics
of a crown using various formats; and (2) some metrics may not be appropriate to tropical
species. Metrics with high correlation coefficients under two leaf conditions predominantly
relate to branch length, CS, crown cover, crown length, stem length, TH, and tree volume.

The metric selection was conducted on the basis of assessment of the correlation
coefficient and the importance of all metrics in the first calculation. Under the leaf-on
condition, 42 metrics were removed, including 6 branch metrics, 24 crown metrics, 4 stem
metrics, and 8 entire tree metrics. Under leaf-off condition, 38 metrics were removed,
including 4 branch metrics, 22 crown metrics, 4 stem metrics, and 8 entire tree metrics.
Although most crown metrics were developed in previous studies, many of them are
similar or have relatively low importance for species classification. The same situation was
observed in entire tree-related metrics. The remaining metrics under two leaf conditions
are listed in Table 6.
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Table 6. Remaining metrics under leaf-on and leaf-off conditions after removing highly correlated metrics.

Type Leaf Condition Remaining Metrics

Branch
Leaf-on B1, B2, B3, B4, B6, B9, B10, B11, B13, B14, B16, B17, B18, B19
Leaf-off B1, B2, B3, B5, B6, B8, B9, B11, B13, B14, B15, B16, B17, B18, B19

Crown
Leaf-on C3, C6, C8, C10, C14, C15, C16, C17, C19, C20, C21, C24, C30, C31,

C33, C35, C38, C39, C41, C42, C43

Leaf-off C2, C3, C5, C6, C8, C10, C14, C15, C16, C17, C19, C20, C22, C25,
C30, C31, C33, C35, C38, C41, C42, C43, C44

Stem
Leaf-on S1, S2, S3, S4, S5, S6, S9, S10
Leaf-off S1, S2, S3, S4, S5, S6, S9, S10

Entire
tree

Leaf-on T3, T4, T5, T7, T9
Leaf-off T2, T3, T4, T5, T7, T8, T9
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Figure 5. Correlation coefficient of all metrics under leaf-off condition. The higher the positive
correlation, the darker the blue is. The higher the negative correlation, the darker the red is.

3.3. Importance of Structural Metrics

Among all structural metrics, crown structural metrics were found to be the predom-
inant metrics for differentiating four tropical species in HK under two leaf conditions
according to accumulated importance values of each type (Table 7). Their accumulated im-
portance values remain the largest in the four types of metrics, and no significant difference
was observed between the two leaf conditions. This finding agrees that crown structure is a
fundamental attribute of a tree [51]. The aforementioned situation may also be the reason
many previous studies predominantly used crown metrics to classify species from point
cloud [5,52,53]. The performance of branch and stem metrics significantly varies under
different leaf conditions. Branch metrics perform increasingly important roles from leaf-on
to leaf-off conditions, while stem metrics show an opposite trend. This situation may
be because the internal structural and morphological characteristics of trees were shown
clearer under leaf-off conditions. Thus, branch metrics more explicitly express differences
between species.
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Table 7. Overall accumulated importance of each type of metric.

Type Leaf-On Type Leaf-Off

Branch 14 0.1633 Branch 15 0.2010
Crown 21 0.3961 Crown 23 0.3844
Stem 8 0.2735 Stem 8 0.2496
Entire 5 0.1676 Entire 7 0.1649

From the importance of individual metrics, the stem shape metric performs the most
important role in tropical species identification under all leaf conditions (Figure 6). This
notion agrees with the demonstration of Stal et al. [54], wherein stem properties are im-
portant parameters of a tree. However, unlike commonly used stem metrics such as DBH
for species identification, the most important stem metric in this study is S5. Two possible
reasons for this situation are as follows: (1) in comparison with DBH, which only measures
the diameter of a stem, stem radial irregularity the takes size and shape of a stem into
consideration. Taking HT and AM as an example, S5 can still identify them when stem
diameters are the same because the trunk of AM tends to grow straighter, and the shape
of AM trunk is closer to the perfect circle. However, the HT trunk has greater irregularity.
(2) S5 has lower relationships with other metrics, making identification models more
sensitive to its variations between species.
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In addition, some structural metrics perform different roles in tropical tree species
identification under different leaf conditions. When leaves exist, C10 and C8 are identified
as important metrics for species identification (ranking as second and third). However,
under leaf-off conditions, C10 and C8 become less important. Meanwhile, B9 and C38
become the second and third most important metrics. Unlike commonly used metrics in
previous studies, such as TH, CS, and DBH [18,19], the first 15 important metrics under
two-leaf conditions are more concrete and tangible, especially the first five metrics. In the
first five metrics under leaf-on conditions, the crown shape is described through the ratio
between CS and TH and the ratio between the horizontal and vertical spread. The ratio
between metrics and TH is also proven to perform better because it can reduce the influence
of tree ages [3]. Stem shape is described through S5, and TH is the mean height of all
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tree grids. Moreover, the first five metrics under leaf-off condition characterize properties
of stem diameter, crown volume, branch length, stem volume, and CS by stem radial
irregularity, the ratio of crown volume to the number of crown points, the mean length of
first-order branches, the ratio between the number stem grids and entire tree grids, and the
ratio of the vertical length of the crown to the horizontal length of the crown, respectively.

We discovered nine robust metrics that consistently show large importance values
under two leaf conditions, including three crown metrics, two branch metrics, two stem
metrics, and two entire tree metrics, namely, S5, C10, C8, S3, T5, B18, T7, B9, and C3.
These metrics appear in the first 15 metrics under two leaf conditions but with different
rankings. The frequently employed branch length and branch volume were also verified to
be effective and efficient for tropical species classification. Three robust crown metrics are
more appropriate to tropical species from the aspect of ecosystem and plant morphology
compared with the commonly used crown metrics, such as crown diameter, crown cover
area, and crown base height [55–57]. Shenkin et al. [51], who studied the role of ecosystem
and phylogeny on crown size and shape, demonstrated that crown vertical length and
crown volume of tropical species vary more across gradients than crown diameter and
projected crown area.

The crown depth and crown base height can be affected by structures and leaves of the
upper crown [58]. Specifically, the sparse structure and compound leaves of the upper crown
could allow lateral light to effectively penetrate deeper into the canopy, allowing the crown
bottom to maintain a positive carbon balance and grow deeper [49,59]. These phenomena are
reasons why crown metrics C3, C8, and C38, which describe the characteristics of the crown
bottom, crown vertical length (also called crown depth), and crown volume, respectively,
outperformed other commonly used metrics in tropical species classification. The two entire
tree metrics relate to tree volume, confirming again the effectiveness of tree volume for
the classification of species, not only for boreal and temperate species [60] but also for
tropical species.

3.4. Results of Species Identification

Identification results under different leaf conditions are shown in Table 8. Overall
accuracy values indicated that the selected first 15 important metrics could identify tropical
species with an accuracy of approximately 70%. The overall accuracy obtained under the
leaf-on condition is slightly better than that under the leaf-off condition in the two datasets.
In terms of performance on each species, noticeable differences can be observed. The Pa
and Ua values of AM and HT are generally higher than those of FA and DR under two leaf
conditions in two datasets. This may be explained from the aspect of plant morphology, i.e.,
AM and HT have a spherical crown, while FA and DR trees have an upright funnel crown.
Structural metrics may be more sensitive to spherical shapes than to upright funnel shapes.
There are also differences in specific classification performance on two species that have
similar shapes. To the spherical crown, leaf condition has smaller influences on simple
structure, while to the upright funnel crown, the leaf condition has a larger influence on
the simple structure than on the complex tree structure.

Table 8. Identification results of four tropical species under leaf-on and leaf-off conditions.

Classification Results

Dataset 1 Dataset 2

Leaf-On Leaf-Off Leaf-On Leaf-Off

Pa Ua Pa Ua Pa Ua Pa Ua

AM 85.71 75.00 92.85 81.25 86.67 76.47 86.67 76.47
FA 66.67 54.55 55.56 45.45 75.00 60.00 66.67 66.67
DR 37.5 100.00 50.00 80.00 37.50 60.00 66.67 66.67
HT 90.00 81.82 70.00 77.77 75.00 100.00 25.00 50.00
Oa 73.17 70.73 71.43 70.27
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The combination of metrics derived under two leaf conditions improved overall
classification accuracy from 70.27% to 81.7% (Table 9). However, the performance of specific
species significantly varies. The combination of metrics derived under two leaf conditions
improves classification results of FA and DR, with the procedure’s accuracy increasing from
55.56% to 75.00% and from 37.5% to 75.00%, respectively, showing that the combination of
metrics derived under two leaf conditions could improve classification results of upright
funnel crown, while the combination of metrics derived under two leaf condition shows
different performance on AM and HT in testing data (i.e., datasets 1 and 2). In dataset 1,
Pa of AM achieved using the combination of metrics derived under two leaf conditions is
slightly larger than that achieved using metrics derived under the leaf-on condition but
is smaller than that achieved under the leaf-off condition. However, in dataset 2, Pa of
AM achieved using the combination of metrics derived under two-leaf condition is less
than that achieved using metrics derived under leaf-on and leaf-off conditions. Pa value
of HT achieved using the combination of metrics derived from two leaf conditions is less
than that achieved using metrics derived under leaf-on but larger than that achieved using
metrics derived under the leaf-off condition in dataset 1. However, the identification result
of HT using the combination of metrics derived under two leaf conditions is larger than
that using metrics derived under single leaf conditions in dataset 2.

Table 9. Confusion matrix of classification results of four tropical species under combination of
structural metrics derived under two leaf conditions.

Dataset 1 Dataset 2

Prediction Prediction

AM FA DR HT Pa AM FA DR HT Pa

Referenced

AM 13 1 0 1 86.67 12 2 1 0 75.00
FA 1 9 1 1 75.00 2 9 0 1 75.00
DR 1 1 7 0 75.00 0 3 6 0 66.67
HT 1 0 0 7 87.50 1 0 0 7 87.50
Ua 81.25 81.81 87.50 77.78 80.00 64.29 85.71 87.5

Oa 81.71 75.56

4. Discussion
4.1. Performance Analysis

Several studies have identified tropical species based on structural properties charac-
terized by structural metrics from point clouds in recent years. However, the importance of
these metrics was rarely compared. In this study, we extracted 89 structural metrics that rep-
resent traits of different parts of a tree from the HLS point cloud, including branch, crown,
stem, and entire tree metrics, and assessed their correlations and importance for tropical
species identification under different leaf conditions. The identification performance of
these metrics was also evaluated.

Our correlation coefficient analysis illustrated that about half of existing structural
metrics are highly correlated. Among them, approximately two-thirds of branch and stem
metrics have high correlation coefficient values, and more than half of crown and entire
tree metrics have high correlation coefficient values. This notion may be explained by two
possible situations: (1) existing crown metrics represent the same or similar characteristics
of a crown using various formats; and (2) some metrics may not be appropriate to tropical
species. Thus, it is essential to find effective and efficient metrics for tropical species
identification. According to important assessment results, the structural properties of the
crown and stem were identified as the most important components for the identification
of tropical species. This finding may also be the reason many studies mainly used crown
metrics to classify species. In addition, stem metrics perform important roles. However,
different from other studies which use DBH, the most important stem metric is stem radial
irregularity. There are two possible reasons: (1) in comparison with DBH that only measures
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the diameter of a stem, stem radial irregularity takes the size and shape of a stem into
consideration. (2) stem radial irregularity has a lower relationship with other metrics,
making the identification model more sensitive to its variations between species.

Several robust and more concrete metrics were discovered, providing reference sig-
nificance to further studies. Identification results demonstrated that leaf condition affects
species identification. Based on overall accuracy, the leaf-off condition could slightly im-
prove the performance of structural metrics, while combination of metrics derived under
two leaf conditions could significantly improve identification accuracy. This could be due
to the fact that metrics derived under the leaf-off condition can better represent inner crown
and branch structures compared to metrics derived under leaf-on condition. The combi-
nation of metrics derived under two leaf conditions integrated the internal and external
structural properties of a tree, thus obtaining better identification results. However, specific
influence of leaf conditions on the identification of tropical trees depends on the species.
This may relate to the surrounding environment, plant morphology, and ecology.

4.2. Influence Factors

This study obtained positive importance assessment and species identification re-
sults. Each species has at least two misidentified trees. This situation may be due to the
effects of the surrounding environment and their growth-defense tradeoffs [61]. Tomé
and Burkhart [62] illustrated that the growth of individual trees on particular sites could
be affected by local neighbors and competition status. Park trees in Hong Kong usually
have high species diversity and a complex growth environment [63]. To adapt to vari-
ous external stress conditions and maximize survival efficiency, plants evolve a complex
and sophisticated regulatory mechanism to mediate the balance of growth and external
stress [64,65]. This adaptation leads to the convergence of tree traits, resulting in the struc-
ture differs from the common pattern of their corresponding species, lowering variation
between species [66,67]. In addition, to maintain the neatness and beauty, trees in the park
are sometimes pruned, resulting that the precision of their external shape and structural
characteristics are affected. Samples used in this study are selected from parks which away
from residential areas and near forests to minimize the influence of pruning and mainte-
nance activities. It is difficult to completely reduce the impact of pruning activities. This
study was conducted on four tropical species growing in a park in Hong Kong. The limited
number of species, certain environments, and ecosystems may also affect the assessment
of the importance and applicability of selected important metrics. In addition, tree point
clouds were obtained by holding the scanner and walking around trees twice. During the
generation of tree point clouds, the point clouds need to be registered, and repeated points
need to be removed by GeoSLAM Hub software. This procedure may be affected by system
errors of GeoSLAM Hub software, thus influencing the quality of tree point clouds and the
extraction of structural metrics.

Furthermore, four species were selected as examples of tropical species for assessment
of structural metrics. Although some inefficient and highly correlated metrics were detected
and optimal metric sets were proposed in this study, it is not enough to be used as a
standard guideline for the identification of all tropical species. We will try to explore the
capability and applicability of structural metrics on more species and samples in diverse
environments. Branch and stem metrics derived under all leaf conditions are extracted
on the basis of the construction of 3D tree models. The 3D model was constructed by
hierarchically fitting cylinders to stems and branches. However, branch points, particularly
high-order branch points within the crown, may be misidentified under leaf-on condition.
Accordingly, metrics related to traits of high-order branches may be inaccurate. This is the
reason the importance of branch metrics is relatively low.

4.3. Application Analysis

Our study affirmed that HLS could be used to reduce obscuration effects and obtain
structural measurements. Meanwhile, HLS can easily handle forest inventory and structural
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heterogeneity, tree growth modeling, and tree structural health monitoring. The application
in other fields, such as 3D model construction of buildings and survey of individual
trees and forests, can be performed using HLS. This study explored the importance and
performance of numerous existing structural metrics for species identification, evaluated
their correlation, and discussed the association of structural metrics, identification, and
structural properties. Results of our capability test showed that good identification results
could be obtained with several important and optimal metrics instead of many metric
sets. This method not only decreases identification time but also saves computing power,
providing a significant reference for later work.

4.4. Potential Improvement

Our assessment of structural metrics indicated that identifying species based on the
structural characteristics of a species is practical and feasible, but there is still space for
improvement. Many structural metrics were included and evaluated in this study, and opti-
mal metrics were verified to be effective for tropical species identification. Some properties
of trees, such as texture traits of foliage, crown, and stem, cannot be resolved. According
to crown criteria illustrated by González-Orozco et al. [68] and Trichon [69], the division
within a crown remarkably varies between species. Some crowns do not have clear divi-
sions, while others have two or more divisions with each component. Foliage texture has
many types, for example, smooth, mottled, granular, grainy, and spotted [68]. If these tex-
ture features can be taken into consideration, species identification using structural metrics
derived from the HLS point cloud will be improved. Traditionally, species identification
is conducted based on multispectral or hyperspectral photographs, which can represent
spectral information of crowns and leaves. If structural characteristics and spectral informa-
tion can be integrated as features for species identification, more details and knowledge of
trees may enhance identification precision. In addition, structural metrics and the influence
of leaves were explored based on standalone trees. Their performance on trees in dense
forests is still unknown. Therefore, further experiments are worth being designed and
carried out to exploit and improve the robustness, practicality, and applicability.

5. Conclusions

This study evaluated the correlation coefficient between 89 existing structural metrics,
including crown, stem, branch, and entire tree metrics, and assessed the use of these metrics
for tropical species classification under different leaf conditions using HLS point cloud.
Approximately two-thirds of branch and stem metrics are highly correlated, and more than
half of crown and entire tree metrics are highly correlated. In terms of metric importance,
crown, and stem metrics were identified as the most important components. Leaf conditions
(i.e., leaf-on and leaf-off) were found to have an influence on tropical species classification.
The combination of metrics derived under leaf-on, and leaf-off conditions can significantly
improve the identification accuracy of four tropical species. Furthermore, we investigated
fifteen optimal metrics based on correlation analysis and importance metrics, and nine
robust structural metric sets were proposed and validated. The most important structural
metrics discovered in this study are more concrete compared to commonly used structural
metrics. For example, we found CS characterized by the ratio between the horizontal and
vertical maximum spread of a crown is more significant than horizontal spread and spread
area for species identification. Although plenty of structural metrics were developed,
many of them are identical. It is essential to investigate efficient structural metrics for the
identification of more species, such as boreal and temperate species. Our exploration of the
connection between metrics and structural properties and assessment of the importance of
identification of four tropical species provide a significant reference for further research, not
only studies on the effectiveness of structural metrics but also studies on the identification
of other tropical species.



Remote Sens. 2023, 15, 2826 17 of 20

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15112826/s1, Figure S1: Illustration of stem metric deriva-
tion. Figure S2: Illustration of crown metrics. Figure S3: Illustration of crown profile and relevant
metrics. Table S1: Detailed definition and format of stem structural metrics. Table S2: Detailed
definition and format of branch structural metrics. Table S3: Detailed definition and format of
entire tree structural metrics. Table S4: Detailed definition and format of crown structural metrics.
References [70–74] are cited in the supplementary materials.

Author Contributions: Conceptualization, M.S.W.; methodology, M.S.W. and M.W.; validation, M.W.;
formal analysis and investigation, M.W.; writing—original draft preparation, M.W.; writing—review
and editing, M.S.W.; visualization, M.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by General Research Fund (Grant Nos. 15603920 and 15609421)
and the Collaborative Research Fund (Grant No. C5062-21GF) from the Research Grants Council,
Hong Kong, China. M.S. Wong also acknowledged the support from the project 1-CD81, Research
Institute for Land and Space, the Hong Kong Polytechnic University, Hong Kong, China.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We express our gratitude to the anonymous reviewers and the editor for their
valuable comments and suggestions to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Field, C.B.; Barros, V.R. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press:

Cambridge, UK, 2014.
2. Cao, K.; Zhang, X. An improved Res-UNet model for tree species classification using airborne high-resolution images. Remote

Sens. 2020, 12, 1128. [CrossRef]
3. Lin, Y.; Herold, M. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial

laser scanning data. Agric. For. Meteorol. 2016, 216, 105–114. [CrossRef]
4. Ghiyamat, A.; Shafri, H.Z. A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity

assessment. Int. J. Remote Sens. 2010, 31, 1837–1856. [CrossRef]
5. Shi, Y.; Skidmore, A.K.; Wang, T.; Holzwarth, S.; Heiden, U.; Pinnel, N.; Zhu, X.; Heurich, M. Tree species classification using

plant functional traits from LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 207–219. [CrossRef]
6. Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens.

Environ. 2014, 148, 70–83. [CrossRef]
7. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and

hand-held mobile laser scanning. Forests 2016, 7, 127. [CrossRef]
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