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Abstract: Space-time adaptive processing (STAP) is an important method of clutter suppression
that requires adequate training samples. For an airborne conformal array radar, conventional STAP
methods do not have enough training samples to acquire good performance due to the range
dependent clutter caused by geometry and the problem of polarization. Sparse-recovery-based
STAP (SR-STAP) methods have garnered significant attention in the past few decades because they
only require a small number of training samples. Sparse Bayesian Learning (SBL) methods have
seen increasing amounts of development due to its robust, self-regularizing nature and because it
is not sensitive to user parameters, but it converges slowly. In this paper, a novel fast SBL (NFSBL)
method is put forward to increase the rate of convergence. To minimize the SBL penalty function, the
proposed method introduces the conjugate function to construct a surrogate function. Additional
solution sparsity will be achieved through iteratively minimizing the surrogate function. Then,
from the proposed method, we could obtain a more accurate clutter plus noise covariance matrix.
Numerical simulation results express that this method could acquire better performance of STAP and
improvement in convergence and computational complexity for a conformal array.

Keywords: sparse Bayesian learning; space-time adaptive processing; airborne radar; conformal array

1. Introduction

Conformal array radar has attracted extensive attention because of the advantages
which contain the underlying larger effective aperture, minimum payload weight, rise
scanning range without cumbersome mechanical couplings and avoiding signal modulation
from rotary antenna [1].

Space-time adaptive processing (STAP) is a meaningful method because of its excellent
clutter suppression performance [2]. The optimum weight vector aims to maximize the
output signal-interference-noise-ratio (SINR) [3]. Usually, the clutter plus noise covariance
matrix (CNCM) should be obtained by using the training samples with the adjacent to
range cell under test (CUT) to estimate [4]. The Reed–Mallett–Brennan rule (RMB) [5]
shows that the training samples must fulfill these conditions to maintain a 3 dB output
SINR loss: (a) it should be independent and identically distributed (IID); (b) it is required
to have no target; (c) the number is required to be more than twice the degrees of freedom.
However, in the complex structures, such as conformal arrays, there is nonlinearity and
range-dependence between the Doppler frequencies and spatial frequencies. Meanwhile,
clutter has no stationarity over the range [6]. For conformal arrays, it is more difficult to
acquire the needed IID training samples.

In order to deal with influence caused by range dependence, many methods based on
compensation have been proposed. The angle-Doppler compensation method (ADC) [7]
deterministically aligns maximum angle-Doppler responses over a range to improve the
training set. However, the deterministic compensation needs a certain degree of prior
information. The adaptive angle-Doppler compensation method (A2 DC) [8,9] adaptively
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estimates features of dominant subspace from data and aligns range-varying responses
to CUT. Some related methods [10,11] intend to apply compensation algorithms to the
conformal array or other geometry. The methods mentioned above make the angle-Doppler
characteristic of training samples similar to CUT. However, these methods are only suitable
for antenna beam-patterns with high directivity [12].

In the last few decades, to decrease the requirement of the IID secondary samples
and obtain an excellent clutter suppression performance, different effective methods have
been represented. The reduced-dimension methods (RD) attempt to introduce a reduced
dimension matrix to decrease the requirements of IID training samples [13–15]. The
reduced-rank (RR) methods try to decrease the number of needed training samples by using
a data-dependent transformation matrix [16]. However, the training samples needed by
these methods is still hard to satisfy in a nonhomogeneous environment. The named direct
data domain STAP method [17] solves the shortcoming of inadequate training samples by
using the CUT only. Unfortunately, the DDD method introduces the cost of the decreased
degrees of freedom, which causes STAP performance degradation. Recently, the knowledge-
aided (KA) methods have been introduced in the STAP methods [18,19] to enhance the
clutter suppression performance in nonhomogeneous environments, which utilize the
prior information of the array geometry, array system parameters, or measured data to
obtain a relatively accurate CNCM. However, when errors exist in the prior knowledge,
the KA-STAP methods will result in significant performance loss.

With the progress of compressed sensing technology, sparse recovery (SR) methods
have been introduced into STAP methods and obtained good development [20,21]. SR-
STAP methods aim to acquire the precise recovery of the clutter spectrum by exploiting
the clutter sparse property. These methods can estimate an accurate CNCM with a few
training samples by making use of the sparse property of the clutter spectrum [22,23].
Unfortunately, these SR-STAP methods are sensitive to user parameters or have high
computational burden. A sparse representation RBC method (SR-RBC) was represented to
further obtain an excellent STAP performance of conformal array [24] that uses the more
accurate CNCM estimated by SR method to design the transform matrix by making the
training samples more stationary, but the performance of SR-RBC method is still influenced
by the number of training samples. KA sparse iterative covariance-based estimation
method (KASPICE) has been proposed [25] with exploiting the aided knowledge of the
clutter spectrum and covariance fitting criteria, which can acquire excellent performance,
and it will not be affected by user parameters. The KASPICE method requires accurate prior
knowledge because it utilizes the idea of KA. A sparse Bayesian learning (SBL) algorithm
for the single measurement vectors case (SMV) [26] and the algorithm for the multiple
measurement vectors case (MMV) [27] was proposed due to its excellent robustness and
performance. However, SBL has heavy computational complexity and converges slowly. A
SBL with the fast-convergence method (FCSBL) is proposed [28] to increase the convergence
speed with the same framework but start with a modified signal model.

In this work, a novel fast SBL-STAP method is proposed. The proposed method creates
a novel surrogate function for the SBL cost function. Then, the surrogate function will be
iteratively minimized and the updated formula for the SMV condition will be obtained.
The extension to the MMV condition is straightforward. Finally, the proposed method
improves the sparsity of the solution and estimates the clutter power, which calculates a
relatively accurate CNCM. This method also resolves the drawbacks mentioned above and
has the lower computational complexity than the SBL method and FCSBL method. The
proposed method can provide satisfactory performance.

The main contributions are listed as:

(1) The concept of conjugate function will be introduced to make up a surrogate function
for the SBL cost function. The STAP performance is similar to the conventional
SBL method, and converges faster. Meanwhile, the proposed method has lower
computational burden than the SBL and FCSBL methods.
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(2) The proposed method obtains the hyper-parameter by iteratively minimizing the
surrogate function. For each minimizing step, a close-form solution can be achieved,
which will guarantee the convergence.

(3) The extension of the novel SBL method to the multiple measurement vector (MMV)
condition is rather straightforward.

(4) Detailed comparison of clutter suppression performance and Capon spectrum be-
tween the proposed method and other STAP algorithms are expressed.

The remaining section is as follows. In Section 2, the clutter signal model and SR-STAP
based on conformal array are introduced. In Section 3, the proposed method is expressed.
In Section 4, the performance of the various methods will be evaluated with simulated data.
In Section 5, the conclusions are given.

Notations: Vector, matrix and scalar quantity are represented by boldface lower case,
boldface upper case and italic typeface. The matrix inverse, transpose and conjugate trans-
pose are represented by [·]−1 [·]T and [·]H respectively. ‖·‖0 is the l0 norm. |·| represents the
absolute value. ‖·‖1 expresses the l1 norm. ‖·‖2 stands for l2 norm or lF norm. � expresses
the Hadamard product. ⊗ represents the Kronecker product. Diag(·) denotes transforming
a vector into a diagonal. IN is an identity matrix with N × N. CN (µ, σ) represents the
complex Gaussian distribution where µ denotes mean and σ stands for covariance.

2. Signal Model and SR-STAP Model and Principle
2.1. Signal Model

The signal model of conformal array which considers polarization has been proposed
in our previous work [29]. In this section, the signal model is to be expressed briefly. The
radar system is shown in Figure 1. The v can be expressed as

v= [v cos ψ, v sin ψ, 0]T (1)

where v represents the platform velocity and ψ stands for crab angle.
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Figure 1. Abridged general view of airborne radar system.

The unit vector k(ϕ, θ) points to propagate direction and could be expressed as

k(ϕ, θ) = [cos ϕ cos θ, sin ϕ cos θ, sin θ] (2)

where ϕ stands for the azimuth angle and θ represents elevation angle.
Figure 2 exhibits the configuration of a circular arc array. The conformal array has N

elements. Wavelength is denoted by λ. The element spacing is λ/2. The direction vector to
the ith element is expressed by ri = [xi, yi, zi]

T .
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The normalized array factor from (ϕ, θ) can be written as

s0(ϕ, θ) = [ej 2π
λ k·r1 , ej 2π

λ k·r2 , · · · , ej 2π
λ k·rN ]

T
(3)

In this work, consider the individually-polarized dipole conformal array to be placed
tangentially to circumference. gi represents the element factor of the ith element and could
be divided into two polarizations which are mutually orthogonal

gi = g
i
⇀
ϕ
(ϕ, θ)

→
ϕ + g

i
⇀
θ
(ϕ, θ)

→
θ (4)

where g
i
⇀
ϕ
(ϕ, θ) and g

i
⇀
θ
(ϕ, θ) stand for the

→
ϕ polarized component and

→
θ polarized com-

ponent, respectively.
Element factor is expressed in the local coordinate, and

~
gi(x̃, ỹ, z̃) is known. The

accurate formula of the conformal array space steering vector in global coordinates should
be obtained. For this purpose, the Euler rotation matrix [30,31] would be used as the
transformed tool between the local coordinate system and the global coordinate system for
the element factor.

The transformation matrix (x, y, z)⇒ (x̃, ỹ, z̃) could be expressed as T = TxTyTz,
where

Tx =

1 0 0
0 cos σx − sin σx
0 sin σx cos σx

 (5)

Ty =

 cos σy 0 sin σy
0 1 0

− sin σy 0 cos σy

 (6)

Tz =

cos σz − sin σz 0
sin σz cos σz 0

0 0 1

 (7)

Utilizing the transformation matrix, the following could be obtained

~
gi(x̃, ỹ, z̃) = T · gi(x, y, z) (8)

Then, the coordinate transformation could be written as

gi(x, y, z) = T−1 · ~
gi(x̃, ỹ, z̃) (9)
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The expression of gi in the spherical coordinate system g
i
⇀
ϕ
(ϕ, θ) and g

i
⇀
θ
(ϕ, θ)

could be obtained using the Cartesian coordinate system by means of the following
transformation formula

[⇀
ϕ
⇀
θ

]
=

[
− sin ϕ

sin θ cos ϕ
cos ϕ

sin θ sin ϕ
0

− cos θ

]
⇀
x
⇀
y
⇀
z

 (10)

Now, the conformal array exact space steering vector could be written as follows

Ss(ϕ, θ) = [Gϕ(ϕ, θ)� s0(ϕ, θ), Gθ(ϕ, θ)� s0(ϕ, θ)], Ss ∈ CN×2 (11)

where
Gϕ(ϕ, θ) = [g

1
⇀
ϕ
(ϕ, θ), g

2
⇀
ϕ
(ϕ, θ), · · · , g

N
⇀
ϕ
(ϕ, θ)]T (12)

Gθ(ϕ, θ) = [g
1
⇀
θ
(ϕ, θ), g

2
⇀
θ
(ϕ, θ), · · · , g

N
⇀
θ
(ϕ, θ)]T (13)

It is assumed that the array emits M pulses. fr stands for pulse repetition frequency.
The temporal steering vector could be represented as

sd(ϕ, θ) = [1, ej 2π
λ fr

2k·v, · · · , ej 2π
λ fr

2k·v(M−1)
]
T

(14)

Then, the space-time steering vector for conformal array could be represented by

Sst(ϕ, θ) = sd(ϕ, θ)⊗ Ss(ϕ, θ), Sst ∈ CNM×2 (15)

In this paper, it is supposed that the wave is the completely polarized wave. The Jones
vector is used to denote the completely polarized wave, and it can be written as

ep =

[
cos µ

sin µejβ

]
(16)

where µ ∈ [0, π/2] denotes the polarization angle and β ∈ [−π, π] is the polarization phase
difference [32].

Finally, the clutter data c ∈ CNM×1 from (ϕ, θ) can be represented as

c = αSst(ϕ, θ) · ep = αs(ϕ, θ) (17)

where ep expresses the polarized state of the echo and α denotes the complex amplitude of
the clutter scatter.

The received data from the CUT could be denoted as

x =
Nl

∑
l=1

Nc

∑
c=1

αl,csl,c + n (18)

where Nl stands for the number of ambiguous range cells and sl,c = Sst(ϕc, θl) · ep,(l,c). A
clutter range gate could be considered as a superposition of Nc clutter scatters. n ∈ CNM×1

represents the Gaussian noise vector.
It is supposed that clutter scatters are mutually independent. The ideal CNCM

R ∈ CNM×NM could be written as

R =
Nl

∑
l=1

Nc

∑
c=1

σ2
l,c

sl,c · sl,c
H + σ2

nINM (19)
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where σ2
l,c and σ2

n represent the power of the l, cth clutter scatter and the noise
power, respectively.

The STAP weight vector could be acquired through the linearly constrained minimum
variance criterion:

w =
R−1st

sH
t R−1st

(20)

where the target space-time steering vector could be denoted by st = Sst(ϕ0, θ0) · ep,t.
Due to the unknown interference environment, the CNCM should be estimated from IID

training samples, i.e.,
^
R = 1

L

L
∑
l

xlxH
l , where L stands for the number of the IID training samples.

It is often difficult to acquire enough IID training samples, leading to bad STAP performance.

2.2. SR-STAP Formulation

In conventional SR-STAP methods, the angle-Doppler plane is often uniformly divided
into K = NsN f grid points, and N f = ρ f M

(
ρ f > 1

)
, Ns = ρsN(ρs > 1) denotes the

number of normalized Doppler frequencies grids and normalized spatial frequencies grids,
respectively. The space-time steering vector from these grid points form the dictionary
matrix. However, in the case of conformal array, the formula of the spatial steering vector is
different from the planar array. It cannot be expressed in terms of spatial frequency. Thus,
the form of the dictionary matrix for conformal array is also different.

The spatial steering vectors of the conformal array are decided by azimuth angle ϕ,
essentially due to the fixed elevation angle θ within a certain range cell. Therefore, we
could divide the azimuth angle to produce spatial grids. In this paper, the angle and
Doppler frequencies are also divided into K = NsNd grids. Let ϕi = 2πi/Ns(1 ≤ i ≤ Ns)
and fd,j = j/Nd(−Nd/2 ≤ j ≤ Nd/2) represent the uniformly divided azimuth angle and
Doppler frequency, respectively. The corresponding time steering vector is

sd

(
fd,j

)
= [1, ej2π fd,j , · · · , ej(M−1)2π fd,j ]

T
(21)

The SR-STAP formulation for the SMV condition could be

x = Dy + n (22)

where D has following formula:

D =[sd( fd,1)⊗ Ss(ϕ1, θk), · · · , sd( fd,1)⊗ Ss(ϕNs , θk) ,

· · · , sd
(

fd,Nd

)
⊗ Ss(ϕNs , θk)

]
CNM×2Ns Nd

(23)

y ∈ C2Ns Nd×1 can be written as

y =
[
α1 cos µ1, α1 sin µ1ejβ1 , · · · , αNs Nd cos µNs Nd , αNs Nd sin µNs Nd ejβNs Nd

]T
(24)

Here, D is a dictionary matrix including space-time steering vectors from all grid
points. y denotes sparse coefficient vector

In following subsection, we remark that K = 2NsNd.
In sparse recovery methods, the SR-STAP problem could be solved by the following

^
y = argmin

y
‖y‖0, s.t. ‖x−Dy‖ ≤ ε1 (25)
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where ε1 represents the fitting error tolerance. We cannot solve (25) directly due to the
NP-hard problem. Hence, l1 norm were used in SR-STAP problem.

^
y = argmin

y
‖y‖1, s.t. ‖x−Dy‖ ≤ ε2 (26)

where ε2 is a user parameter.

3. The Proposed Method
3.1. Derivation of the Proposed Method

In this framework, we adopt the Bayesian perspective to address the linear prob-
lem [26]. This will determine the likelihood function of the complex data x and the posterior
distribution function of the complex amplitude y.

If it is supposed that n in (22) denotes a complex Gaussian vector, the likelihood
function of the received data x could be represented as

p(x|y, η ) =
1

(πη)NM e−
1
η ‖x−Dy‖2

(27)

Assuming that y is considered to subject to a zeros-mean complex Gaussian
prior distribution,

y ∼ CN (0, Γ) (28)

where Γ = Diag(γ). γ = (γ1, γ2, · · · , γK)
T is a variance vector.

The following is the formula for y:

p(y |Γ ) = π−K|Γ|−1e−yHΓ−1y (29)

Given the likelihood for the radar array received data x (27) and the prior (29), the
posterior probability density function (PDF) of the complex amplitude y could be expressed
as following based on the Bayesian rule:

p(y|x, Γ, η ) =
p(x|y, η )p(y |Γ )∫
p(x|y, η )p(y |Γ )dy

(30)

Assuming that the γ(t) and η(t) are known in the tth iteration step, the PDF of y in the
(t + 1)th iteration could be further represented as:

p
(

y(t+1)
∣∣∣x, Γ(t), η(t)

)
=

p
(

x, y(t+1)
∣∣∣Γ(t), η(t)

)
p
(
x,
∣∣Γ(t), η(t)

)
= π−K

∣∣∣Σ(t+1)
∣∣∣−1

e−(y
(t+1)−µ(t+1))

H |Σ(t+1) |−1
(y(t+1)−µ(t+1))

(31)

where
µ(t+1) = Γ(t)DHΛ−1x (32)

Σ(t+1) = Γ(t) − Γ(t)DHΛ−1DΓ(t) (33)

where
Λ = DΓ(t)DH + η(t)I (34)
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The γ(t) could be estimated by a type-II maximum likelihood, which stands for
maximizing the marginal likelihood function or other form of it with regard to γ. The
function is the product of (27) and (29) integrated over the complex amplitudes of y

p(x|Γ, η )=
∫

p(x|y, η )p(y |Γ )dy

= π−NM|C|−1e−xHC−1x
(35)

The marginal log-likelihood function is

R(γ)= ln p(x|Γ, η )

= − ln|C| − xHC−1x + constant
(36)

where
C = DΓDH + ηI (37)

The hyper-parameters γ will be obtained by maximizing the log function.

^
γ= argmax

γ
R(γ)

= argmin
γ
L(γ) , ln|C|+ xHC−1x

(38)

Next, considering that the log-determinant in (38) is concave, a continuous surrogate
function will be constructed as the cost function of the optimization problem and the closed
solution will be obtained.

The log-determinant term ln|C| of L(γ)

ln|C| = ln
∣∣∣DΓDH + ηI

∣∣∣ = ln
∣∣∣Ddiag(γ)DH + ηI

∣∣∣ (39)

By defining new variables τi = ln(γi) for i = 1, 2, · · · , K, the non-convex term
ln
∣∣Ddiag(γ)DH + ηI

∣∣ can be written as

ln
∣∣∣Ddiag(γ)DH + ηI

∣∣∣= ln

∣∣∣∣∣ K

∑
i=1

γididi
H + ηI

∣∣∣∣∣
= ln

∣∣∣∣∣ K

∑
i=1

eτi didi
H + ηI

∣∣∣∣∣
(40)

where di stands for the ith column of D.
So, utilizing the concept of the conjugate function, the conjugate function of ln|C| can

be obtained by
h∗(z) = sup

τ
zHτ− ln|C| (41)

Then, based on Fenchel inequality, the following can be obtained

ln|C|+ h∗(z) ≥ zHτ (42)

With the above, the (38) can be expressed as

^
γ = min

γ
max
z>0

zHτ− h∗(z) + xHC−1x (43)

From [26], it can be known that the µ and Σ can also be expressed as

Σ =
(

η−1DHD + Γ−1
)−1

(44)
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µ = η−1ΣDHx (45)

Based on matrix inversion lemma and (44) and (45), the following formula can be obtained

C−1=
(

ηI + DΓDH
)−1

= η−1I− η−1ID
(

Γ−1 + η−1DHD
)−1

DHη−1I

= η−1I− η−1DΣDHη−1

(46)

The second term of (38) can be further derived

xHC−1x= η−1xHx− η−1xHDΣDHη−1x
= η−1xH(x−Dµ)

= η−1‖x−Dµ‖2
2 + η−1µHDH(x−Dµ)

= η−1‖x−Dµ‖2
2 + µHΓ−1µ

(47)

With (43), and discarding irrelevant items, the following expression can be obtained

^
γ = min

γ
max
z>0

zHτ− h∗(z) +
K

∑
i=1

|µi|2

γi
(48)

It leads to a so-called iterative min–max process. The lower-bounding is repeatedly
minimized, which then tightens the bound. For any fixed τ∗, given the property of the
conjugate function, the ‘=’ of the (42) will be true when z satisfies the following formula.

z(t+1)
i =

∂ ln|C|
∂τi

∣∣∣∣
τ∗i

(49)

The following expression can be obtained

∂ ln|C|
∂γi

= ∂ ln|C|
∂ ln(γi)

∂ ln(γi)
∂γi

= dH
i (C)−1di

= dH
i
(
Ddiag(γ)DH + ηI

)−1di

(50)

Let γ
(t)
i denote the value of γi in the tth iteration. With (49) and (50), we can obtain

the z in the t + 1th iteration

z(t+1)
i =

∂ ln|C|
∂τi

∣∣∣∣
τ
(t)
i

=
∂ ln|C|
∂ ln(γi)

∣∣∣∣
γ
(t)
i

= γ
(t)
i dH

i

(
Ddiag

(
γ(t)

)
DH + η(t)I

)−1
di (51)

Then, for the fixed z(t+1), the (48) can be written as

^
γ= min

γ

(
z(t+1)

)H
τ− h∗

(
z(t+1)

)
+

K

∑
i=1

|µi|2

γi

= min
γ

(
z(t+1)

)H
ln(γ)− h∗

(
z(t+1)

)
+

K

∑
i=1

|µi|2

γi

(52)

The derivative of (52) with respect to γi can be obtained by

∂

((
z(t+1)

)H
ln(γ)− h∗

(
z(t+1)

)
+

K
∑

i=1

|µi |2
γi

)
∂γi

=
z(t+1)

i
γi
− |µi|2

γ2
i

(53)
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Set (53) to zero, and the following update rule can be acquired

γ
(t+1)
i =

(
z(t+1)

i

)−1∣∣∣µ(t+1)
i

∣∣∣2 (54)

3.2. The Estimation of η

In the above, the value of η is assumed to be known; here, we need to estimate η. This
procedure has been researched in previous work [28]. For convenience, the final result will
be presented directly. In each iteration, η is updated by

η(t+1) =

∥∥∥x−Dµ(t+1)
∥∥∥2

2
+ η(t)

K
∑

i=1
γ
(t)
i dH

i

(
C(t)

)−1
di

NM
(55)

Since the proposed method is an iterative process, initializing the hyper-parameter

γ
(0)
i =

∣∣∣dH
i x
∣∣∣2/
∣∣∣dH

i di

∣∣∣2, for i = 1, 2, · · · , K, and η could be initialized with a positive scalar.

We use η(0) = 1.
The convergence criterion of the iteration is followed

a. The number of iterations reaches the upper limit.

b. The estimate of hyper-parameter γ meet
∥∥∥γ(t) − γ(t−1)

∥∥∥
2
/
∥∥∥γ(t)

∥∥∥
2
< δ, where δ is a

small positive number.

By the proposed method, the relatively precise estimate of µ and η can be obtained.
The estimated CNCM expresses as follows:

R =
K

∑
i=1

(
|µi|2

)
did

H
i + ηI (56)

The pseudo-code for the NFSBL method is given in Algorithm 1.

Algorithm 1: NFSBL Method

Step 1 Input data x and dictionary matrix D
Step 2 Initialize γ and η

Step 3 Update the mean vector µ using (32)
Step 4 Update γ and η using (54) and (55), respectively
Step 5 Repeat step 3–4 until the convergence criterion is met

Step 6
Calculate CNCM

R =
K
∑

i=1

(
|µi|2

)
did

H
i + ηI

Step 7 Compute STAP weight w

3.3. Extension to the MMV Case

With above discussion, it has been known that the (23) is the dictionary matrix which
contains the steering vectors of kth range cell. By carrying out some calculations, a con-
clusion can be drawn that the elevation angle from the neighboring range cells are only
slightly different from the elevation angle of kth range cell. In this work, the proposed
method can approximatively consider that the dictionary matrix in (23) also contains the
steering vectors of neighboring range cells. Then, the proposed method could be developed
to the MMV case.

The SR formulation for MMV case is

X = DY + N (57)

where X = [x1, x2, · · · , xL] and Y, N have similar structures.
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In the MMV case, the estimate of the Y is denoted by the matrix form of (32).

Ψ(t+1) = Γ(t)DHΛ−1X (58)

where Ψ = [µ1,µ2, · · · ,µL].
Similarly, (54) and (55) could be directly developed to the MMV case and the following

can be obtained

γ
(t+1)
i =

(
z(t+1)

i

)−1 1
L

L

∑
l=1

∣∣∣µ(t+1)
l,i

∣∣∣2 (59)

η(t+1) =

1
L

L
∑

l=1

∥∥∥x−Dµ
(t+1)
l

∥∥∥2

2

NM−
K
∑

i=1
γ
(t)
i dH

i

(
C(t)

)−1
di

(60)

The hyper-parameter γ could be initialized as γ
(0)
i = 1

L

L
∑

l=1

∣∣∣dH
i xl

∣∣∣2/
∣∣∣dH

i di

∣∣∣2.

The estimated CNCM expresses as follows

R =
1
L

L

∑
l=1

K

∑
i=1

(∣∣µl,i
∣∣2)did

H
i + ηI (61)

The proposed method is summarized in Algorithm 2.

Algorithm 2: M-NFSBL Method

Step 1 Input data X and dictionary matrix D
Step 2 Initialize γ and η

Step 3 Update the mean matrix Ψ using (58)
Step 4 Update γ and η using (59) and (60), respectively
Step 5 Repeat steps 3–4 until the convergence criterion is met

Step 6
Calculate CNCM

R = 1
L

L
∑

l=1

K
∑

i=1

(∣∣µl,i
∣∣2)did

H
i + ηI

Step 7 Compute STAP weight w

4. Discussion
4.1. Complexity Analysis

In this work, the computational complexity will be researched in the MMV condition.
In order to obtain better readability, some definitions of important parameters will be re-
emphasized here. K is the number of the space-time vector of the dictionary matrix. L stands
for the number of IID training samples. M represents the pulse number and N expresses the
element number. The number of complex multiplications is used as the evaluation metric
of the computational complexity. For convenience, we ignore the low-order multiplications.
From the above analysis, the proposed method contains the calculation of Ψ, γ, and η in an
iteration. Therefore, it is found that the computational complexity of M-NFSBL method can
be denoted as o

(
KL + (3K + 2KL + L)MN + 3K(MN)2 + (MN)3

)
. The computational

complexity of other SR methods are shown in Table 1.
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Table 1. The computational complexity of various methods.

Algorithm Computational Load for an Iteration

M-CVX o
(
(KL)3

)
M-SBL o

(
K + K2 + KL +

(
2K + 2KL + K2 + L

)
MN + 2K(MN)2 + (MN)3

)
M-FCSBL o

(
(4K + 2KL + L)MN + 5K(MN)2 + (MN)3

)
M-NFSBL o

(
KL + (3K + 2KL + L)MN + 3K(MN)2 + (MN)3

)

Computational complexity could be viewed as a function of the number of pulses.
Figure 3 express the computational complexity of the various methods. If it is supposed
that K = 1600, N = 8, and L = 5, it is concluded that the computational complexity of the
M-NFSBL method is more advantageous.
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4.2. Convergence Analysis

The above discussion shows that the cost function could be written as
L(γ) = (z)H ln(γ) − h∗(z) + xHC−1x in the every iteration so long as z satisfied the
(51), which is a function with respect to γ. We could obtain that L

(
γ(t+1)

)
≤ L

(
γ(t)

)
from (53) and (54). According to [33], we know that L(γ) has a bound. It is therefore a
monotonically decreasing function and indicates that the proposed method converges.

The following simulation experiments demonstrate that the proposed method con-
verges faster than SBL.

5. Simulation Results

The STAP performance of the proposed method will be assessed in this section. Given
a side-looking conformal array radar, such as shown in Figure 2, the direction of the desired
signal is ϕ0 = 90o, θ0 = 0o and the polarization angle and polarization phase difference
of the desired signal are µ = π/2 and β = 0. The relevant radar system parameters are
provided in Table 2. The 300th range cell has been selected to be CUT. Then, the IF is used
as the evaluation metric of STAP performance:

IF =

∣∣wHs
∣∣2

wHRw
tr(R)

sHs
(62)

where R represents the ideal CNCM.
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Table 2. Radar parameters.

Parameter Value Unit

Pulse number 16 -
Element number 12 -
Platform velocity 200 m/s
Wavelength 0.2 m
Bandwidth 5 MHz
CNR 60 dB
Distance between elements 0.1 m
Pulse repetition frequency 5000 Hz
Platform height 3000 m

As mentioned in Section 3.3, the elevation angle corresponding to the neighboring
range cells are only slightly different from the elevation angle of the kth range cell. So, in
the MMV case, a small number of range cells are used as the data for multiple snapshots,
and the number is set as L = 5.

Figure 4 illustrates the IF curves of the proposed method in the SMV condition and
the MMV condition. It has been shown that the M-NFSBL method has slight advantage
(about 0.2 dB). When the Doppler frequency is close to ±0.5 Hz, the M-NFSBL method
shows obvious superior performance.
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So, in the following discussion, the simulation experiments exhibit the performance
with different methods in the MMV case. These methods include the sample matrix
inversion method (SMI), the registration-based compensation method with sparse recovery
(SR-RBC), a multiple sparse Bayesian learning with fast-convergence method (M-FCSBL),
and a multiple sparse Bayesian learning method (M-SBL), and the proposed method will
be evaluated with the simulated data in the ideal and non-ideal cases.

The cost function ln|C| + Tr
(

C−1RML

)
will be utilized to assess the convergence

performance of different methods. RML = XXH/L. Three methods will be considered here:
M-SBL, M-FCSBL, and the proposed method.

As shown in Figure 5, it could be found that the M-FCSBL and the proposed method
converge faster and need about 20 iterations to obtain a steady state. The M-SBL need more
iterations to converge to the steady state.
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5.1. Ideal Condition

In this subsection, the clutter Capon spectrums of various methods have been given. In
order to avoid the matrix singularity caused by inadequate training samples, the diagonal
load method has been applied in the SMI and SR-RBC methods. From Figure 6a–f, we can
know that the recovered clutter spectrums of the SMI method and the SR-RBC method
are disappointing due to the inadequate training samples. It can be known that the more
accurate Capon spectrums are acquired by the M-SBL method, the M-FCSBL method, and
the proposed method.
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Figure 7 depicts the IF comparison by different methods. It can be observed that
excellent performance could be acquired by the M-SBL method, the M-FCSBL method, and
the proposed method. This further indicates that the proposed method does not change the
clutter suppression performance of the original M-SBL method with the faster converge
rate and lower computational complexity.
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5.2. Non-Ideal Condition

In this subsection, a non-ideal condition with the presence of gain and phase error will
be taken into account. This will lead to mismatch between the dictionary matrix and the
real space-time steering vector. The estimated CNCM will be inaccurate.

As shown in Figure 8, the non-ideal case is introduced with 0.02 gain error and
0.2◦ phase error in these methods. From Figure 8a–f, it can also be found that the estimated
clutter Capon spectrums from the M-SBL method, the M-FCSBL method, and the proposed
method are more similar to the Capon spectrum estimated by exact CNCM.
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Figure 9 expresses the IF comparison by different methods with gain and phase error.
Compared with the optimal IF curve, the M-SBL method, the M-FCSBL method, and the
proposed method have little performance degradation and the main lobe notch has been
slightly widened. However, the performance of these methods is still superior to other
traditional methods.
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6. Conclusions 
In this paper, a novel fast sparse Bayesian learning method named NFSBL was pre-

sented with the goal of improving the performance of suppressing clutter for conformal 
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methods. All of the simulation experiments have demonstrated that the M-NFSBL method 
has a superior performance in STAP. 
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Figure 9. The IF comparison of different methods in non-ideal condition.

6. Conclusions

In this paper, a novel fast sparse Bayesian learning method named NFSBL was pre-
sented with the goal of improving the performance of suppressing clutter for conformal
arrays. The novel method introduces the concept of the conjugate function to construct
a surrogate function for the SBL cost function. This method improves the convergence
speed of the SBL method. The proposed NFSBL method in the MMV condition has also
been developed; it expresses a lower computational load compared with other SR-STAP
methods. All of the simulation experiments have demonstrated that the M-NFSBL method
has a superior performance in STAP.
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