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Abstract: The pixels of remote images often contain more than one distinct material (mixed pixels),
and so their spectra are characterized by a mixture of spectral signals. Since 1971, a shared effort
has enabled the development of techniques for retrieving information from mixed pixels. The
most analyzed, implemented, and employed procedure is spectral unmixing. Among the extensive
literature on the spectral unmixing, nineteen reviews were identified, and each highlighted the
many shortcomings of spatial validation. Although an overview of the approaches used to spatially
validate could be very helpful in overcoming its shortcomings, a review of them was never provided.
Therefore, this systematic review provides an updated overview of the approaches used, analyzing
the papers that were published in 2022, 2021, and 2020, and a dated overview, analyzing the papers
that were published not only in 2011 and 2010, but also in 1996 and 1995. The key criterion is that the
results of the spectral unmixing were spatially validated. The Web of Science and Scopus databases
were searched, using all the names that were assigned to spectral unmixing as keywords. A total
of 454 eligible papers were included in this systematic review. Their analysis revealed that six key
issues in spatial validation were considered and differently addressed: the number of validated
endmembers; sample sizes and sampling designs of the reference data; sources of the reference data;
the creation of reference fractional abundance maps; the validation of the reference data with other
reference data; the minimization and evaluation of the errors in co-localization and spatial resampling.
Since addressing these key issues enabled the authors to overcome some of the shortcomings of
spatial validation, it is recommended that all these key issues be addressed together. However, few
authors addressed all the key issues together, and many authors did not specify the spatial validation
approach used or did not adequately explain the methods employed.

Keywords: mixed pixels; spectral unmixing; spatial validation; accuracy

1. Introduction
1.1. Background

A pixel that contains more than one “land-cover type” is defined as a mixed pixel,
and its spectrum is formed by combining the spectral signatures of these “land-cover
types” [1]. The presence of mixed pixels in the image constrains the techniques that can
be carried out to analyze, characterize, and classify the remote sensing images [2,3]. To
retrieve mixed-pixel information from remote sensing images, a shared research effort al-
lowed developing several methods (e.g., spectral unmixing, probabilistic, geometric-optical,
stochastic geometric, and fuzzy models [1]). However, the literature shows that, for over
40 years, spectral unmixing has been the most commonly used method for discrimination,
detection, and classification of superficial materials [4–6].

The spectral unmixing was defined as the “procedure by which the measured spectrum
of a mixed pixel is decomposed into a collection of constituent spectra, or endmembers,
and a set of corresponding fractions, or abundances, that indicate the proportion of each
endmember present in the pixel” [6]. It is important to point out that many names were
given to the spectral unmixing procedure: hyperspectral unmixing [7,8], linear mixing [9],
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nonlinear spectral mixing models [10,11], semi-empirical mixing model [12], spectral
mixing models [13–15], spectral mixture analysis [16–22], spectral mixture modeling [23,24],
and spectral unmixing [19,25,26]. In this paper, the term spectral unmixing was chosen.

The first studies that introduced the spectral unmixing procedure were carried out
about 40 years ago (Table 1). In order to study Moon minerals, Adams & McCord [27]
observed nonlinear behavior of the spectra of Apollo 11 and 12 samples that were measured
in the laboratory. In order to analyze the spectra of Mars, Singer & McCord [28] assumed
that the spectrum of the mixed pixel was a bilinear combination of the spectra of its two
constituent materials, and it was weighted by their abundances in the mixed pixel; their
model required two constraints: the sum of the weighing factors must be one, and their
values must not be negative. Hapke [29] proposed a nonlinear mixing model that was
called “isotropic multiple scattering approximation” by Heylen et al. [8]. Johnson et al. [12]
and Smith et al. [13] combined “spectral mixing model” with the modified Kubelka–Munk
model and principal component analysis, respectively. In order to analyze the spectra of
Mars, Adams & Smith [23] improved the “bilinear model”, which was proposed by Singer
& McCord [28], considering more than two constituent materials of the mixed pixel and
adding the residual error.

Table 1. Studies that introduced spectral unmixing procedure.

Paper Publication Year Study Area Spectral Range Name Given to Spectral
Unmixing Procedure

Citations in Google
Scholar

Adams & McCord [27] 1971 Lunar 0.35–2.5 µm - 136
Singer & McCord [28] 1979 Mars 0.35–2.5 µm - 347

Hapke [29] 1981 Planets - 2200

Johnson et al. [12] 1983 Minerals 0.35–2.5 µm Semi-empirical
mixing model 288

Smith et al. [13] 1985 Minerals 0.60–2.20 µm Spectral mixing model 454
Adams et al. [23] 1986 Mars 0.35–2.5 µm Spectral mixture modeling 1634
Adams et al. [16] 1989 - 1.2–2.4 µm Spectral mixture analysis 131

Adams et al. [16] decomposed the “spectral mixture analysis” in two consecutive
steps: the first step decomposes the spectrum of each mixed pixel into a collection of
constituent spectra (called endmembers), and the second step determines the proportion
of every endmember present in the pixel. The literature highlighted two main models for
performing the first step: linear and nonlinear mixture models. To estimate the proportion
of every endmember (called fractional abundances), many solutions were proposed (e.g.,
Gram–Schmidt Orthogonalization [30], Least Square Methods [31], Minimum Variance
Methods [6], Singular Value Decomposition [32], Variable Endmember Methods [6]).

1.2. Reviews on the Spectral Unmixing Procedure

In order to more effectively understand the importance of spectral unmixing, a quan-
tification of the works that have studied, implemented, and applied this procedure since
1971 were provided. For this purpose, all names that were given to the spectral unmixing
procedure were exploited as terms in the search strategy. A total of 5768 and 5852 papers
were identified using Web of Science and Scopus search engines, respectively (accessed
on 19 May 2023). Among these papers, 19 reviews offered the status of spectral unmixing
(Table 2).

An interesting overview of the “linear models” developed up to 1996 was offered
by Ichoku & Karneili [1], who compared this method with four other unmixing models:
probabilistic, geometric-optical, stochastic geometric, and fuzzy models. The authors
summarized that evaluated spatial accuracies were not representative of the real accuracies
at the level of individual pixels because the spatial validation was performed for a few
test pixels.
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Table 2. Reviews on the spectral unmixing procedure.

Paper Publication
Year Publication Title Number of References

Cited in the Review
Citations in Google

Scholar 1

Ichoku & Karneili [1] 1996 A review of mixture modelling techniques for
subpixel land cover estimation 57 281

Heinz &
Chein-I-Chang [33] 2001

Fully Constrained Least Squares Linear
Spectral

Mixture Analysis Method for Material
Quantification

in Hyperspectral Imagery

39 1955

Keshava &
Mustard [6] 2002 Spectral unmixing 40 2761

Keshava [34] 2003 A Survey of Spectral Unmixing Algorithms 3 641

Martinez et al. [35] 2006 Endmember extraction algorithms from
hyperspectral images 16 67

Veganzones &
Grana [36] 2008 Endmember Extraction Methods: A Short

Review 23 82

Bioucas-Dias &
Plaza [7] 2010

Hyperspectral unmixing: Geometrical,
statistical, and sparse regression-based

approaches
97 77

Parente & Plaza [37] 2010 Survey of geometric and statistical unmixing
algorithms for hyperspectral images 53 124

Bioucas-Dias &
Plaza [38] 2011

An overview on hyperspectral unmixing:
geometrical, statistical, and sparse regression

based approaches
51 78

Somer et al. [39] 2011 Endmember variability in Spectral Mixture
Analysis: A review 179 660

Bioucas-Dias et al. [40] 2012

Hyperspectral Unmixing Overview:
Geometrical,

Statistical, and Sparse Regression-Based
Approaches

96 2597

Quintano et al. [41] 2012 Spectral unmixing: a review 163 141

Ismail & Bchir [42] 2014 Survey on Number of Endmembers Estimation
Techniques for Hyperspectral Data Unmixing 22 1

Heylen et al. [8] 2014 A Review of Nonlinear Hyperspectral
Unmixing Methods 201 452

Shi & Wang [43] 2014 Incorporating spatial information in spectral
unmixing: A review 106 197

Drumetz et al. [44] 2016 Variability of the endmembers in spectral
unmixing: recent advances 26 34

Wang et al. [45] 2016
A survey of methods incorporating spatial

information in image classification and spectral
unmixing

280 75

Wei & Wang [5] 2020 An Overview on Linear Unmixing of
Hyperspectral Data 74 17

Borsoi et al. [4] 2021 Spectral Variability in Hyperspectral Data
Unmixing 317 63

1 Accessed on 31 January 2023.

Heinz & Chein-I-Chang [33] focused on the second constraint of linear spectral mixture
analysis (i.e., the fractional abundances of each mixed pixel must be positive), which is very
difficult to implement in practice. Reviewing the literature, the authors pointed out that
because most research did not know in detail the spectra present in the image scene, their
results did not necessarily reflect the true abundance fractions of the materials [33].

Keshava [42] exploited the hierarchical taxonomies to facilitate comparison of the
wide variety of methods used for spectral unmixing and revealed their similarities and
differences. Furthermore, the author restated that most of the methods developed to solve
problems were due to lack of detailed knowledge of ground truth. In their extensive
description of spectral unmixing methodology, Keshava and Mustard [6] focused on the
processing chain of linear unmixing methods applied to hyperspectral data. The authors
highlighted that the shortcomings in spatial validation were due to the lack of detailed
ground-truth knowledge; for this reason, the main focus of the research was on determining
endmembers, rather than recovering fractional abundance maps [6].
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Bioucas-Dias et al. [36] aimed to update the previous review, which was proposed by
Keshava and Mustard [6] 10 years earlier. Therefore, the authors extensively described the
methods that were proposed from 2002 to 2012 to improve the mathematical validity of
the spectral unmixing. Bioucas-Dias & Plaza [7,38], Parente & Palza [37], Veganzones &
Grana [40], and Martinez et al. [41] provided brief, but comprehensive reviews of methods
for statistical and geometric extraction of endmembers. Somers et al. [39] provided a
comprehensive and extensive review of the methods to address the temporal and spatial
variability of the endmembers in the spectral unmixing.

An introduction to nonlinear unmixing methods and an overview of the most com-
monly used approaches were provided by Heylen et al. [8]. These authors also pointed
out the lack of detailed ground truths for accurate validation of the spectral unmixing
procedures [8]. After performing a general review of spectral unmixing, Quintano et al. [41]
provided an interesting summary of its applications. Moreover, the authors pointed out the
difficulty in spatially validating the results of spectral unmixing results and identified two
main reasons: “(1) it is difficult to collect ground truth as scale directly corresponding to re-
motely sensed data resolution; (2) traditional classification accuracy analysis measurement
tools may not be suitable for mixed pixel analysis” [41].

Wei & Wang [5] presented an overview of four aspects of the spectral unmixing (i.e.,
geometric method, nonnegative matrix factorization (NMF), Bayesian method, and sparse
unmixing), whereas an overview of the methods that estimated the number of endmembers
was provided by Ismail & Bchir [39]. Shi & Wang [43] provided a comprehensive review
of the methods that combined spatial and spectral information for the spectral unmixing;
the authors called them “spatial spectral unmixing” [43]. To extract endmembers, select
endmember combinations, and estimate endmember fraction abundances, these methods
exploited the correlation between neighboring pixels [43]. Wang et al. [45] provided an
overview of the methods that incorporated the spatial information not only in spectral
unmixing, but also in the all image classifiers. The authors underlined that most of the
spatial accuracy was based on “the idea of area-weighted accuracy” because it was derived
from some validation samples.

The most recent review was offered by Borsoi et al. [4], who provided a comprehensive
review of the methods to solve the spectral variability problem in hyperspectral data.
The spectral variability is mainly due to atmospheric, illumination, and environmental
conditions [46,47]. Starting from the availability or non-availability of spectral libraries,
the authors organized the “Spectral Unmixing algorithms” “according to a practitioner’s
point of view, based on the necessary amount of supervision and the computational cost”
and highlighted that the algorithms with less supervision (i.e., Fuzzy Unmixing, MESMA—
Multiple Endmember Spectral Mixture Analysis—and variants, Bayesian models) are the
methods with high computational cost [4]. Moreover, the authors pointed out the difficulty
of assessing the accuracy of these methods due to the lack of detailed ground truths [4]. A
review of four of these methods, which address the spectral variability problem, was also
provided by Drumetz et al. [44].

It is important to mention that the spatial accuracy of spectral unmixing results can
be evaluated using images and/or in situ data and/or maps, and the spectral accuracy of
spectral unmixing results can be evaluated using spectral signatures that were acquired
in situ and/or in the laboratory and/or obtained from images [4,6,8,33,45]. However, an
independent validation dataset is required (i.e., the spectral library and/or the reference
maps) [48].
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1.3. Objectvives

In conclusion, since 1971 many methods have been introduced to improve the mathe-
matical validity of the spectral unmixing procedure, but the validation of the results still
needs much improvement, especially the spatial validation. In particular, the lack of de-
tailed ground-truth knowledge is the main reason of the many shortcomings in the spatial
validation of the spectral unmixing results. However, no author provided an overview
focusing on the spatial validation of the spectral unmixing results.

Therefore, this systematic review aims to provide readers with (a) an overview of
how the previous authors approached spatial validation of spectral unmixing results and
(b) recommendations for overcoming the many shortcomings of spatial validation and
minimizing its errors. The systematic review was carried out in accordance with the
Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) state-
ment [49,50]. The methodological approach employed in this systematic literature review
is explained in Section 2, whereas the results, discussion, and conclusions are presented in
Sections 3 and 4.

2. Materials and Methods
2.1. Identification Criteria

This systematic literature review aims to provide readers with an overview of the
approaches applied for spatial validation of spectral unmixing results and does not claim to
be exhaustive since too many works have studied, implemented, and applied this technique
since 1971. Therefore, the papers published in 2022, 2021, and 2020 were chosen to analyze
the current status, whereas those published not only in 2011 and 2010, but also in 1996 and
1995 were selected to assess the progress over time. The year 1995 was chosen as the initial
time for the systematic review, because in this year, spectral unmixing and other “mixture
modeling techniques” were well implemented and, thus, commonly employed [1,6,51–54].
The Web of Science (WoS) and Scopus search engines were used to identify the papers that
spatially validated the spectral unmixing results and were published in 2022, 2021, 2020,
2011, 2010, 1996, and 1995.

Initially, the papers that named the spectral unmixing in the titles, abstracts, and key-
words were identified. For this purpose, all the names assigned to spectral unmixing (i.e.,
hyperspectral unmixing, linear mixing, nonlinear spectral mixing models, semi-empirical
mixing model, spectral mixing models, spectral mixture analysis, spectral mixture mod-
eling, spectral unmixing) were employed as unique query strings (first yellow box in
Figure 1).

The total records identified from these databases was 2999. The subject areas of the
search engines were checked to refine the identification of the papers. Therefore, “4.169
Remote Sensing”, “4.174 Digital Signal Processing”, “4.17 Computer Vision & Graphics”,
“5.250 Imaging &Tomography”, “5.20 Astronomy & Astrophysics”, “5.191 Space Sciences”,
“8.8 Geochemistry, Geophysics & Geology”, “8.93 Archaelogy”, “8.19 Oceanography, Mete-
orology & Atmospheric”, “8.140 Water Resources”, “8.124 Environmental Sciences”, “3.40
Forestry”, and “3.45 Soil Science” were “Citation Topics” selected in the WoS database,
whereas “Earth and Planetary Sciences”, “Physics and Astronomy”, and “Environmental
Science” were the subject areas selected in the Scopus database. After refining the subject
areas, the identified papers became 2034 (second yellow box in Figure 1): 1396 were the
papers published in 2022, 2021, and 2020; 538 were the papers published in 2011 and 2010;
100 were the papers published in 1996 and 1995.
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Figure 1. PRISMA flow chart showing the different steps of the dataset creation, where ntot was the
total number of papers; n2022–2020 was the number of papers that were published in 2022, 2021, and
2020; n2011–2010 was the number of papers that were published in 2011 and 2010; n1996–1995 was the
number of papers that were published in 1996 and 1995.

2.2. Screening and Eligible Criteria

Reading the abstracts of the identified papers was conducted to select only those that
applied spectral unmixing to remote images. Excluding the duplicates, 760 papers were
selected with the first screening (orange box in Figure 1): 535 were the papers published in
2022, 2021, and 2020; 186 were the papers published in 2011 and 2010; 100 were the papers
published in 1996 and 1995.

Reading the full text of the screened papers was conducted to identify only those
that spatially validated the spectral unmixing results (bright red box in Figure 1). The last
analysis identified the eligible papers: 326 were the papers published in 2022, 2021, and
2020; 112 were the papers published in 2011 and 2010; 16 were the papers published in
1996 and 1995.

In conclusion, 454 eligible papers were included in this systematic review. In
Appendix A, the Tables A1–A7 summarize the characteristics of the eligible papers that
were published in 2022, 2021, 2020, 2011, 2010, 1996, and 1995, respectively.
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3. Results
3.1. Spatial Validation of Spectral Unmixing Results

The screening carried out showed that the number of studies that spatially validated
the results of spectral unmixing has significantly increased over the selected years (bright
red box in Figure 1): about 100 research papers per year were published in the past 3 years;
about 50 research papers per year were published in 2011 and 2010; about 10 research
papers per year were published in 1996 and 1995. The screening carried out showed
also that the number of studies that applied spectral unmixing has significantly increased
over the selected years (orange box in Figure 1): about 180 research papers per year were
published in the past 3 years; about 90 research papers per year were published in 2011
and 2010; about 20 research papers per year were published in 1996 and 1995. In order to
assess the importance of spatial validation in the spectral unmixing procedure, the papers
that applied spectral unmixing to remote imaging were analyzed (orange box in Figure 1).
Figure 2 shows the percentage of these papers that were not validated (the percentage in
grey wedges), spectrally validated (the percentage in yellow wedges), spatially validated
(the percentage in blue wedges), and spatially and spectrally validated (the percentage
in green wedges) the spectral unmixing results. Therefore, spatial validation was carried
out alone (blue wedges in Figure 2) or together with spectral validation (green wedges in
Figure 2).
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Figure 2. Distribution of the papers that applied the spectral unmixing to remote images (orange box
in the Figure 1) according to different ways in which their results were validated, where n2022–2020

was the number of papers that were published in 2022, 2021, and 2020; n2011–2010 was the number of
papers that were published in 2011 and 2010; n1996–1995 was the number of papers that were published
in 1996 and 1995.

Considering all papers that performed spatial validation (blue and green wedges in
Figure 2), the percentage of these research published in 2022, 2021, and 2020 (61% of a total
of 326 papers) was comparable to that of the papers that were published in 2011 and 2010
(60% of a total of 112 papers), whereas these percentages were greater than those of the
papers that were published in 1996 and 1995 (41% of a total of 16 papers). Moreover, the
percentage of the research published in 2022, 2021, and 2020 that did not validate the results
(23%) was smaller than those of the papers that were published in the other 2 groups of
years (31%). In conclusion, these values highlighted not only the increasing application of
spectral unmixing over these years, but also the high priority given to the spatial validation.
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3.2. Remote Images

The eligible papers published in 2022, 2021, 2020, 2011, 2010, 1996, and 1995 are
summarized in Tables 3–9, according to the remote images to which spectral unmixing was
applied. Authors who applied only spatial validation were cited in the fourth columns of
Tables 3–9, whereas those who applied both spatial and spectral validation were cited in
the fifth columns.

Table 3. Eligible papers published in 2022.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation Carried Out Spatial and Spectral
Validation Carried Out

AMMIS * (0.5 m) [55] No Local [56,57]
Apex * (2.5 m) [58] No Local [59]

ASTER (15–30–90 m) [60] No Regional 1 [61]
ASTER (15–30 m) Yes 2 Local [62]

AVHRR (1–5 km) [63] Yes 1 Regional 1 [64] [65,66]
AVIRIS * (10/20 m) [67] No Local [57,68–87] [88–98]
AVIRIS-NG * (5 m) [99] No Local [100]

CASI * (2.5 m) [101] No Local [59,78]
DESIS * (30 m) [102] Yes 1 Regional 1 [103]

DESIS * (30 m) No Local [104]
EnMap * (30 m) [105] No Local [69]

GaoFen-6 (2–8–16 m) [106] No Regional 1 [107]
GaoFen-2 (3.2 m) Yes 1 Regional 1 [108]

GaoFen-1 (2–8–16 m) No Local [109]
HYDICE * (10 m) [110] No Local [59,68,76,77,79,81,82,85,86,90,111] [89,96,97]
Hyperion * (30 m) [112] Yes 1 Local [75]

Hyperion * (30 m) No Local [113] [114–116]
HySpex * (0.6–1.2 m) [104] No Local [104,117]

Landsat (15–30 m) [118] Yes 1 Continental 1 [119]
Landsat (15–30 m) Yes 1 Regional 1 [108,120–133] [134,135]
Landsat (15–30 m) No Regional 1 [107,136,137]
Landsat (15–30 m) Yes 1 Local [138,139] [62]
Landsat (15–30 m) No Local 2 [140,141]
Landsat (15–30 m) No Local [109,142]
M3 hyperspectral

image * [143] No Moon [143]

MIVIS * (8 m) [144] No Local [145]
MERIS (300 m) [146] Yes 1 Local [147]

MODIS (0.5–1 km) [148] Yes 1 Continental 1 [149]
MODIS (0.5 km) Yes 1 Regional 1 [108,150–152] [137]
MODIS (0.5 km) No Local [153]

NEON * (1 m) [154] No Local [154]
PRISMA * (30 m) [155] No Local [114,156–158]

ROSIS * (4 m) [159] No Local [56,57,78,81,85]
Samson * (3.2 m) [59] No Local [59,72] [89,97]

Sentinel-2 (10–20–60 m) [160] Yes 1 Regional 1 [108,133,161–163]
Sentinel-2 (10–20–60 m) No Regional 1 [136] [107,164,165]
Sentinel-2 (10–20–60 m) Yes 1 Local [166,167] [168]
Sentinel-2 (10–20–60 m) No Local 2 [104]
Sentinel-2 (10–20–60 m) No Local [169]

Specim IQ * [170] Yes 1 Laboratory [170]
SPOT (10–20 m) [171] No Local 2 [140]

WorldView-2
(0.46–1.8 m) [172] No Local [166]

WorldView-3 (0.31–1.24–3.7 m) No Local [166]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.
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Table 4. Eligible papers published in 2021.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral Validation
Carried Out

ASTER (15–30–90 m) No Regional 1 [173]
AVIRIS * No Local [174–201] [202–225]

AVIRIS-NG * (5 m) No Local [226]
CASI * No Local [174,227]

Simulated EnMAP * Yes 1 Regional 1 [228]
GaoFen-5 * (30 m) No Local [229]
HYDICE * (10 m) No Local [192,230–232] [204,212,214,216,218]
HyMap * (4.5 m) Yes Local [233]

Hyperion * (30 m) No Local [212,234,235]
Hyperion * (30 m) Yes 1 Local [236,237]

HySpex No Local [238]
Landsat (30 m) Yes 1 Regional 1 [239–244]
Landsat (30 m) Yes 1 Local 2 [245–253]
Landsat (30 m) No Local [227,254–259]
Landsat (30 m) No Regional 1 [260]

MODIS (0.5–1 km) No Local [254,261]
MODIS (0.5–1 km) Yes 1 Regional 1 [262–264]
PRISMA * (30 m) No Local [265]

ROSIS * (4 m) No Local [191,200,266] [217,267]
Samson * (3.2 m) No Local [188,232,268] [207,210,211,214,224,225,267]

Sentinel-2 (10–20–60 m) No Local [255,258] [226,269]
Sentinel-2 (10–20–60 m) Yes 1 Local [243,253,270] [229,271,272]
Sentinel-2 (10–20–60 m) No Regional 1 [273]
Sentinel-2 (10–20–60 m) Yes 1 Regional 1 [244]

UAV multispectral image [274] No Local [274]
WorldView-2 (0.46–1.8 m) Yes 1 Local [275]

WorldView-3 (0.31–1.24–3.7 m) No Local 2 [276]
ZY-1-02D * (30 m) [228] No Local [228]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 5. Eligible papers published in 2020.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral Validation
Carried Out

AISA Eagle II airborne
hyperspectral scanner * [277] No Local [277]

ASTER (15–30–90 m) No Regional 1 [278]
ASTER (15–30–90 m) Yes 1 Local 2 [279,280]

AVIRIS * No Local [281–298] [299–327]
AVIRIS NG * No Local [291]
AWiFS [328] Yes 1 Local 2 [328]

CASI * No Local [329]
Simulated EnMAP * (30 m) No Regional 1 [330]

GaoFen-1 WFV Yes 1 Local [331]
GaoFen-1 WFV Yes 1 Local 2 [332] [333]

GaoFen-2 No Local 2 [332]
HYDICE * (10 m) No Local [292,293,298,334,335] [299,307,309,310,316,318,321,322,324]

HyMAP * No Local 2 [280]
HyMAP * No Local [336]

HySpex * (0.7 m) No Local [337]
Hyperion * (30 m) No Local [336] [338]

Landsat (30 m) Yes 1 Local 2 [332] [280,339]
Landsat (30 m) Yes 1 Local [252,340–347]
Landsat (30 m) Yes 1 Continental 1 [348]
Landsat (30 m) Yes 1 Regional 1 [349–355] [356]
Landsat (30 m) No Regional 1 [357]

MODIS (0.5–1 km) Yes 1 Local [340,358–361] [333]
MODIS (0.5–1 km) Yes 1 Regional 1 [362,363]
MODIS (0.5–1 km) Yes 1 Local 2 [364,365] [279]

PlanetScope (3 m) [366] Yes 1 Local 2 [366]
PROBA-V (100 m) [367] Yes 1 Regional 1 [353,368–371]

ROSIS * (4 m) No Local [285,372] [373]
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Table 5. Cont.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral Validation
Carried Out

Samson * (3.2 m) No Local [284,374,375] [301,303,305,315,320,323,324]
Sentinel-2 (10–20–60 m) No Local 2 [332,376] [280,339]
Sentinel-2 (10–20–60 m) Yes 1 Local [328,340,377–382] [333,383]
Suomi NPP-VIIRS [354] Yes 1 Regional 1 [353]

UAV hyperspectral data * [384] Yes 1 Local [384]
WorldView-2 Yes 1 Local [342]
WorldView-2 Yes 1 Local 2 [385]
WorldView-3 Yes 1 Local 2 [385]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 6. Eligible papers published in 2011.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral
Validation Carried Out

AHS * [386] No Local [386]
ASTER No Local [387–389]
ASTER Yes 1 Local [390,391]

AVIRIS * No Local [307,392–403] [387,404–417]
CASI * No Local [418]

MERIS (300 m) No Local [419]
MODIS (0.5–1 km) Yes 1 Local [420–423]

HYDICE * No Local [392,424] [414,415,425]
HyMAP * No Local [392,426] [427]

Hyperion * (30 m) No Local [387,428]
HJ-1 * (30 m) [429] No Local [429,430]

Landsat (30 m) Yes 1 Local [431–433] [387]
Landsat (30 m) No Local [434,435]
Landsat (30 m) Yes 1 Local 2 [436–438]
Landsat (30 m) No Local 2 [423,439]

QuickBird (0.6–2.4 m) [440] No Local [441,442]
SPOT (10–20 m) No Local 2 [439,441]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 7. Eligible papers published in 2010.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral
Validation Carried Out

Airborne hyper-spectral
image * (about 1.5 m) [443] No Regional 1 [443]

AHS * (2.4 m) No Local [444]
ASTER (15–30–90 m) Yes 1 Local [445,446]
ASTER (15–30–90 m) Yes 1 Regional 1 [447]

ATM (2 m) [101] No Local 2 [101]
AVHRR (1 km) Yes 1 Regional 1 [448]
AVIRIS * (20 m) No Local [449–457] [458–463]

CASI * (2 m) No Local [101]
CASI * No Laboratory [464,465]

CHRIS * (17 m) [466] No Local [467]
DAIS * (6 m) [464] No Local [465]

DESIS * No Local [468,469]
HYDICE * No Local [455,470,471] [458,463]
HyMAP * No Local [471]

Hyperion * (30 m) No Local [472–474]
HJ-1 * (30 m) No Local [475,476]



Remote Sens. 2023, 15, 2822 11 of 61

Table 7. Cont.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation
Carried Out

Spatial and Spectral
Validation Carried Out

Landsat (30 m) Yes 1 Regional 1 [477–483]
Landsat (30 m) No Regional 1 [484–489] [490]
Landsat (30 m) No Local 2 [491,492]
Landsat (30 m) No Local [493]
MIVIS * (3 m) No Regional 1 [494]

MODIS (0.5–1 km) Yes 1 Regional 1 [495]
MODIS (0.5–1 km) Yes 1 Continental 1 [496]
QuickBird (2.4 m) No Local 2 [491]
QuickBird (2.4 m) No Local [497,498]
SPOT (10–20 m) Yes 1 Regional 1 [480]

SPOT (2.5–10–20 m) No Local 2 [486,491,492]
SPOT (2.5–10–20 m) No Local [499] [500]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 8. Eligible papers published in 1996.

Remote Image
Analyzed Time Series Study Area Scale Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

AVIRIS * No Local [501,502] [503]
GERIS * [504] No Local [504]

Landsat (30 m) No Local [14,505] [506]
SPOT (2.5–10–20 m) No Local [507]

* Hyperspectral sensor.

Table 9. Eligible papers published in 1995.

Remote Image
Analyzed Time Series Study Area Scale Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

AVHRR (1–5 km) Yes 1 Regional 1 [508]
AVIRIS * (20 m) No Local [509] [510,511]
Landsat (30 m) No Local [512] [513]
MIVIS * (4 m) No Local [514]
MMR * [515] Yes 1 Local [515]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor.

The first columns of Tables 3–9 and the second columns of Tables A1–A7 show the sensor
name and the spatial resolution of the images. Considering all eligible papers, 27 hy-
perspectral sensors and 16 multispectral sensors were employed. Hyperspectral sensors
were highlighted in the first columns of Tables 3–9 with an asterisk. The literature often
combined spectral unmixing with hyperspectral data because the number of bands must
be greater than the number of endmembers [4,5,42,44]. However, the percentage of papers
that employed hyperspectral data (57% of a total of 458 papers) is slightly higher than
the percentage of papers that employed multispectral data (43% of a total of 458 papers).
The second columns of Tables 3–9 show the papers that performed the time series stud-
ies, whereas the third columns of these tables show the papers that performed the local,
regional, or continental studies.
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The analysis of these data showed that most studies that analyzed hyperspectral
images were performed at the local scale and did not carry out the multitemporal studies,
whereas most studies that analyzed multispectral images were performed at the regional or
continental scale and carried out the multitemporal studies (more than one image was ana-
lyzed). Therefore, the spectral unmixing is widely applied to multispectral images, despite
their smaller number of bands than hyperspectral images, because these data are character-
ized by greater spatial and temporal availability than those of the hyperspectral data.

Moreover, the spectral unmixing was also applied to some hyperspectral and multi-
spectral images that were characterized with high spatial resolutions (e.g., AMMIS image
with spatial resolution equal to 0.5 m [56] and WorldView-3 image with spatial resolution of
0.31 m [166]). These papers confirm that, no matter how high the spatial resolution might be,
no image pixel results were completely homogeneous in spectral characteristics [9,516,517].

3.3. Accuracy Metrics

Accuracy, which is defined as “the degree of correctness of the map”, is usually assessed
by comparing the “ground truth” with the map retrieved from remote images [518,519]. Because
no map can fully and completely map the territory [520], ground truth is more correctly
called reference data [521]. To assess the differences between the reference data and results
of the spectral unmixing, the eligible papers exploited different metrics. Figure 3 shows the
pie chart of the distribution of the metrics that were adopted by eligible papers.
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spatial accuracy.

The other 14 metrics were average accuracy [522], correct labeling percentage for
the unchanged pixels [141], correlation coefficient [150], Kling–Gupta efficiency [523],
mean abundance error [117], mean error [169], mean relative error [169], normalized
average of spectral similarity measures [524], producer’s accuracy [153], Receiver Operating
characteristic Curves (ROC) method [525], relative mean bias [165], separability spectral
index [526], signal-to-reconstruction error [56], and systematic error [109].

In conclusion, the authors of 454 eligible papers employed 22 different metrics, and
most authors employed more than 1 metric. Overall, 25% of the eligible papers did not
specify the accuracy metrics used. It is very important to note that some standard accuracy
assessments, such as the kappa coefficient, “assume implicitly that each of the testing
samples is pure”; therefore, some of these metrics were inappropriate for evaluating the
accuracy of the fractional abundance maps [41,518].
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3.4. Key Issues in the Spatial Validation

Since the literature highlighted many sources of error in accuracy assessment of
retrieved maps [518,519,521], the authors identified and carried out several “key issues” to
address and minimize these errors. Figure 4 and Tables A1–A7 summarize the key issues
that were identified.
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3.4.1. Validated Endmembers

Before analyzing the endmembers that were validated, it is necessary to remember that
the number of endmembers that were determined with the images must be less than the
number of sensor bands; therefore, the number of endmembers that were determined with
the multispectral data is less than the number of endmembers that were determined with
the hyperspectral data [6,23,527]. Therefore, the authors who elaborated the multispectral
images employed smaller levels of model complexity than authors who elaborated the
hyperspectral images [528,529]. For example, the VIS model was used to map only three
endmembers (Vegetation, Impervious surfaces, and Soil) in many urban areas that were
retrieved from multispectral data (e.g., [109,152,477,493]).

The third columns of Tables A1–A7 list the endmembers that were determined using
spectral unmixing; the fourth columns of these showed the number of these endmembers
that were validated. It is interesting to note that some authors validated smaller number of
endmembers than the number of the endmembers that were determined (i.e., 40 eligible
papers). Dividing the works that analyzed hyperspectral images from those that analyzed
multispectral data, Figure 5 shows the percentage of studies that validated the total or
partial number of endmembers. It is important to highlight that, since 4 eligible papers
analyzed both hyperspectral and multispectral data [104,227,231,281], the sum of papers
that analyzed hyperspectral data and papers that analyzed multispectral data (i.e., 458) is
greater than the number of eligible papers (i.e., 454).
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Therefore, only 2% of the studies that elaborated hyperspectral images partially val-
idated the determined endmembers, whereas 18% of the studies that elaborated multi-
spectral images partially validated the determined endmembers. As mentioned above,
hyperspectral images were used to carry out non-repeated surveys over time and at local-
scale studies (252 papers of a total of 262), whereas most multispectral images were used to
carry out regional- or continental-scale studies that were or were not repeated over time
(180 papers of a total of 196). Therefore, some of these authors, who analyzed more than one
image, chose to spatially validate only the materials or groups of materials on which they
focused their study. For example, Hu et al. [149] spatially validated only blue ice fractional
abundance maps that were retrieved from MODIS images covering the period 2000–2021 in
order to present a FABIAN (Fractional Austral-summer Blue Ice over Antarctica) product. It
should be noted that 5 and 12% of the papers that analyzed hyperspectral or multispectral
data, respectively, did not specify which endmembers were validated.

3.4.2. Sampling Designs for the Reference Data

The literature demonstrated that a possible source of error in spatial validation is due
to the choice of the sampling design for the reference data [518,519,521,530]. The sampling
design mainly includes the definition of the sample size and the sampling design of the
reference data [518]. Authors of eligible papers chose three kinds of sample sizes: the
whole study area; the representative area; small sample sizes (pixels, plots, and polygons
samples). The eighth columns of Tables A1–A7 show the different sample sizes that were
adopted by every eligible paper, and Table 10 shows the number of papers that adopted
the different sample sizes.

Table 10. Sample sizes of the reference data that were employed by the eligible papers.

Sample Sizes of the
Reference Data

Papers Published in 2022,
2021, and 2020

Papers Published in 2011
and 2010

Papers Published in 1996
and 1995

Whole study area 172 55 10
Small sample sizes 78 38 1
Representative area 21 7 0

Not specified 59 12 5
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Most authors of the eligible papers chose to validate the whole study areas, followed,
in descending order, by the choice to employ the different number of small sample sizes and
then the representative areas. It is also important to note the high percentages of the papers
that did not specify the sample size of the reference data: 18, 11, and 31%, respectively.

The literature also pointed out that the sampling designs for spatially validating maps
at local scale cannot be the same as the designs for spatially validating maps at regional
or continental scale [518,530]. As mentioned above, most of the studies that analyzed the
hyperspectral data were performed at local scale (252 papers of a total of 262), whereas the
studies that analyzed the multispectral images performed at regional or continental scale
(180 papers of a total of 196). Therefore, the eligible papers that analyzed hyperspectral
images were analyzed separately from those that analyzed multispectral images (Figure 6
on the right and left, respectively), not only to analyze the different sampling designs
adopted from the hyperspectral and multispectral data, but also to highlight the different
sampling designs chosen for local or regional/continental scale studies. Figure 6 shows
the percentage of the eligible papers that employed the different sample sizes and the
percentage of the eligible papers that employed a different number of small sample sizes.
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Most papers that processed hyperspectral images validated the whole study area
(212 papers), whereas most papers that processed multispectral images employed small
sample sizes (94 papers).

The authors of eligible papers that employed small sample sizes adopted three different
sampling designs of reference data: partial, random, and uniform. The ninth columns
of Tables A1–A7 show the sampling designs of every eligible paper. Most authors who
published in 2022, 2021, and 2020 and published in 2011 and 2010 chose the random
distribution of reference data (78% for a total of 326 papers and 76% for a total of 110
papers, respectively), whereas the authors who published in 1996 and 1995 did not specify
the sampling designs employed. Stehman and Foody [519] highlighted that “the most
commonly used designs” that were chosen to assess the land cover products were “simple
random, stratified random, systematic, and cluster” designs. Therefore, these results
confirmed that random designs were the most commonly used approaches.
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3.4.3. Sources of the Reference Data

Eligible papers employed four different sources of reference data to spatially vali-
date spectral unmixing results: images, in situ data, maps, and previous reference maps.
Table 11 shows the number of the eligible papers that employed these reference data sources,
whereas the fifth columns of Tables A1–A7 detail the sources of the reference data.

Table 11. Reference data sources employed by the eligible papers.

Sources of Reference
Data

Papers Published in
2022, 2021, and 2020

Papers Published in
2011 and 2010

Papers Published in
1996 and 1995

Maps 13 2 8
In situ data 55 35 2

Images 106 31 6
Previous reference

maps 156 44 0

The number of authors who chose to utilize geological, land use, or land cover maps as
reference maps is the smallest (5% of the total eligible papers), followed, in ascending order,
by the number who chose to create the reference maps using in situ data (20% of the total
eligible papers), and then by the number of authors who chose to create the reference maps
using other images (31% of the total eligible papers). Firstly, the number of authors who
chose to use the previous reference maps is the largest (44% of the total eligible papers).

As regards the authors who chose to create the reference maps using other images,
most of them employed images at higher spatial resolutions than those of the remote
images analyzed (95% of a total of 143 papers). To create the reference maps from the
images, 47% of the eligible papers did not specify the method used to map the endmembers,
29% employed the photo-interpretation, 21% classified the images, 2% used the vegetation
indexes, and 2% used the mixed approach by classifying and/or photo-interpreting and/or
applying vegetation indexes (e.g., [114,145,531]). As regards the classification methods,
there are four works that applied the same classification procedure to analyze the remote
images and to create the reference maps [65,66,149,261]. Among these, the authors of 3 pa-
pers compared the fractional abundance maps that were retrieved from the multispectral
images at moderate spatial resolutions (10, 30, and 60 m) with the fractional abundance
maps that were retrieved from the multispectral data at coarse spatial resolutions (0.5 and
1 km) [65,66,149].

Moreover, the reference data sources that were chosen to validate the results of the
hyperspectral images were analyzed separately from those that were chosen to validate
the results of the multispectral images. Figure 7 shows the percentage of the papers that
adopted the different sources of the reference data to validate the results of hyperspectral
(right) and multispectral data (left).

As regards the papers that analyzed the multispectral data, most of the authors
chose to create the reference maps from the other images, whereas most of the authors
that analyzed the hyperspectral data chose to employ the previous reference maps. It is
important to emphasize that 97% of these reference maps are available online together
with hyperspectral images and/or reference spectral libraries (e.g., [532–535] Figure 8).
Therefore, these images were well known: Cuprite (NV, USA, e.g., [70,458]), Indian Pines
(IN, USA, e.g., [78,458]), Jasper Ridge (CA, USA, e.g., [68,97]), Salinas Valley (CA, USA,
e.g., [75,78]) datasets that were acquired with AVIRIS sensors; Pavia (Italy, e.g., [81,85])
datasets that were acquired with the ROSIS sensor; Samson (FL, USA, e.g., [59,89]) dataset
that was acquired with the Samson sensor; University of Houston (TX, USA, e.g., [59,78])
dataset that was acquired with the CASI-1500 sensor; Urban (TX, USA, e.g., [59,68]) and
Washington DC Mall (Washington, DC, USA, e.g., [81,90]) datasets that were acquired with
the HYDICE sensor.
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Figure 8. Reference data available online together with hyperspectral images: (a) Jasper Ridge
reference map and spectral library [535]; (b) Cuprite reference map [536]; (c) Samson reference map
and spectral library [535]; (d) Indian Pines reference map [535]; (e) University of Houston reference
map [535]; (f) Salinas Valley reference map [535]; (g) Urban reference map [535]; (h) Pavia University
reference map [535]; (i) Washington DC reference map [535]; (j) Pavia center reference map [535].

Moreover, 93% of these papers proposed a method and tested it not only on these
“real” hyperspectral data, but also on created synthetic images. Borsoi et al. [4] highlighted
that in order to overcome “the difficulty in collecting ground truth data”, some authors
generated synthetic images. However, the authors complained because “there is not a
clearly agreed-upon protocol to generate realistic synthetic data” [4].

3.4.4. Reference Fractional Abundance Maps

“Misclassifications” of the reference data or “misallocations of the reference data” are
another possible source of error in spatial validation, defined as “imperfect reference data”
by [519] or “error magnitude” by [518]. The authors highlighted that these errors can be
caused also by the use of “standard” reference maps to validate the spectral unmixing
results (i.e., the fractional abundance maps) [41,518,519]. The difference between standard
reference maps and reference fractional abundance maps is that each pixel of the standard
reference map is assigned to a corresponding land cover class, whereas each pixel of the
reference fractional abundance map is labeled with the fractional abundances of each
endmember that is present in that pixel. Therefore, the values of the standard reference
map are equal to 0 or 1, whereas the values of the reference fractional abundance map are
greater than 2 and vary between 0 and 1 (100 values are able to fully validate the fractional
abundance of endmembers [114]).

The reference fractional abundance maps were employed by 133 eligible papers that
were published in 2022, 2021, and 2020; by 62 eligible papers that were published in 2011
and 2010; and by 13 eligible papers that were published in 1996 and 1995 (45% of the
total eligible papers). Moreover, among these works, 87, 47, and 8 papers estimated the
full range of abundances using 100 values (31% of the total eligible papers), whereas 41,
10, and 5 works partially estimated the fractional abundances using less than 100 values
(12% of the total eligible papers). It is important to note that 7% of the total eligible
papers did not specify if they used the standard reference maps or the reference fractional
abundance maps.

The eligible papers were separately analyzed according to reference data sources that
were adopted in order to find out how fractional abundances were estimated. In the four
parts of Figure 9, the eligible papers that were clustered according to the reference data
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sources are shown, and each part of Figure 9 shows the percentage of the papers that did
not specify the reference maps used and the number of the papers that fully or partially
estimated the reference fractional abundance maps.
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Figure 9. Distribution of the eligible papers that did not specify the reference maps used, fully and
partially estimated fractional abundances according to the reference data sources, where n was the
total number of papers that were clustered according to the reference data sources and included in
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(c) The papers that employed the images; (d) The papers that employed the previous reference maps.

High-spatial-resolution images were the most widely employed to make the reference
fractional abundance maps (81% of the total papers that employed the images), followed
by in situ data (68% of the total papers that employed in situ data), and then the maps
(50% of the total papers that employed maps). Moreover, in situ data were the most widely
employed to estimate the full range of fractional abundances (62% of the total papers that
employed in situ data), followed by high-spatial-resolution images (52% of the total papers
that employed the images), and then the maps (21% of the total papers that employed the
images). The previous reference maps were not employed to make the reference fractional
abundance maps.
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Many authors highlighted that it is not easy to create the reference fractional abun-
dances maps (e.g., [4,6,518,519]). Cavalli [145] implemented a method that was proposed
by [537] in order to create the reference fractional abundance maps. This method is able
to create the reference fractional abundance maps by varying the spatial resolution of the
high-resolution reference maps several times, and the range of fractional abundances can
be fully estimated according to the spatial resolution of the reference maps [114].

3.4.5. Validation of the Reference Data with Other Reference Data

In order to further minimize the errors due to “misclassifications” or “misallocations
of the reference data” [518,519], some authors validated the reference data using other
reference data: 61 eligible papers published in 2022, 2021, and 2020; 21 eligible papers
published in 2011 and 2010; 4 eligible papers published in 1996 and 1995. Therefore, 81% of
the total eligible papers did not take into consideration that the reference map may not be
“ground truth” and may be “imperfect” [519,520].

It is very important to point out that some authors took advantage of the online avail-
ability of reference data to validate reference data (e.g., [114,123,127,140,145,152,231,448,496]).
Many efforts are being made to create the networks of accurate validation data [48,538–540].
For example, Zhao et al. [140] exploited in situ measurements of the Leaf Area Index (LAI)
that were provided by the VALERI project [540], whereas Halbgewachs et al. [123], Lu
et al. [423], Shimabukuro et al. [353], and Tarazona Coronel [127] utilized validation data
that were provided by the Program for Monitoring Deforestation in the Brazilian Amazon
(PRODES) [541].

3.4.6. Error in Co-Localization and Spatial Resampling

The key issues described above addressed only the errors in the thematic accuracy
of the spectral unmixing results [518,519], whereas this key issue aimed to address the
geometric errors due to the comparison of remote images with reference data [542]. The
impact of co-localization and spatial resampling errors was minimized and/or evaluated
by 6% of the eligible papers: 20 eligible papers published in 2022, 2021, and 2020; 8 eligible
papers published in 2011 and 2010; 1 eligible paper published in 1996. In order to minimized
the errors, Arai et al. [368], Cao et al. [164], Li et al. [107], Soenen et al. [500], and Zurita-Milla
et al. [419] carefully chose the size of the reference maps; Bair et al. [254], Cavalli [114,145],
Ding et al. [152], Fernandez-Garcia et al. [256], Hamada et al. [441], Hajnal et al. [169], Lu
et al. [435], Ma & Chan [78], Rittger et al. [262], Sun et al. [263], Yang et al. [488], and Yin
et al. [151] spatially resampled the reference fractional abundance maps; Estes et al. [447]
compared different windows of pixels (i.e., 3 × 3, 7 × 7, 11 × 11, 15 × 15, and 21 × 21);
Pacheco & McNairn [480] selected the size and the spatial resolution of the reference maps;
Ben-dor et al. [507], Fernandez-Guisuraga et al. [342], Kompella et al. [328], Laamarani
et al. [343], and Plaza & Plaza [465] carefully co-localized the reference fractional abundance
maps on the reference maps; Wang et al. [366] expanded the windows of the field sample
size; Zhu et al. [64] resampled at “four kinds of grids” (i.e., 1100 × 1100 m, 2200 × 2200 m,
4400 × 4400 m, and 8800 × 8800 m) the reference fractional abundance map and compared
the results. Bair et al. [254], Binh et al. [341], Cavalli [114,145], Cheng et al. [543], and
Ruescas et al. [448] evaluated the errors in co-localization and spatial-resampling due to
the comparison of different data at different spatial resolutions. Moreover, Cavalli [145]
proposed a method to minimize the errors: the comparison of the histograms of the
reference fractional abundance values with the histograms of the retrieved fractional
abundance values.

It is important to point out that 94% of the total papers did not address the geometric
errors due to the comparison of remote images with reference data.
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4. Conclusions

The term validation is defined as “the process of assessing, by independent means,
the quality of the data products derived from the system outputs” by the Working Group
on Calibration and Validation (WGCV) of the Committee on Earth Observing Satellites
(CEOS) [48]. Since 1969, research has been involved to establish shared key issues to validate
the land cover products that were retrieved from the remote images [518,519,539,544].
These products can be obtained by applying classifications called “hard”, because they
extract information only from “pure pixels,” and classifications called “soft”, because they
also extract information from “mixed pixels” [519,544]. However, not only the literature
related to the spatial validation, but also every review on the spectral unmixing procedure
(i.e., a soft classification) highlighted that the key issues in the spatial validation of soft
classification results have yet to be clearly established and shared (e.g., [4,6,518,519]).

Since no review was performed on this fundamental topic, this systematic review aims
(a) to identify and analyze how the authors addressed the spatial validation of spectral
unmixing results and (b) to provide readers with recommendations for overcoming the
many shortcomings of spatial validation and minimizing its errors. The papers published in
2022, 2021, and 2020 were considered to analyze the current status of spatial validation, and
the papers published not only in 2011 and 2010, but also in 1996 and 1995, were considered
to analyze its progress over time. Since the literature on spectral unmixing is extensive, only
papers published in these seven years were considered. A total of 454 eligible papers were
included in this systematic review and showed that the authors addressed 6 key issues in
the spatial validation. In this text, the order in which the key issues were presented is not
an order of importance.

1. The first key issue concerned the number of the endmembers validated. Some authors
chose to focus on only one or two endmembers, and only these were spatially vali-
dated. This key issue was designed to facilitate the conduct of regional- or continental-
scale studies and/or multitemporal analysis. It is important to note that 8% of the
eligible papers did not specify which endmembers were validated.

2. The second key issue concerned the sampling designs for the reference data. The
authors who analyzed hyperspectral images preferred to validate the whole study
area, whereas those who analyzed multispectral images preferred to validate small
sample sizes that were randomly distributed. It is important to point out that 16% of
the eligible papers did not specify the sampling designs for the reference data.

3. The third key issue concerned the reference data sources. The authors who analyzed
hyperspectral images primarily used the previously referenced maps and secondarily
created reference maps using in situ data, whereas the authors who analyzed multi-
spectral images chose to create reference maps primarily using high-spatial-resolution
images and secondarily using in situ data.

4. The fourth key issue was, perhaps, the one most closely related to the spectral unmix-
ing procedure; it concerned the creation of the reference fractional abundance maps.
Only 45% of the eligible papers created the reference fractional abundance maps to
spatially validate the fractional abundance maps retrieved. These mainly employed
high-resolution images and secondarily in situ data. Therefore, 55% of the eligible
papers did not specify the employment of the reference fractional abundance maps.

5. The fifth key issue concerned the validation of the reference data with other reference
data; it was addressed only by 19% of the eligible papers. Therefore, 81% of the
eligible papers did not validate the reference data.

6. The sixth key issue concerned the error in co-localization and spatial resampling data,
which was minimized and/or evaluated only by 6% of the eligible papers. Therefore,
94% of the eligible papers did not address the error in co-localization and spatial
resampling data.
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In conclusion, to spatially validate the spectral unmixing results and minimize and/or
evaluate its errors, six key issues were considered not only from the eligible papers pub-
lished in 2022, 2021 and 2020, but also from those published in 2010, 2011, 1996, and 1995.
In addition, the results obtained from both hyperspectral and multispectral data were
spatially validated considering all key issues, but these were addressed in different ways.
All six key issues addressed together enabled rigorous spatial validation to be performed.
Therefore, this systematic review provided readers with the most suitable tool to rigorously
address spatial validation of the spectral unmixing results and minimize its errors.

The key difference between reference data suitable for hard and soft classifications
is that the latter reference maps must have higher spatial resolution than the resolutions
of the image pixels [6,114,518]. The optimal scale would be that 100 times larger than the
image pixel resolution [114]. However, many hyperspectral data were validated using
the previous reference maps at the same spatial resolution as the remote image, so these
standard reference maps can only create reference fractional abundance maps with the
help of other reference data. The employment of the standard reference maps instead
of the reference fractional abundance maps was also evidenced by the employment of
metrics to assess spatial accuracy that “assume implicitly that each of the testing samples is
pure” [37,217].

However, only 4% of eligible papers addressed every key issue, and many authors
did not specify which approach they employed to spatially validate the spectral unmix-
ing results. Moreover, most of the authors who specified the approach employed did
not adequately explain the methods used and the reasons for their choices. Six “good
practice criteria to guide accuracy assessment methods and reporting” were identified
by [519]. Therefore, these papers did not fully meet three good practice criteria: “reliable”,
“transparent”, and “reproducible” [519].
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Appendix A

In accordance with the PRISMA statement [49,50], 454 eligible papers were identified,
screened, and included in this systematic review: 326 eligible papers were published in
2022, 2021, and 2020; 112 eligible papers were published in 2011 and 2010; 16 eligible papers
were published in 1996 and 1995. The eligible criterion was that the results of the spectral
unmixing were spatially validated. Analyzing these papers, six key issues were identified
that were differently addressed to spatially validate the spectral unmixing results. The
different ways in which the key issues were addressed by the eligible papers published in
2022, 2021, 2020, 2011, 2010, 1996, and 1995 are summarized in Tables A1–A7, respectively.



Remote Sens. 2023, 15, 2822 24 of 61

Table A1. Main characteristics of the eligible papers that were published in 2022.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

Abay et al. [62] ASTER (15–30 m)
Landsat OLI (30 m) Goethite, hematite All Geological map - In situ observations - - Reference map - -

Ambarwulan
et al. [147] MERIS (300 m) Several total suspended

matter concentrations All In situ data - - 171 samples - - - -

Benhalouche et al. [156] PRISMA (30 m) Hematite, magnetite, limonite,
goethite, apatite All In situ data - - - - - - -

Bera et al. [120] Landsat TM, ETM+, OLI
(30 m)

Vegetation, impervious
surface, soil All Google Earth images Photointerpretation Soil map 101 polygons Uniform Reference fractional

abundance maps Partial -

Brice et al. [121] Landsat TM, OLI (30 m)
Water,

wetland vegetation, trees,
grassland

1 Planet images (4 m) Photointerpretation In situ observations 427 wetlands - Reference fractional
abundance map Partial -

Cao et al. [164] Sentinel-2 (10–20–60 m)

Vegetation, high albedo
impervious surface, low

albedo impervious surface,
soil

All GaoFen-2(0.8–3.8 m) Photointerpretation In situ observations 300 squares
(100 × 100 m) Stratified random Reference fractional

abundance maps Partial Polygon size

Cavalli [114] Hyperion (30 m)
PRISMA (30 m)

Lateritic tiles, lead plates,
asphalt, limestone, trachyte

rock, grass, trees, lagoon
water

All
All

Panchromatic IKONOS
image (1 m)

Synthetic Hyperion
and PRISMA images

(0.30 m)

Photointerpretation
The same spectral

unmixing procedure
performed to real

images

In situ observations
and shape files

provided by the city
and lagoon portal of

Venice (Italy)

The whole study area The whole study area Reference fractional
abundance maps Full

Spatial resampling the
reference maps and

evaluation of the errors
Evaluation of the errors in

co-localization and
spatial-resampling

Cavalli [145] MIVIS (8m)
Lateritic tiles, lead plates,

vegetation, asphalt,
limestone, trachyte rock

All
All

Panchromatic IKONOS
image (1 m)

Synthetic MIVIS image
(0.30 m)

Photointerpretation
The same spectral

unmixing procedure
performed to real

image

In situ observations
and shape files

provided by the city
and lagoon portal of

Venice (Italy)

The whole study area The whole study area Reference fractional
abundance maps Partial

Spatial resampling the
reference maps and

evaluation of the errors
Evaluation of the errors in

co-localization and
spatial-resampling

Cerra et al. [104]
DESIS (30 m)

HySpex (0.6–1.2 m)
Sentinel-2 (10–20–60 m)

PV panels,
2 grass, 2 forest, 2 soil,
2impervious surfaces

1 Reference map - - The whole study area The whole study area - - -

Cipta et al. [137] Landsat OLI (30 m)
MODIS (500 m) Rice, non-rice All In situ data - - 10 samples - - - -

Compains Iso
et al. [134] Landsat TM, OLI (30 m) Forest, shrubland, grassland,

water, rock, bare soil All Orthophoto (≤0.5 m) Photointerpretation - 50 squares (30 × 30 m) Random Reference fractional
abundance maps Partial -

Damarjati et al. [157] PRISMA (30 m) A. obtusifolia, sand, wetland
vegetations All In situ data - - - - Reference maps - -

Dhaini et al. [70] AVIRIS (20 m)

Andradite, chalcedony,
kaolinite, jarosite,

montmorillonite, nontronite
Road, trees, water, soil
Asphalt, dirt, tree, roof

All Reference map - - The whole study area The whole study area Reference maps - -

Ding et al. [122] Landsat TM, OLI (30 m) Vegetation, impervious
surface, soil All Google satellite images

(1 m) Photointerpretation - 100 points Random Reference maps - -

Ding et al. [152] MODIS (250–500 m) Vegetation, non-vegetation All Landsat (30 m) K-means unsupervised
classified method Google map 5 Landsat images Representative areas Reference fractional

abundance maps Partial Spatial resampling the
reference maps

Fang et al. [71] AVIRIS (20 m)
Road, 2building, trees, grass,

soil
Road, trees, water, soil

All Reference map - - The whole study area The whole study area Reference maps - -

Fernández-Guisuraga
et al. [161] Sentinel-2 (10–20 m)

Soil, green vegetation,
non-photosynthetic

vegetation
1 Photos - - 60 situ plots

(20 × 20 m) Stratified random Reference fractional
abundance map Full -

Gu et al. [98] AVIRIS (20 m) Vegetation, soil, road, river
soil, water, vegetation All Reference map - - The whole study area The whole study area Reference maps - -

Guan et al. [86] AVIRIS (20 m) Trees, water, dirt, road All Reference map - - The whole study area The whole study area Reference maps - -
HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -

Hadi et al. [68] AVIRIS (20 m) Trees, water, dirt, road All Reference map - - The whole study area The whole study area Reference maps - -
HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -

Hajnal et al. [169] Sentinel-2 (10–20–60 m) Vegetation, impervious
surface, soil All

APEX image (2 m),
High-resolution land

cover map

Support vector
classification - APEX image Representative areas Reference fractional

abundance maps Full Spatial resampling the
reference maps

Halbgewachs
et al. [123]

Landsat TM, OLI (30 m),
TIRS (60 m)

Forest, non-Forest
(non-photosynthetic

vegetation, soil, shade)
2

Annual classifications
of the Program for

Monitoring
Deforestation in the
Brazilian Amazon

(PRODES)

-

Official truth-terrain
data from deforested
and non-deforested
areas prepared by

PRODES

494 samples Stratified random Reference maps - -
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Table A1. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

He et al. [56] AMMIS (0.5 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -
ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

Hong et al. [69] AVIRIS (20 m) Trees, water, dirt, road, roofs All Reference map - - The whole study area The whole study area Reference maps - -

EnMAP (30 m) Asphalt, soil, water,
vegetation All Reference map - - The whole study area The whole study area Reference maps - -

Hu et al. [149] MODIS (0.5–1 km)

Blue ice,
coarse-grained snow, fresh

snow, bare rock, deep water,
slush, wet snow

1 Sentinel-2 images

The same spectral
unmixing procedure
performed to MODIS

images

Five auxiliary datasets

Six test areas identified
as blue ice areas in the
Landsat-based LIMA

product

Representative areas Reference fractional
abundance maps Full -

Hua et al. [72] AVIRIS (10 m)
Samson (3.2 m)

Dirt, road
-

All
All

Reference map
Reference map - - The whole study area

The whole study area
The whole study area
The whole study area

Reference maps
Reference maps - -

Jamshid Moghadam
et al. [115] Hyperion (30 m) Kaolinite/smeetite, sepiolite,

lizardite, chorite All Geological map - - The whole study area The whole study area Reference maps - -

Jin et al. [143] M3 hyperspectral image Lunar surface materials All
Lunar Soil

Characterization
Consortium dataset

- - - - Reference fractional
abundance maps Full -

Jin et al. [73] AVIRIS (10 m)
Samson (3.2 m)

Road, soil, tree, water
Water, tree, soil

All
All

Reference map
Reference map - - The whole study area

The whole study area
The whole study area
The whole study area

Reference maps
Reference maps - -

Kremezi et al. [166]

Sentinel-2 (10–20–60 m)
WorldView-2 (0.46–1.8 m)

WorldView-3
(0.31–1.24–3.7 m)

PET-1.5 l bottles, LDPE bags,
fishing nets All In situ data - - 3 squares (10 × 10 m) - Reference map - -

Kuester et al. [111] HYDICE (10 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

Kumar et al. [113] Hyperion (30 m)

Sal-forest, teak-plantation,
scrub, grassland, water,

cropland, mixed forest, urban,
dry riverbed

All Google Earth images - - Same squares
(30 × 30 m) - Reference fractional

abundance maps Partial -

Lathrop et al. [124] Landsat 8 OLI (15–30 m) Mud, sandy mud, muddy
sand, sand All In situ data - - 805 circles (250 m

radius) Uniform Reference fractional
abundance map Partial -

Legleiter et al. [103] DESIS (30 m) 12 cyanobacteria genera,
water All In situ data - - - - - - -

Li et al. [75] AVIRIS (10 m) Vegetation, bare soil,
vineyard, etc. All Field reference data - - The whole study area The whole study area Reference maps - -

Hyperion (30 m) - All Hyperion (30 m) image - - The whole study area The whole study area Reference map - -
Li et al. [74] AVIRIS (10 m) Tree, water, dirt, road All Reference map - - The whole study area The whole study area Reference maps - -

Li et al. [107]
GaoFen-6 (2–8–16 m)

Landsat 8 OLI (15–30 m)
Sentinel-2 (10–20–60 m)

Green vegetation, bare rock,
bare soil, non-photosynthetic

vegetation
All Photo acquired with

drones Classification
In situ measurements

of fractional vegetation
cover and bare rock

285 polygons Random Reference fractional
abundance maps Full Polygon size

Li et al. [76] AVIRIS (10 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -

Luo et al. [77] AVIRIS (10 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -

Lyngdoh et al. [100] AVIRIS (20 m)
AVIRIS-NG (5 m)

Trees, water, dirt, road
Red soil, black soil, crop
residue, built-up areas,

bituminous roads, water

All Reference map - - The whole study area The whole study area Reference maps - -

Ma & Chang [78] AVIRIS (10 m) - All Reference map - - The whole study area The whole study area Reference maps - Spatial resampling the
reference maps

CASI (2.5 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -
ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

Matabishi et al. [469] DESIS (30 m) Roof materials All VHR images - Field validation data 1053 ground reference
points - Reference fractional

abundance maps Full -

Meng et al. [163] Sentinel-2 (10–20–60 m) Vegetation, non-vegetation 1
Google Earth Pro

image
(1 m)

- - 10535 squares
(10 × 10 m) Stratified random Reference fractional

abundance maps Partial -

Nill et al. [125] Landsat TM, OLI (30 m)
Shrubs, coniferous trees,

herbaceous plants, lichens,
water, barren surfaces

All
RGB camera (0.4–8 cm)

Orthophotos
(10–15 cm)

- Field validation data 216 validation pixels Stratified random Reference fractional
abundance maps Full -

Ouyang et al. [126] Landsat-8 OLI (30 m)
Impervious surface,

evergreen vegetation,
seasonally exposed soil

1 Land use and land
cover maps (0.5 m) - - 264 circles (1 km

radius) Random Reference fractional
abundance map Partial -
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Table A1. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

Ozer & Leloglu [167] Sentinel-2 (10–20–60 m) Soil, vegetation, water All Aerial images (30 cm) - - - - Reference fractional
abundance map Partial -

P et al. [61] ASTER (90 m) Iron Oxide 1 In situ data - - 13 samples - - - -

Palsson et al. [59] Apex Asphalt, vegetation, water,
roof All Reference map - - The whole study area The whole study area Reference maps - -

AVIRIS (10 m) Road, soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -
CASI (2.5) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -
Samson (3.2 m) Soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Pan & Jiang [65] AVHRR (1–5 km) Snow, bare land, grass, forest,
shadow All Landsat7 TM+ image

(30 m)

The same procedure
performed to AVHRR

image
- Landsat image Representative area Reference fractional

abundance maps Full -

Pan et al. [66] AVHRR (1–5 km) Snow, bare land, grass, forest,
shadow All Landsat5 TM image

(30 m)

The same procedure
performed to AVHRR

image

The land use/land
cover Landsat image Representative area Reference fractional

abundance maps Full -

Paul et al. [470] DESIS (30 m) PV panel, vegetation, sand All VHR image - - - Random Reference fractional
abundance maps Full -

Pervin et al. [154] NEON (1 m)
Tall woody plants,

herbaceous and low stature
vegetation, bare soil

All NEON AOP image
(0.1 m)

Supervised
classification Drone imagery (0.01 m) 13 sets of 10 pixels Random Reference fractional

abundance maps Partial -

Qi et al. [89] AVIRIS (10 m) Road, soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -
HYDICE (10 m) Asphalt, grass, trees, roofs All Reference map - - The whole study area The whole study area Reference maps - -
Samson (3.2 m) Soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Rajendran et al. [116] Hyperion (30 m) Chlorophyll-a 1 WorldView-3 image
(0.31–1.24–3.7 m) Field validation data - - Reference fractional

abundance maps Full -

Ronay et al. [170] Specim IQ Weed species All In situ data - - The whole study area The whole study area Reference fractional
abundance maps Full -

Santos et al. [131] Landsat MSS, TM, OLI
(30 m)

Natural vegetation,
anthropized area, burned,

water
All In situ data - - samples Random Reference maps - -

Shaik et al. [158] PRISMA (30 m)

Broadleaved forest,
Coniferous forest, Mixed

forest, Natural
grasslands, Sclerophyllous

vegetation

All Land use and land
cover map - Field validation data - - Reference maps - -

Shao et al. [109] Landsat-8 OLI (15–30 m)
GaoFen-1 (2–8–16 m)

Vegetation, soil
impervious surfaces (high
albedo; low albedo), water

1 GaoFen-1 image (2 m)

Object-based
classification

and
photointerpretation of

the results.

Ground-based
measurements 300 pixels Uniform Reference fractional

abundance map Partial -

Shi et al. [90] AVIRIS (10 m) Road, soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Shi et al. [79] AVIRIS (10 m) Road, soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Shimabukuro
et al. [132] Landsat TM, OLI (30 m) Forest plantation All

MapBiomas annual
LULC map collection

6.0
- - 20000 samples Stratified random Reference maps Partial -

Silvan-Cardenas
et al. [139] Landsat (30 m) - - In situ data - - samples - Reference maps - -

Sofan et al. [135] Landsat-8 OLI (15–30 m) Vegetation, smoldering, burnt
area All PlanetScope images

(3 m) Photointerpretation - - Random - - -

Song et al. [153] MODIS (0.5 km) Water, urban, tree, grass All

GlobalLand30 maps
(GLC30) produced
based on Landsat

(30 m)

- - - - Reference fractional
abundance maps Full -

AVIRIS (10 m) - - Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water - Reference map - - The whole study area The whole study area Reference maps - -

Sun et al. [80] AVIRIS (10 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference fractional
abundance maps Full -

Sun et al. [165] Sentinel-2 (10–20–60 m) Rice residues,
soil, green moss, white moss 1 Photos (1.5 m) Photointerpretation In situ observations 30 samples Random Reference fractional

abundance maps Partial -
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Table A1. Cont.

Paper Remote Image Determined Endmembers Validated
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Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data
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Number of Small

Sample Sizes
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Abundances

Error in Co-Localization and
Spatial Resampling

Sutton et al. [119] Landsat TM, OLI (30 m) Drylands, semi-arid zone,
arid zone All In situ data - - 4207 samples No-uniform - - -

Tao et al. [91] AVIRIS (10 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference maps - -

Tarazona Coronel [127] Landsat TM, OLI (30 m) Vegetation 1
Landsat (15–30 m) and
Sentinel-2 (10–20–60 m)

images
Photointerpretation

Official truth-terrain
data from deforested
and non-deforested
areas prepared by

PRODES

300 samples Stratified random Reference fractional
abundance maps Partial -

van Kuik et al. [133] Landsat TM, OLI (30 m)
Sentinel-2 (10–20–60 m)

Blowouts to sand, water,
vegetation 1

Unoccupied Aerial
Vehicle (UAV)

orthomosaics (1 m)
Photointerpretation - - - Reference fractional

abundance maps Partial -

Viana-Soto et al. [138] Landsat TM, OLI (30 m) Tree, shrub, background
(herbaceous, soil, rock) 1 Orthophotos Photointerpretation Validation samples - Uniform Reference fractional

abundance maps Full -

Wang et al. [87] AVIRIS (10 m) - - Reference map - - The whole study area The whole study area Reference maps - -

Wang et al. [142] Landsat-8 OLI
(30 m)

Impervious surfaces (high
albedo, low albedo),
forest, grassland, soil

1 QuickBird image
(0.6 m)

Spectral angle mapping
classification In situ observations 13,080 points Random Reference fractional

abundance maps Partial -

Wang et al. [150] MODIS (0.5 km) Vegetation, non-vegetation All Landsat image (30 m)
K-means-based
unsupervised
classification

- Landsat image Representative area Reference fractional
abundance maps Partial -

Wang et al. [92] AVIRIS (10 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference map - -

Wu & Wang [85] AVIRIS (10 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

Xia et al. [128] Landsat ETM+, OLI (30 m) High albedo, vegetation
low albedo, shadow 2 Google Earth images Photointerpretation - 100 polygons

(30 × 30 m) Random Reference fractional
abundance maps Partial -

Xu et al. [162] Sentinel-2 (10–20–60 m) Impervious surface, water
body, vegetation, bare land All Google Earth images Photointerpretation In situ observations - - Reference fractional

abundance maps Partial -

Yang et al. [57]
AMMIS (0.5 m)

AVIRIS
ROSIS

- All Reference map - - The whole study area The whole study area Reference maps - -

Yang [81] AVIRIS (20 m) Vegetation, water, soil All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference maps - -

Yang et al. [141] Landsat-8 OLI
(30 m) Water, non-water All Google Earth images - - The whole study area The whole study area Reference fractional

abundance maps Partial -

Yi et al. [82] AVIRIS (20 m) Vegetation, water, soil All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Yin et al. [82] MODIS (0.250 km) Water, soil 1 Landsat OLI image
(30 m)

Modified normalized
difference water index

(MNDWI)
- Landsat image Representative area Reference fractional

abundance maps Partial Spatial resampling the
reference maps

Zhang & Jiang [108]
Landsat (30 m)

Sentinel-2 (20 m)
MODIS (0.5 km)

Snow 1 GaoFen-2 image (3.2 m) Supervised
classification - - - Reference fractional

abundance map Partial -

Zhang et al. [117] HySpec (0.7 m)
Bitumen, red-painted metal

sheets, blue fabric, red fabric,
green fabric, grass

All Reference map - - - - Reference maps Partial -

Zhang et al. [83] AVIRIS (20 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference maps - -

Zhang et al. [93] AVIRIS (10/20 m)

Dumortierite, muscovite,
Alunite+muscovite, kaolinite,

alunite, montmorillonite
Tree, water, road, soil

All Reference map - - The whole study area The whole study area Reference maps - -

Zhang et al. [129] Landsat-8 OLI (30 m) Vegetation, impervious
surfaces All GaoFen-1 image

(2–8 m) Photointerpretation - 101 samples Uniform Reference fractional
abundance maps Partial -

Zhang et al. [130] Landsat-8 OLI (30 m) Vegetation All GaoFen-1 image
(2–8 m)

Object-based
classification - 101 samples Uniform Reference fractional

abundance map Partial -
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Spatial Resampling

Zhang et al. [88] AVIRIS (10/20 m) Cuprite, road, trees, water,
soil Asphalt, dirt, tree, roof All Reference map

Reference map - - The whole study area The whole study area Reference maps - -

Zhao et al. [84] AVIRIS (10 m)
Road, trees, water, soil

Asphalt, grass, tree, roof,
metal, dirt

All Reference map
Reference map - - The whole study area The whole study area Reference maps - -

Zhao et al. [96] AVIRIS (10 m) Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Zhao et al. [94] AVIRIS (10 m) Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference maps - -

Zhao et al. [95] AVIRIS (20 m)
Andradite, chalcedony,

kaolinite, jarosite,
montmorillonite, nontronite

All Reference map - - The whole study area The whole study area Reference maps - -

Zhao et al. [136] Landsat-8 OLI (30 m)
Sentinel-2 (10–20–60 m)

Impervious surfaces,
vegetation,
soil, water

2 WorldView-2 image
(0.50–2 m) - - 172 polygons

(480 × 480 m) Random Reference fractional
abundance maps Full -

Zhao et al. [140] Landsat (30 m)
Spot (30 m) Vegetation 1

Fractional vegetation
cover reference maps
(provided by VALERI

project and the
ImagineS)

-

In situ measurements
of LAI (provided by

VALERI project and the
ImagineS)

445 squares (20 × 20 m
or 30 × 30 m) - Reference fractional

abundance map Full -

Zhao & Qin [168] Sentinel-2 (10–20–60 m) Vegetation, mineral area All In situ data - - - - Reference fractional
abundance maps Partial -

Zhu et al. [64] AVHRR (1–5 km)
Snow,

non-snow (bare land,
vegetation, and water)

1 Landsat TM image
(30 m)

Normalized difference
snow index - Landsat image Representative area Reference fractional

abundance map Full Spatial resolution variation

Zhu et al. [97] AVIRIS (10 m) Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (10 m) Road, roof, soil, grass, trail,
tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Samson (3.2 m) Soil, tree, water All Reference map - - The whole study area The whole study area Reference maps - -

Table A2. Main characteristics of the eligible papers that were published in 2021.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

Azar et al. [174] AVIRIS
CASI

Trees, Mostly Grass Ground
Surface, Mixed Ground

Surface, Dirt/Sand, Road

All
All

Reference map
CASI image

-
Photointerpretation - The whole study area The whole study area Reference map

Reference map - -

Badola et al. [226] AVIRIS-NG (5 m)
Sentinel-2 (10–20–60 m)

Black Spruce Birch Alder
Gravel All In situ data Photointerpretation In situ observations 29 plots Random Reference map - -

Bai et al. [175] AVIRIS Asphalt, Grass, Tree, Roof,
Metal, Dirt All Reference map - - The whole study area The whole study area Reference map - -

Bair et al. [254] Landsat
MODIS Snow, canopy 1 WorldView-2–3 images

(0.34–0.55 m) Photointerpretation
Airborne Snow

Observatory (ASO)
(3 m)

- - Reference fractional
abundance map Full

Spatial resampling the
reference maps

Evaluation of the errors in
co-localization and
spatial-resampling

Benhalouche et al. [230] HYDICE (10 m)
Samson (3.2)

Asphalt, grass, tree, roof
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Benhalouche et al. [265] PRISMA (30 m) Mineral All Geological map - - The whole study area The whole study area Reference map - -
Borsoi et al. [176] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Cerra et al. [238] HySpex Target All In situ data - Reference targets and
Aeronet data - - Reference fractional

abundance maps - -

Chang et al. [229]
GF-5 (30 m)

Sentinel 2 (10–20–60 m)
ZY-1-02D (30 m)

- All In situ data - - - - Reference fractional
abundance maps - -

Chen et al. [239] Landsat - All UAV images - Ground survey data - - Reference fractional
abundance maps - -

Chen et al. [245] Landsat Vegetation, impervious
surface, bare soil, and water All Google Earth images - - - - Reference fractional

abundance maps - -
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Chen et al. [246] Landsat - All Google Earth images - Field surveys 300 plots Random Reference fractional
abundance maps - -

Converse et al. [247] Landsat
Green vegetation,

non-photosynthetic
vegetation, soil

All UAS images - Field surveys Plots - Reference fractional
abundance maps Full -

Di et al. [177] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Dong & Yuan [178] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Dong et al. [179] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Dong et al. [180] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Dutta et al. [248] Landsat Vegetation, impervious
surface, bare soil, 1 In situ data -

Built-up density,
urban expansion and
population density of

the area

- - Reference fractional
abundance maps Full -

Ekanayake et al. [181] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Elrewainy &
Sherif [182] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Feng & Fan [255] Landsat (30 m)
Sentinel 2 (10–20–60 m)

Vegetation, high-albedo
impervious surface,

low-albedo impervious
surface soil

All In situ data - - 18000 testing areas random Reference fractional
abundance maps Full -

Fernández-García
et al. [256] Landsat (30 m)

Arboreal vegetation, shrubby
vegetation, herbaceous

vegetation, rock and bare soil,
water

All Orthophotographs
(0.25 m) - - 250 plots (30 × 30 m) random Reference fractional

abundance maps Full Spatial resolution variation

Finger et al. [249] Landsat (30 m) - All

California Department
of Fish and Wildlife

(CDFW) aerial survey
canopy area product

- - - - Reference fractional
abundance maps Full -

Gu et al. [183] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Guo et al. [184] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Gu et al. [185] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Han et al. [186] AVIRIS Asphalt, grass, tree, roof All Reference map - - The whole study area The whole study area Reference map - -
Han et al. [268] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Haq et al. [234] Hyperion (30 m)

Clean snow,
blue ice, refreezing ice dirty
snow, dirty glacier ice, firn,

moraine, and glacier ice

All In situ data - Sentinel-2 images - - Reference fractional
abundance maps Full -

He et al. [231] HYDICE (10 m)
MODIS (0.5–1 km) - All

All

Reference map
Finer Resolution
Observation and

Monitoring of Global
Land Cov (30 m)

- - -
61 scenes - Reference fractional

abundance maps Full -

He et al. [56] ROSIS (4m) Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -
Hua et al. [187] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Hua et al. [188] AVIRIS
Samson (3.2)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Huang et al. [189] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Jia et al. [190] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Ji et al. [235] Hyperion (30 m)
Photosynthetic vegetation,

non-photosynthetic
vegetation, bore soil

All Reference map - - The whole study area The whole study area Reference map - -

Jiji [250] Landsat (30 m) Heavy metals All In situ data - - 17 samples Random Reference fractional
abundance maps Full -

Jin et al. [267] ROSIS (4 m)
Samson (3.2 m)

Urban surface materials
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Kneib et al. [271] Sentinel 2 (10–20–60 m) - all Pleiades images (2 m) Photointerpretation - - - Reference fractional
abundance maps Full -

Kucuk & Yuksel [202] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Kumar & Chakravortty

[191]
AVIRIS

ROSIS (4 m)
-

Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [203] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [192] AVIRIS
HYDICE (10 m)

Cuprite
- All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [193] AVIRIS All Reference map - - The whole study area The whole study area Reference map - -
Li [194] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [195] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
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Table A2. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

Li et al. [196] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Li et al. [197] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [251] Landsat (30 m) Impervious, vegetation, bare
land, water All Google Earth images - Field surveys 4296 sampled points Random Reference fractional

abundance maps Full -

Li [257] Landsat (30 m) Impervious, soil, vegetation All Images - - 200 sample points Random Reference fractional
abundance maps Full -

Li et al. [204] AVIRIS
HYDICE (10 m) - All Reference map - - The whole study area The whole study area Reference map - -

Li et al. [205] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Liu et al. [206] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Lui & Zhu [207] AVIRIS
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Lombard & Andrieu
[240] Landsat - 3 Google Earth images Phointerpretation - 8490 sample points Random Reference fractional

abundance maps Full -

Luo & Chen [260] Landsat Vegetation, impervious, soil 1 Gaofen-2 and
WorldView-2 images - - - - Reference fractional

abundance maps Full Spatial resolution variation

Ma et al. [276] WorldView-3 Vegetation All Digital cover
photography - Vegetation spectra 30 sample points - Reference fractional

abundance map Full -

Mudereri et al. [273] Sentinel 2 (10–20–60 m) - All Google Earth images - Field surveys 1370 pixels Random Reference fractional
abundance maps Full -

Muhuri et al. [258] Landsat
Sentinel 2 (10–20–60 m) Snow cover All In situ data -

Airborne Snow
Observatory (ASO) (2

m)
- - Reference fractional

abundance maps Full -

Okujeni et al. [228] Simulated EnMAP - All Google Earth images - Landsat images 3183 sites Random Reference fractional
abundance maps Full -

Ou et al. [233] HyMap (4.5 m) Soil organic matter, soil heavy
meta All In situ data - - 95 soil samples Random Reference fractional

abundance maps Full -

Pan et al. [261] MODIS (0.5–1 km) Snow All Landsat images MESMA - The whole study area The whole study area Reference fractional
abundance maps Full -

Patel et al. [208] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Peng et al. [209] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Qin et al. [210] AVIRIS
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Racoviteanu et al. [241] Landsat Debris-covered glaciers All

Pléiades 1A image
(2 m)

RapidEye image (5 m)
PlanetScope (3 m)

Phointerpretation DEM 151 test pixels Random Reference fractional
abundance maps Full -

Rittger et al. [262] MODIS (0.5–1 km) Snow All Landsat images - - - Random Reference fractional
abundance maps Full Spatial resolution variation

Sall et al. [252] Landsat (30 m) Waterbodies All DigitalGlobe
WorldView-2 (0.46 m) -

National
AgricultureImagery

Program (NAIP)
- - Reference fractional

abundance maps Full -

Sarkar & Sur [173] ASTER (15–30–90 m) Bauxite minerals All In situ data -
Petrological, EPMA,

SEM-EDS studies
DEM

- - Reference fractional
abundance maps Full -

Seydi & Hasanlou [236] Hyperion (30 m) - All In situ data - - 73505 samples Random Reference fractional
abundance maps Full -

Seydi & Hasanlou [237] Hyperion (30 m) - All In situ data - - - - Reference fractional
abundance maps Full -

Shahid & Schizas [211] AVIRIS
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Shen et al. [242] Landsat (30 m) Impervious, non-impervious
surface All

Land use map by the
National Basic

Geographic
Information Center

- - - - Reference map - -

Shen et al. [270] Sentinel 2 (10–20–60 m) - All Google Earth images Phointerpretation - 467 polygons Random Reference fractional
abundance maps Full -

Shumack et al. [243] Landsat (30 m) Sentinel
2 (10–20–60 m)

Bare soil, photosynthetic
vegetation,

non-photosynthetic
vegetation

All Orthorectified mosaic
images (0.02 m)

Object based image
analyses

SLATS dataset of
fractional ground cover

surveys
400 point per images Random Reference fractional

abundance maps Full -

Song et al. [232] HYDICE (10 m)
Samson (3.2 m)

Road, trees, water, soil
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -
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Table A2. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization and
Spatial Resampling

Soydan et al. [272] Sentinel 2 (10–20–60 m) - All

Laboratory analysis of
field collected samples

through Inductive
Coupled Plasma

-

Laboratory analysis of
field collected samples

through X-Ray
Diffraction, and ASD

spectral analysis

- - Reference fractional
abundance maps Full -

Su et al. [212]
AVIRIS

HYDICE (10 m)
Hyperion (30 m)

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Sun et al. [263] MODIS (0.5–1 km) Green vegetation, sand, saline,
and dark surface All Google Earth images

Field observations - - 89 samples
10 plots (1 × 1 km) Random Reference fractional

abundance maps Full Spatial resolution variation

Sun et al. [275] WorldView-2 Mosses, lichens, rock,
water, snow In situ data - Photos and spectra 32 plots (2 × 2 m) Random Reference fractional

abundance maps - -

Tan et al. [198] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Vibhute et al. [213] AVIRIS Tree, soil, water, road All Reference map - - The whole study area The whole study area Reference map - -

Wan et al. [214]
AVIRIS

HYDICE (10 m)
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [215] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Vermeulen et al. [244] Landasat
Sentinel 2 (10–20–60 m)

Soil, Photosynthetic
Vegetation,

Non-Photosynthetic
Vegetation

All Images, field data - - (10 × 10 m) plots - Reference fractional
abundance maps - -

Wang et al. [199] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [216] AVIRIS
HYDICE (10 m) - All Reference map - - The whole study area The whole study area Reference map - -

Wang [217] AVIRIS
ROSIS (4 m)

-
Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [200] AVIRIS
ROSIS (4 m)

-
Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Wu et al. [253] Landsat
Sentinel 2 (10–20–60 m)

Bare soil, agricultural crop
Water, vegetation, urban All Google Maps Phointerpretation - - - Reference fractional

abundance maps Full -

Xiong et al. [201] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Xiong et al. [218] AVIRIS
HYDICE (10 m)

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Xu et al. [219] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Xu & Somers [269] Sentinel 2 (10–20–60 m) Vegetation, soil, impervious
surface All Google Earth images Object-oriented

classification - - - Reference fractional
abundance maps Full -

Yang et al. [264] MODIS (0.5–1 km) Vegetation, soil All GF-1, Google Earth
images - - 2044 samples

(0.5 × 0.5 km) Random Reference fractional
abundance maps Full -

Ye et al. [220] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Yu et al. [227] Landasat (30 m)
CASI - All

GF-1 image (2 m)
GeoEye image (2 m)

Reference map
Classification - The whole study area The whole study area Reference fractional

abundance maps Partial -

Yuan et al. [274] UAV multispectral
image - All In situ data - - 67 samples - Reference fractional

abundance maps Full -

Yuan & Dong [221] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Yuan et al. [222] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Zang et al. [259] Landsat Vegetation, soil, impervious
surface All Google Earth Pro

image

Night light data,
population data at

township scale,
administrative data

120 samples Random Reference fractional
abundance maps Full -

Zhang & Pezeril [223] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Zhao et al. [266] ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Zheng et al. [224] AVIRIS
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Zhu et al. [225] AVIRIS
Samson (3.2 m)

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -
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Table A3. Main characteristics of the eligible papers that were published in 2020.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of Reference
Data with Other
Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Aalstad et al. [340]
Landsat
MODIS

Sentinel2

Shadow, cloudy, snow,
snow-free All 305 terrestrial images Classification DEM - - Reference fractional

abundance maps Full -

Aldeghlawi et al. [334] HYDICE Urban surface materials All Reference maps - - The whole study area The whole study area Reference map - -

Arai et al. [368] PROBA-V Vegetation, soil, shade All Landsat images (30 m) Calculate Geometry
function

Land use and land cover
map produced by the

MapBiomas
Project and the

Agricultural Census

298 sampling units Uniform Reference fractional
abundance maps Full Spatial resampling the

reference maps

Bai et al. [281] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Benhalouche et al. [278] ASTER - All In situ data - - 2 samples - Reference fractional
abundance maps Full -

Binh et al. [341] Landsat - All Google Earth images Phointerpretation Field surveys - - Reference fractional
abundance maps Full

Evaluation of the errors in
co-localization and
spatial-resampling

Borsoi et al. [283] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Borsoi et al. [282] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Borsoi et al. [176] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Bullock et al. [349] Landsat - All In situ data - - 500 samples Random Reference fractional
abundance maps Full -

Carlson et al. [377] Sentinel (10–20–60 m) - All In situ data - Aerial photograhs - Random Reference fractional
abundance maps Full -

Chen et al. [299] AVIRIS
HYDICE

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Cheng et al. [543] Hyperspectral - All In situ data - - - Random Reference fractional
abundance maps Full

Evaluation of the errors in
co-localization and
spatial-resampling

Cooper et al. [330] Simulated EnMAP (30 m) - All Google Earth images Phointerpretation - 260 polygons
(90 × 90 m) Random Reference fractional

abundance maps Full -

Czekajlo et al. [350] Landsat - All Google Earth images Phointerpretation - 1085 grids (6 × 6 m) Random Reference fractional
abundance maps Full -

Dai et al. [351] Landsat - All In situ data DEM 2223 samples sites Random
Das et al. [300] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Dou et al. [301] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Drumetz et al. [329] CASI - All Reference map - - The whole study area The whole study area Reference map - -

Elkholy et al. [284] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Fang et al. [285] AVIRIS
ROSIS

-
Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Fathy et al. [286] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Fernández-Guisuraga
et al. [342]

Landsat
WorldView-2

Photosynthetic vegetation,
non-photosynthetic

vegetation, soil and shade
All In situ data - -

85 (30 × 30 m) field
plots 360 (2 × 2 m) field

plots
Random Reference fractional

abundance maps Full Co-localization the maps

Firozjaei et al. [364] MODIS - All Landsat images -

Annual primary energy
consumption, Global
gridded population

density, Population size
data, Normalized

difference vegetation
index (NDVI)

Data, CO and NOx
emissions

The whole study area The whole study area Reference fractional
abundance maps Full -

Fraga et al. [378] Sentinel-2 (10–20–60 m) - All In situ data - 15 sampling points Random Reference fractional
abundance maps Full -

Gharbi et al. [545] Hyperspectral - All Reference map - - The whole study area The whole study area Reference map - -
Girolamo-Neto

et al. [379] Sentinel-2 (10–20–60 m) - All In situ data 461 field observations Random Reference fractional
abundance maps Full -

Godinho Cassol
et al. [369] PROBA-V Vegetation, soil, shade All Landsat images (30 m) - - 622 sampling units Uniform Reference fractional

abundance maps Full -

Han et al. [287] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

He et al. [356] Landsat - All In situ data - Photos 118 field sites Random Reference fractional
abundance maps Full -

Holland & Du [288] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Hua et al. [289] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Huang et al. [302] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
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Table A3. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers

Sources of Reference
Data

Method for Mapping
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Validation of Reference
Data with Other
Reference Data
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Number of Small
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Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Huechacona-Ruiz
et al. [380] Sentinel-2 (10–20–60 m) - All In situ data - GPS 288 sampling units Random Reference fractional

abundance maps Full -

Imbiriba et al. [303] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Jarchow et al. [358] Landsat - All WorldView-2 (0.5 m) -
National Agriculture

Imagery Program (NAIP)
scene

154 pods Random Reference fractional
abundance maps Full -

Ji et al. [333]
GF1

Landsat
Sentinel-2 (10–20–60 m)

- All In situ data - GPS 111 surveyed
fractional-cover sites Random Reference fractional

abundance maps Full -

Jiang et al. [304] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Karoui et al. [290] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Khan et al. [352] Landsat - All In situ data -
GPS, “Land Use, Land Use

Change and Forestry
Projects”

108 circular sample
plots Random Reference fractional

abundance maps Full -

Kompella et al. [328] AWiFS
Sentienl-2 (10–20–60 m) - All In situ data - GPS 2 sampling areas - Reference fractional

abundance maps Partial Co-localization the maps

Laamrani et al. [343] Landsat - All Photographs - Field surveys, GPS 70 (30 × 30 m)
sampling area - Reference fractional

abundance maps Full Co-localization the maps

Lewińska et al. [359] MODIS
Soil, green vegetation,
non-photosynthetic

vegetation shade

Land cover
classifications (30 m),
Map of the Natural

Vegetation of Europe

- - The whole study area The whole study area Reference fractional
abundance maps Full -

Li et al. [305] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Li [360] Landsat Vegetation, high albedo, low
albedo, soil All

Orthophotography
images, Google Earth

images
- - The whole study area The whole study area Reference fractional

abundance maps Full -

Ling et al. [365] MODIS water and land All Radar altimetry water
levels - - The whole study area The whole study area Reference fractional

abundance maps Full -

Liu et al. [332]

GF1
GF2

Landsat
Sentinel-2 (10–20–60 m)

Water, vegetation, soil All Google Earth images Meteorological data 129 sample points Reference fractional
abundance maps Full -

Lu et al. [306] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Lymburner et al. [348] Landsat - All LIDAR survey - - 100 (10 × 10 km) tiles Random Reference fractional
abundance maps Full -

Lyu et al. [338] Hyperion (30 m) - All In situ data - Land use data 36 plots Random Reference fractional
abundance maps Full -

Markiet & Mõttus [277] AISA Eagle II airborne
hyperspectral scanner - - In situ data -

Site fertility class, tree
species composition,

diameter at breast height,
median tree height,

effective leaf area index
calculated from canopy

gap fraction

250 plots Random Reference fractional
abundance maps Full -

Mei et al. [307] AVIRIS
HYDICE

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Moghadam et al. [336] HyMap
Hyperion (30 m) - All Geological map - - The whole study area The whole study area Reference fractional

abundance maps Partial -

Montorio et al. [339] Landsat
Sentinel-2 (10–20–60 m) - All Pléiades-1A

orthoimage - - 275/280 plots Random Reference fractional
abundance maps Full -

Park et al. [546] Hyperspectral - All In situ data - - - - Reference fractional
abundance maps Full -

Patel et al. [372] ROSIS Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -
Peng et al. [297] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Peroni Venancio
et al. [347] Landsat

photosynthetic vegetation,
soil/non-photosynthetic

vegetation
All In situ data - - - Random Reference fractional

abundance maps Full -

Qi et al. [312] AVIRIS - All Reference map - - The whole study area The whole study area Reference map -
Qi et al. [308] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Qian et al. [309] AVIRIS
HYDICE

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Qu & Bao [321] AVIRIS
HYDICE - All Reference map - - The whole study area The whole study area Reference map - -
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and Spatial Resampling

Quintano et al. [381] Sentinel-2 (10–20–60 m)
Char, green vegetation,

non-photosynthetic
vegetation, soil, shade

All

Official
burn severity (three

severity levels) and fire
perimeter maps

provided by
Portuguese Study

Center of Forest Fires

- - The whole study area The whole study area Reference map - -

Rasti et al. [320] AVIRIS
Samson

-
Trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Redowan et al. [371] Landsat - All Google Earth images - - Representative areas Representative areas Reference fractional
abundance maps Full -

Rathnayake et al. [293] AVIRIS
HYDICE

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Salvatore et al. [385] WorldView-2
WorldView-3 - All In situ data - - - - Reference fractional

abundance maps Full -

Sall et al. [252] Landsat - All WorldView-2 (0.46 m) National Agriculture
Imagery Program (NAIP 89 waterbodies The whole study area Reference fractional

abundance maps Full -

Salehi et al. [280]

HyMap
ASTER
Landsat

Sentinel-2

- All In situ data - Geological map, X-ray
fluorescence analysis - - Reference fractional

abundance maps Full -

Senf et al. [345] Landsat - All Aerial images - - 360 sample areas Random Reference fractional
abundance maps Full -

Shah et al. [313] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Shih et al. [354] Landsat Vegetation, Impervious, Soil All Google Earth VHR
images - - 107 (90 × 90 m)

samples Random Reference fractional
abundance maps Partial

Shimabukuro
et al. [370] PROBA-V - All Sentinel-2 - - Representative areas Representative areas Reference fractional

abundance maps Full -

Shimabukuro
et al. [353]

Landsat
Suomi NPP-VIIRS

ROBA-V
- All Sentinel-2

MODIS -

Annual classifications of
the Program for

Monitoring Deforestation
in the Brazilian Amazon

(PRODES),
Global Burned Area
Products (Fire CCI,

MCD45A1,MCD64A1)

- - Reference fractional
abundance maps Partial -

Siebels et al. [319] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Sing & Gray [363] Landsat - All In situ data - - 346 field plots Random Reference fractional
abundance maps Full -

Sun et al. [331] GF-1 - All Google Earth
images - - 4500 pixels Random Reference fractional

abundance maps Full -

Takodjou Wambo
et al. [279]

ASTER
Landsat - All In situ data - Geological map, X-ray

diffraction analysis
7 outcrops, 53 rock

samples - Reference fractional
abundance maps Full -

Tao et al. [315] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Thayn et al. [357] Landsat - All
Low-altitude aerial

imagery collected from
a DJI Mavic Pro drone

- - Representative areas Representative areas Reference fractional
abundance maps Full -

Tong et al. [311] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Topouzelis et al. [382] Sentinel-2 (10–20–60 m) - All Unmanned Aerial
System images - - Representative areas Representative areas Reference fractional

abundance maps Full -

Topouzelis et al. [383] Sentinel-2 (10–20–60 m) - All Unmanned Aerial
System images - - Representative areas Representative areas Reference fractional

abundance maps Full -

Trinder & Liu [344] Landsat - All
Ziyuan-3 image,

Gaofen-1 satellite
image,

- - - - Reference fractional
abundance maps Full -

Uezato et al. [325] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Vijayashekhar

et al. [292]
AVIRIS

HYDICE
-

Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [375] Samson Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [366] PlanetScope (3 m)
Green vegetation

Non-photosynthetic
vegetation

All In situ data

Field measurements of
LAI, phenocam-based

leafless tree-crown
fraction, phenocam-based
leafy tree-crown fraction

no no Reference fractional
abundance maps Full Expansion of the windows

of field sample size
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Wang et al. [346] Landsat Water, urban, agriculture,
forest All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [373] ROSIS (4 m) Urban surface materials All Reference map - - The whole study area The whole study area Reference map - -

Wang et al. [322] AVIRIS
HYDICE - All Reference map - - The whole study area The whole study area Reference map - -

Wright &
Polashenski [362] MODIS (0.5 m) - All WorldView-2 (0.46 m)

WorldView-3 (0.31 m) - Representative areas Representative areas Reference fractional
abundance maps Full -

Xiong et al. [323] AVIRIS
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Xu et al. [295] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Xu et al. [296] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Xu et al. [316] AVIRIS
HYDICE

-
Road, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Xu et al. [318] AVIRIS
HYDICE

-
Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Yang & Chen [294] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Yang et al. [327] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Yang et al. [298] AVIRIS
HYDICE

-
Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Yang et al. [374] Samson Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Yin et al. [355] Landsat - All Google Earth images - - 500 samples Random Reference fractional
abundance maps Full -

Yuan et al. [314] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Yue et al. [376] Sentinel-2 (10–20–60 m) - All Digital photos - - The whole study area The whole study area Reference fractional
abundance maps Full -

Zeng et al. [317] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Zhang et al. [337] HySpex (0.7 m) Google Earth images - - - - Reference fractional
abundance maps Full -

Zhang et al. [384] UAV hyperspectral data - All In situ data - Laboratory analysis 35 samples - Reference fractional
abundance maps Full -

Zhang et al. [326] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Zhou et al. [310] AVIRIS
HYDICE

-
Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Zhou et al. [324]
AVIRIS

HYDICE
Samson

-
Soil, tree, water All Reference map - - The whole study area The whole study area Reference map - -

Zhou et al. [291] AVIRIS (16 m)
AVIRIS NG (4 m)

Turfgrass, non-photosynthetic
vegetation (NPV), paved, roof,

soil, and tree
All NAIP high-resolution

images (1 m) - - 64 regions of interest
(180 × 180 m) Random Reference fractional

abundance maps Partial -

Zhu et al. [335] HYDICE Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Table A4. Main characteristics of the eligible papers that were published in 2011.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Altmann et al. [404] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Ambikapathi et al. [405] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Bartholomeus et al. [386] AHS Maize All In situ data - - 14 samples Random Reference fractional
abundance maps Partial -

Bouaziz et al. [420] MODIS - All In situ data - - 102 samples Random Reference fractional
abundance maps Partial -

Canham et al. [406] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Cao et al. [429] HJ-1 (30 m) - All In situ data - - 13 sample plots Random Reference fractional
abundance maps - -

Castrodad et al. [392]
AVIRIS

HYDICE
HyMAP

-
Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Chen et al. [430] HJ-1 (30 m) - All In situ data - - 13 sample plots Random Reference fractional
abundance maps - -
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Table A4. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Chudnovsky et al. [428] Hyperion (30 m) - All In situ data -
Bulk mineral,
geo-chemical
composition

8 samples - Reference fractional
abundance maps - -

Cui et al. [421] MODIS (0.5–1 km) - All Landsat image - - Landsat image Representative area Reference fractional
abundance maps Partial -

de Jong et al. [427] HyMAP (5 m) - All In situ data -

Physical
characterization,

infiltration
measurements

107 plots Random Reference fractional
abundance maps - -

Dopido et al. [393] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Eches et al. [407] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Ghrefat & Goodell [387]

ASTER
AVIRIS

Hyperion
Landsat

- All In situ data - - - - Reference fractional
abundance maps - -

Gilichinsky et al. [439] Landsat
SPOT - - In situ data - - 229 validation areas Random Reference fractional

abundance maps - -

Gillis & Plemmons [424] HYDICE Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Griffin et al. [431] Landsat - All In situ data - - 304 samples Random Reference fractional
abundance maps Full -

Halimi et al. [394] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Halimi et al. [408] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Hamada et al. [441] QuickBird (0.6–2.4 m)
SPOT (10 m) - All Infrared aerial photography

(0.15 m) Phointerpretation - 30 samples Random Reference fractional
abundance maps Full Spatial resolution

variation
Heylen et al. [395] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Heylen et al. [396] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Heylen &
Scheunders [397] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Hosseinjani &
Tangestani [388] ASTER - All In situ data - Geological map, X-ray

diffraction analysis 8 samples Random Reference fractional
abundance maps Full -

Hu & Weng [390] ASTER - All Images - - Representative area Representative area Reference fractional
abundance maps Full -

Iordache et al. [398] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Iordache et al. [409] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Ji & Feng [442] QuickBird (2.4 m) - All QuickBird (0.6 m) - - The whole study area The whole study area Reference fractional
abundance maps Partial -

Jiao et al. [434] Landsat - All Airborne images - - Representative area Representative area Reference fractional
abundance maps Full -

Kamal & Phinn [418] CASI - All

Map of the mangrove
speciesderived from aerial

photographic interpretation at
scale of 1:25,000 Provided by

Queensland
Herbarium/Environmental

Protection Agency (EPA)

- - 400 samples Random Reference fractional
abundance maps Partial -

Knight & Voth [422] MODIS - All Landsat image - - The whole study area The whole study area Reference fractional
abundance maps Full -

Liu et al. [399] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Lu et al. [435] Landsat High-albedo, low-albedo,
vegetation, soil All QuickBird Hybrid method - 250 points Random Reference fractional

abundance maps Partial Spatial resolution
variation

Lu et al. [432] Landsat High-albedo, low-albedo,
vegetation, soil All QuickBird Hybrid method - 1512 samples Random Reference fractional

abundance maps Partial -

Lu et al. [423] Landsat
MODIS

Forest and non-forest
Vegetation, shade and soil All

Annual classifications of the
Program for Monitoring

Deforestation in the Brazilian
Amazon (PRODES)

-

Official truth-terrain
data from deforested
and non-deforested
areas prepared by

PRODES

- - Reference fractional
abundance maps Full -

Martin & Plaza [410] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -
Martin et al. [411] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Mei al. [307] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Mei & He [412] AVIRIS Cuprite All Reference map - - The whole study area The whole study area Reference map - -

Mianji et al. [400] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Negrón-Juárez et al. [433] Landsat
Photosynthetic vegetation,

non-photosynthetic
vegetation

All In situ data - - 30 pixel random Reference fractional
abundance maps Partial -

Qian et al. [425] HYDICE Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -
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Table A4. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Reno et al. [436] Landsat Vegetation, soil, water All In situ data - Photos, botanical
observations 168 ground points - Reference fractional

abundance maps Full -

Sankey & Glenn [437] Landsat - All In situ data - - 100 plots (30 × 30 m) Random Reference fractional
abundance maps Full -

Sunderman & Weisberg
[438] Landsat - All In situ data - - 400 plots Random Reference fractional

abundance maps Full -

Swatantran et al. [401] AVIRIS - All In situ data - Laser Vegetation
Imaging Sensor

125 field plots classified
based on WHR type for

analysis by
species/vegetation

type

Random Reference fractional
abundance maps Full -

Vicente & de Souza Filho
[389] ASTER - All In situ data -

X-ray diffraction
analysis on the same

samples
42 soil samples Random Reference fractional

abundance maps Full -

Villa et al. [413] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Weng et al. [391] ASTER
Green vegetation, soils

low-albedo surfaces
and high-albedo surface

All Other ASTER images Same procedures - The whole study area The whole study area Reference fractional
abundance maps Full -

Xia et al. [414] AVIRIS
HYDICE

-
Asphalt, trees, water, soil All Reference map - - The whole study area The whole study area Reference map - -

Xia et al. [402] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -

Yang et al. [415] AVIRIS
HYDICE - All Reference map - - The whole study area The whole study area Reference map - -

Youngentob et al. [426] HyMap (3.5 m) - All In situ data - - 99 isolated eucalypt
paddock trees Random Reference fractional

abundance maps Full -

Zare [403] AVIRIS - All Reference map - - The whole study area The whole study area Reference map - -
Zhan et al. [416] AVIRIS - All Reference map - - The whole study area The whole study area Reference map -
Zhao et al. [417] AVIRIS - All Reference map - - The whole study area The whole study area Reference map -

Zurita-Milla et al. [419] MERIS - All
High-spatial-resolution

land-cover dataset (Dutch
land-use database) (25 m)

- - The whole study area The whole study area Reference fractional
abundance maps Full Spatial resampling the

reference maps

Table A5. Main characteristics of the eligible papers that were published in 2010.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in
Co-Localization and
Spatial Resampling

Alves Aguilar
et al. [496] MODIS (0.5–1 km) Vegetation, soil 1 Landsat TM image (30 m) NDVI In situ observations Landsat image Representative area Reference fractional

abundance map Partial -

Biggs et al. [477] Landsat (30 m)
Green vegetation,

nonphotosynthetic vegetation,
impervious surfaces, soil, shade

All High
resolution imagery Photointerpretation - 38 squares Random Reference fractional

abundance maps Full -

Bolman [478] Landsat (30 m) Deciduous crowns, fully leaved
crowns, shade 2 In situ data - 17 plots Uniform Reference fractional

abundance maps Full -

Borfecchia et al. [489] Landsat (30 m) - - QuickBird image (2.8 m)
Maximum
Likelihood

classification
Aerial photos The whole study area The whole study area Reference fractional

abundance maps Full

Castrodad et al. [471] HYDICE Trees, grass, road All Reference map - - The whole study area The whole study area Reference maps - -

HyMAP
Coniferous trees,

deciduous trees, grass, water,
crop, road, concrete, gravel

All Reference map - - The whole study area The whole study area Reference maps - -

Cavalli et al. [494] MIVIS (3 m) Vegetation, soil 1 Land cover map - In situ observations - Random Reference maps - -
Chang et al. [458] AVIRIS (20 m) Cuprite, vegetation, soil All Reference map - - The whole study area The whole study area Reference maps - -

HYDICE (1.5 m) - - Reference map - - The whole study area The whole study area Reference maps - -

Chen et al. [475] HJ-1 CCD (30 m) Vegetation All In situ data - Land-use, land-cover,
vegetation maps - - Reference fractional

abundance map Full -

Eches et al. [457] AVIRIS (20 m) Cuprite, vegetation, soil All Reference map - - The whole study area The whole study area Reference maps - -

Eckmann et al. [496] MODIS (0.5–1 km) Fire 1 Band 9 of ASTER image
(30 m) - GLC 2000 land-cover Aster image Representative area Reference map - -

Elatawneh et al. [473] Hyperion (30 m) Land-cover classes All QuickBird image - In situ observations The whole study area The whole study area Reference fractional
abundance maps Full -
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Table A5. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in
Co-Localization and
Spatial Resampling

Elmore & Guin [484] Landsat (30 m) Vegetation, substrate, and shade All Aerial photographs Photointerpretation
Land cover based on
aerial photography

called GIRAS
- Random Reference fractional

abundance maps Full -

Estes et al. [447] ASTER (15–30–90 m) - - In situ data - - 127 circles (11.3 m
radius) - Reference fractional

abundance maps Full Change the windows
of pixels

Gilichinsky et al. [492] Landsat (30 m)
SPOT (10 m) Lichen classes 1 In situ data - - 229 plots Uniform Reference fractional

abundance maps Full -

Golubiewski &
Wessman [456] AVIRIS (20 m) Vegetation, soil, manmade

materials All In situ data - - - - Reference fractional
abundance maps - -

He et al. [485] Landsat (30 m) 2 vegetations, water All QuickBird image Classification - The whole study area The whole study area Reference fractional
abundance maps Full -

Hendrix et al. [464] CASI - - In situ data - - The whole study area The whole study area Reference maps - -

Hu & Weng [445] ASTER (15–30–90 m) - - QuickBird image (0.61 m) Classification - The whole study area The whole study area Reference fractional
abundance maps Full -

Huang et al. [479] Landsat (30 m) Fractional vegetation cover All In situ data - - 12 polygons (45 × 30 m) Random Reference fractional
abundance map Full -

Huang et al. [449] AVIRIS (20 m) Road, trees, lawn, path, roof,
shadow All Reference map - - The whole study area The whole study area Reference maps - -

Huck et al. [459] AVIRIS (20 m) Minerals All Reference map - - The whole study area The whole study area Reference maps - -
Iordarche et al. [460] AVIRIS (20 m) Minerals All Reference map - - The whole study area The whole study area Reference maps - -

Jin et al. [450] AVIRIS (20 m)
AVIRIS (20 m)

Minerals
- All Reference map - - The whole study area The whole study area Reference maps - -

Li et al. [482] Landsat (30 m) Low albedo, high albedo, soil,
vegetation All In situ data - - 400 samples Random Reference fractional

abundance map Full -

Liu et al. [491] Landsat (30 m) Urban, forest, water, cropland,
grass, developing land All QuickBird image (0.61 m) Photointerpretation In situ observations 3000 samples Uniform Reference fractional

abundance map Full -

Liu & Yue [486] Landsat TM (30 m)
SPOT (10–20 m) Urban vegetation fraction All In situ data - - samples Random Reference fractional

abundance map Full -

Luo et al. [451] AVIRIS (20 m) - - Reference map - - The whole study area The whole study area Reference maps - -
Luo et al. [452] AVIRIS (20 m) - - Reference map - - The whole study area The whole study area Reference maps - -

Martin et al. [461] AVIRIS (20 m) Alunite, buddingtonite, calcite,
kaolinite and muscovite All Reference map - - The whole study area The whole study area Reference maps - -

Martin & Plaza [462] AVIRIS (20 m) Minerals All Reference map - - The whole study area The whole study area Reference maps - -
Martin & Plaza [462] AVIRIS (20 m) Minerals Field

reference
data

- - The whole of study
area

Reference maps - -

Mei et al. [453] AVIRIS (20 m) Vegetation All Reference map - - The whole study area The whole study area Reference maps - -
Mei et al. [454] AVIRIS (20 m) Mineral All Reference map - - The whole study area The whole study area Reference maps - -

Meng et al. [476] HJ-1A/1B (30 m) Road, vegetation,
Building All Aerial photo Photointerpretation

Classification - The whole study area The whole study area Reference fractional
abundance maps Full -

Meusburger et al. [497] QuickBird (2.4 m) Vegetations
Soil - In situ data - - 43 plots (10 × 10 m) Random Reference fractional

abundance map Full -

Meusburger et al. [498] QuickBird (2.4 m) Vegetations
Soil All In situ data - - 63 samples Random Reference fractional

abundance map Full -

Mezned et al. [446] ASTER (30 m)
Landsat ETM+ (15 m)

Calcite, clays, gypsum,
oxyhydroxides, pyrite All In situ data - - - Random Reference fractional

abundance maps Partial -

Mucher et al. [444] AHS (2.4 m) Heathland vegetation All In situ data - Aerial photos 104 circles (3 m radius) - Reference fractional
abundance maps Full -

Pacheco &
McNairn [480]

Landsat (30 m)
SPOT (20 m) Vegetation, soil and residue All Digital photographs -

Soil Landscapes of
Canada

Working Group, 2007
Digital images Representative area Reference fractional

abundance maps Full
Size and spatial
resolution of the
reference maps

Pascucci et al. [101] ATM (2 m)
CASI (2 m) Soil, vegetation All Land cover map In situ observations 25 samples Random Reference fractional

abundance maps Full -

Plaza & Plaza [465] DAIS (6 m) Cork-oak trees, pasture, bare soil All ROSIS image (1.2 m)

Maximum-
likelihood
supervised

classification

- The whole study area The whole study area Reference fractional
abundance maps Full Co-localization the

maps

Powell & Roberts [483] Landsat (30 m) Vegetation, impervious soil All Aerial photos - - 41 samples - Reference fractional
abundance maps Full -

Raksuntorn et al. [463] AVIRIS (10 m) HYDICE
(10 m)

Minerals
-

All
-

Reference map
Reference map - - The whole study area

The whole study area
The whole study area
The whole study area

Reference maps
Reference maps - -

Ruescas et al. [448] AVHRR (1 km) Vegetation, burnt area, rocks, soil All AHS image (6 m)
Maximum
likelihood

classification

Statistic reports
provided by the
Environmental

Ministry of Spain

AHS image Representative area Reference fractional
abundance maps Full

Evaluation of the
errors in

co-localization and
spatial-resampling



Remote Sens. 2023, 15, 2822 39 of 61

Table A5. Cont.

Paper Remote Image Determined Endmembers Validated
Endmembers Sources of Reference Data

Method for
Mapping the
Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in
Co-Localization and
Spatial Resampling

Sarapirome &
Kulrat [493] Landsat (30 m) Vegetation, impervious soil;

vegetation, soil, shade All Air photos - In situ observations - - Reference fractional
abundance maps Full -

Schmidt & Witte [499] SPOT (2.5–10 m) Water, soil, vegetation All In situ data - - Polygons Random Reference maps - -

Silván-Cárdenas &
Wang [490] Landsat (30 m) Vegetations All AISA image (1 m)

Spectral angle
mapper

classification
In situ observations 300 points (30 × 30 m) Random Reference fractional

abundance maps Full -

Soenen et al. [500] SPOT (10–25 m) Sunlit canopy, sunlit background,
shadow All In situ data - - 36 plots (400 m2) Random Reference fractional

abundance maps Full The size of reference
maps

Solans Vila & Barbosa
[481] Landsat (15 m) Green vegetation, soil, shade,

non-photosynthetic vegetation All In situ data - - - - Reference fractional
abundance maps Full -

Somers et al. [472] Landsat (30 m)
Hyperion (30 m)

Eucalyptus trees, soil, litter and
grass All In situ data - - 46 plots Stratified random Reference fractional

abundance map Full -

Tommervik et al. [487] Landsat (30 m) Vegetations All Aerial photographs and
QuickBird-2 image Photointerpretation - 10 plots Random Reference fractional

abundance map Full -

Verrelst et al. [467] CHRIS (17 m) Vegetation, snow All Aerial photographs - - Aerial photographs Representative area Reference fractional
abundance map Full -

Villa et al. [455] AVIRIS (10 m) HYDICE
(10 m)

-
Asphalt, trees, water, soil

-
-

Reference map
Reference map - - The whole study area

The whole study area
The whole study area
The whole study area

Reference maps
Reference maps - -

Xiong et al. [470] HYDICE (10 m) - - Reference map - - The whole study area The whole study area Reference maps - -

Yang & Everitt [443] Airborne hyperspectral
image (about 1.5 m) Invasive weeds All In situ data - - 425 circular areas

(diameter of 3 m) Stratified random Reference fractional
abundance map Full -

Yang et al. [488] Landsat TM (30 m) 2Vegetation, impervious surfaces
(low and high albedo), soil All Aerial photographs Photointerpretation - 138 samples Random Reference fractional

abundance maps Full -

Table A6. Main characteristics of the eligible papers that were published in 1996.

Paper Remote Image Determined
Endmembers

Validated
Endmembers Sources of Reference Data Method for Mapping

the Endmembers

Validation of Reference
Data with Other
Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in Co-Localization
and Spatial Resampling

Ben-dor et al. [507] SPOT Mineral All Geological map - GER scanner data The whole study area The whole study area Reference fractional
abundance map Partial Co-localization the maps

Bowers & Rowan [503] AVIRIS Mineral All Geological map - - The whole study area The whole study area Reference fractional
abundance map Partial -

Hunt et al. [502] AVIRIS - All Landsat image Unconstrained linear
spectral unmixing - The whole study area The whole study area Reference fractional

abundance map Partial -

Rosenthal et al. [505] Landsat - All High resolution aerial
photographs - - The whole study area The whole study area Reference fractional

abundance map Full -

Thomas et al. [14] Landsat - All Images Photointerpretation - The whole study area The whole study area Reference fractional
abundance map Full -

Ustin et al. [501] AVIRIS - All Aerial photograph - Field based vegetation
map The whole study area The whole study area Reference fractional

abundance map Full -

Van der Meer [504] GERIS - All Map - - The whole study area The whole study area Reference fractional
abundance map Partial -

Van der Meer [506] Landsat - All Map - - The whole study area The whole study area Reference fractional
abundance map Partial -
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Table A7. Main characteristics of the eligible papers that were published in 1995.

Paper Remote Image Determined
Endmembers

Validated
Endmembers

Sources of Reference
Data

Method for Mapping
the Endmembers

Validation of
Reference Data with

Other Reference Data

Sample Sizes and
Number of Small

Sample Sizes
Sampling Designs Reference Data

Estimation of
Fractional

Abundances

Error in
Co-Localization and
Spatial Resampling

Bianchi et al. [514] MIVIS (4 m)

Oil, water, wood,
cultivated field, smooth

and grooved surface
soil, rice field

1 In situ data - - 200 samples Uniform Reference fractional
abundance map Full -

Dwyer et al. [509] AVIRIS (20 m) Minerals All Geological map - Remotely sensed and
ground-based data The whole study area The whole study area Reference maps -

Hall et al. [515] MMR
Canopy, canopy plus

background,
background

All In situ data - - - - Reference fractional
abundance map Full -

Kerdiles & Grondona [508] AVHRR (1 km) Vegetation, soil All Landsat TM image
(30 m) classification - - - Reference fractional

abundance maps Full -

Lacaze et al. [510] AVIRIS (20 m) Vegetation, soil, rock All Landsat TM image
(30 m) classification - - - Reference fractional

abundance maps Full -

Lavreau et al. [512] Landsat (30 m) Vegetation All Land cover map - - - Reference maps - -
Rowan et al. [511] AVIRIS (20 m) Minerals All Geological map - - The whole study area The whole study area Reference maps - -

Van Der Meer [513] Landsat (30 m) Minerals All Geological map - In situ observations The whole study area The whole study area Reference fractional
abundance maps Full -
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