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Abstract: Among the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on
temporal gravity products, the north–south stripe noise in the spherical harmonic coefficients (SHCs)
products contaminates the inversion of the Earth’s mass field. In this study, GRACE SHCs products
are adopted to estimate the mass changes in Nicaragua. To improve this estimation, we propose
an empirical low-pass filter to suppress stripe noise. After only using our filter, the Nicaragua
regional uncertainty diminishes from 123.26 mm to 69.11 mm, and the mean signal-to-noise ratio
of all available months (2002–2021) improves from 1.67 to 1.8. Subsequently, our filter is employed
to estimate the basin terrestrial water storage (TWS) change in Nicaragua. In the end, TWS change
estimations are compared with various observations such as mascon products, hydrological models,
and in situ groundwater observation. The main conclusions are as follows: (1) After using the
wavelet coherent analysis, there is a negative resonance between TWS and the climate factor (El
Nino–Southern Oscillation) with a period of 2~4 years; (2) The significant ~3.8-year periodic signal
in groundwater storage change estimation is contributed by GRACE aliasing error. Our work can
provide new knowledge and references for mass change in small areas.

Keywords: GRACE; stripe noise; filter; Nicaragua; terrestrial water storage; groundwater storage

1. Introduction

Since March 2002, a novel opportunity to estimate large-scale terrestrial water storage
(TWS) [1–6] and groundwater storage (GWS) [7–9] has been made available from satellite
gravity missions called Gravity Recovery and Climate Experiment (GRACE) and the
GRACE Follow-On (GFO) [10]. The GRACE/GFO space mission measured the Earth’s
temporal gravity for about 20 years, except for the mission-free year from July 2017 to
May 2018.

The GRACE/GFO products for hydrologic research have been extensively used, in-
cluding the GRACE/GFO level-3 gridded mass field and level-2 spherical harmonic coeffi-
cients (SHCs) products. Among the former, the Mascon products are being widely used
since it significantly improves spatial accuracy and operates friendly to the user. Nonethe-
less, Zhang et al. [11] pointed out that Mascon products perform poorly and may remove
signal in the small-scale region (smaller than 3◦ × 3◦). On the contrary, the GRACE/GFO
SHCs products are still recommended for revealing small-scale basin mass change after the
rational post-processing method.

There are mainly three official Scientific Data Centers (SDCs) that provide the GRACE/
GFO SHCs solutions, including the Center for Space Research (CSR) at the University
of Texas in Austin, the Geoforschungs Zentrum Potsdam (GFZ), and the Jet Propulsion
Laboratory (JPL). We here show the original mass field in terms of equivalent water height
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(EWH) derived from the three SDCs (Figure 1a–c). Although the pre-processing procedures
in GRACE/GRO SHCs products at each SDC differ [12], all the inversions are contaminated
by global north–south stripe noise.

Hence, the post-processing method is an essential step to remove the noise in the mass
field inversion. We here classify the post-processing algorithm into multi-month and single-
month methods according to the length of available data. The former include the principal
component analysis/empirical orthogonal function [13,14], stochastic filter [15], Kalman
filter [16], multichannel singular spectrum analysis [17], and so on. Among these methods,
observation availability, prior information, and temporal–spatial statistical properties are
considered and lead to high computational performance requirements. Among the latter,
the Gaussian filter is the most commonly used [18]. Its variants include the Han filter [19],
the Fan filter [20], and the iterative filter [21]. Additionally, there are also optimal filters
designed using statistical criteria and prior information, for instance, the RMS filter, the
Wiener filter, and the DDK filter [22–24].
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Figure 1. GRACE/GFO mass field in April 2002 without processing (top), and only with the P4M6
method (down). (a,d) from CSR. (b,e) from GFZ. (c,f) from JPL.

However, in the case of the Gaussian filter only applied in GRACE/GFO SHCs data,
a large average radius is needed to suppress the noise level but will overly smooth the
mass field. To overcome it, considering the stripe noise due to irrational patterns in SHCs
with specific degrees (odd or even), Swenson and Wahr [25] proposed the de-striping
method that subtracts the fitted value from the original SHCs using a 2nd-order polynomial
in a moving window. After that, this empirical de-striping method was developed into
the PnMl method with different parameters (degree of the polynomial, fitting range of
order, and length of window), such as the P4M6 [26–29]. However, there is still obvious
north–south stripe noise covering the low latitude after adopting the de-striping method
(e.g., Figure 1d–f; the P4M6 method).

Moreover, considering the spatial high-frequency property of the stripe noise, some
scholars processed the GRACE/GFO mass field in the planar domain. Zhan et al. [30] and
Yang et al. [31] designed a low-pass filter to remove stripe noise for the GRACE/GFO mass
field along the longitude direction and confirm the filter parameter in experience or prior
information. However, they did not consider the correlation along the latitude direction of
the signal. After that, Yi and Sneeuw [32] separated the stripe noise through a complicated
method, which is based on correlation in the two spherical orthogonal directions (longitude
and latitude). Considering the correlation of two planar orthogonal directions, we propose
a novel empirical low-pass (ELP) filter to further suppress residual stripe noise in the low
latitude of the mass field, which is due to only adopting the P4M6 method.
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Nicaragua (Figure 2) is located in a tropical region on the Pacific Coast of Central
America [33]. Jian et al. [34] studied the Nicaragua mass change with GRACE/GFO
data in the general method (the P4M6 method and Gaussian filter). Following that, we
try to improve the mass change estimation in Nicaragua by combining the ELP filter.
To this end, the performance of the ELP filter is investigated in the temporal–spatial
domain and spherical harmonic domain with the real GRACE/GFO and simulated mass
fields. Subsequently, the signal-to-noise ratio (SNR) index and three-cornered hat (TCH)
method are adopted to assess the improvement of the ELP filter. In the end, we study
the mechanisms of mass change (TWS and GWS) in Nicaragua by combining in situ
groundwater observations.
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2. Study Area and Materials
2.1. Topography in Study Area

The Central Highlands, the Caribbean Coastal Lowlands on the east coast, and the
Pacific Coastal Lowlands on the west coast make up Nicaragua’s three main regions
(https://en.wikipedia.org/wiki/Nicaragua, accessed on 1 December 2022). The eastern
coast is near the Caribbean Sea, with a coastline of about 540 km. The interior consists of
plateaus and mountains. In western Nicaragua, there are two of the largest freshwater lakes
in Central America: Lake Nicaragua and Lake Managua [35]. The west coast is near the
Pacific Ocean, the most densely populated area in the country, but there are many active
volcanoes and earthquakes [36–38].

2.2. Climate in Study Area

There are three primary climates in Nicaragua [39]. Tropical monsoon and tropical
rainforest climates coexist in the Caribbean coastal lowlands on the east coast. Additionally,
a tropical savanna climate predominates in the Central Highlands and West Coast of the
Pacific coastal lowlands [40,41].

Furthermore, the rainfall in Nicaragua varies greatly. The Caribbean lowlands receive
between 2500 and 6500 mm of rain per year [40]. The Pacific lowlands and the western
slopes of the central highlands receive significantly less annual rainfall since the peaks of
the central highlands isolate the Caribbean trade winds. In Nicaragua, the yearly precip-
itation is characterized by a robust bimodal distribution (the midsummer drought) [42].
This distribution is controlled by the Caribbean low-level jet stream and the sea surface
temperature of the eastern Pacific Ocean. It is characterized by precipitation peaks in the
periods from May to June and from late August to early October, respectively.

https://en.wikipedia.org/wiki/Nicaragua
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2.3. GRACE/GFO SHCs and Mascon Products

In the following estimation, the GSM Release 06 products from three SDCs (CSR, JPL,
and GFZ) are employed, which are SHCs truncated at degree 60. As usual, the SHCs of each
available month (April 2002–April 2021) are replaced: (1) first-degree terms and (2) C20/C30
SHCs. The former is determined by the combination of GRACE/GFO observation and
ocean models [43]. The latter is derived from satellite laser ranging results [44,45]. After
that, the glacial isostatic adjustment corrections [46] are implemented by the ICE-6G_D
model. The monthly treated SHCs are relative to the GRACE/GFO mean gravity field from
January 2004 to December 2009.

Moreover, we implement the GRACE/GFO level-3 product (CSR-RL06M v02, named
CSR M in this work) [47], which is the monthly global mass field (0.25◦ × 0.25◦) in terms of
EWH. To be claimed specifically for CSR-M, all the corrections and replacements are the
same as the SHCs product, excluding the ellipsoid corrections. The ellipsoid correction is
not considered in the SHCs products on account of its minor impact on Nicaragua’s mass
change [48].

2.4. Satellite Altimetry and Hydrological Model

For the surface water storage in Nicaragua, the water-level time series are collected
from the Database for Hydrological Time Series over Inland Waters (DAHITI: https://
dahiti.dgfi.tum.de, accessed on 5 December 2022), which includes Lake Nicaragua and
Managua. The process strategy for datasets is proposed by Schwatke et al. [49].

The Global Land Data Assimilation System (GLDAS) was jointly developed by the
Goddard Space Flight Center and the National Centers for Environmental Prediction, which
includes four models: NOAH, MOSAIC, VIC, and CLM [50]. The GLDAS models output
global soil moisture, snow water equivalent, canopy water, and other surface variables. In
this work, the soil moisture (0.25◦ × 0.25◦) storage derived from the GLDAS2.1-NOAH025
model is employed to follow the previous selections that have been successfully applied to
hydrological and climate research [51–55]. Moreover, for ease of expression, soil moisture
storage plus surface water storage is referred to as SWS, which is the major component
of TWS.

2.5. In Situ Groundwater Observation and Specific Yield

Aiming to analyze and validate the basin GWS estimation, the in situ groundwater
level time series were collected from Adamson et al. [56]. The contributors requested that
the specific location of the well be kept secret (green patch in Figure 2) [56]. The in situ GWS
observation includes the average groundwater observation of hand-dug wells (monthly
observation) and a drilling well named MW-01 (yearly observation). After multiplying the
groundwater level with a specific yield [57], we can obtain the in situ GWS observation.
The median porosity (0.0168) in this area is given by Adamson et al. [56] as a substitute for
specific yield.

2.6. Climate Data and Climate Index

The ERA5-land outputs include the surface flux and variables of the water-energy cy-
cle [58], which are available on the ECMWF (European Centre for Medium-Range Weather
Forecasts). Because of the hightemporal–spatial resolution, long period, and consistency of
the fields produced, the dataset (ERA5-Land) is valuable for researchers to study hydro-
logical processes, weather prediction, and climate mode [59]. The monthly precipitation is
analyzed in this study (0.1◦ × 0.1◦) to study the mechanism of TWS and GWS change.

The major climate pattern in Nicaragua originates from the surrounding oceans.
Among them, ENSO (El Nino–Southern Oscillation) teleconnections between coupled
ocean-atmosphere and land systems lead to extreme events such as drought or flood [55].
ENSO is the main factor causing the TWS changes in Nicaragua [34]. To further analyze
the mass change (TWS and GWS) in Nicaragua, the Niño 3.4 index is adopted to measure

https://dahiti.dgfi.tum.de
https://dahiti.dgfi.tum.de
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ENSO strength (Figure 3), which equals the regional sea surface temperature anomaly
within Niño 3.4 area [60,61].
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3. Methods
3.1. Global Mass Change and Signal Variance

Global mass field ∆h can be derived from SHCs in GRACE/GFO level-2 products as
follows [18]:

∆h(θ, λ) = aρe
3ρw

∑nmax
n=0

2n+1
1+kn

∑n
m=0 Pnm(cos θ)Wnm × [∆Cnmcos(mλ) + ∆Snmsin(mλ)], (1)

where θ and λ are the co-latitude and longitude, respectively. nmax is 60 in this paper. A
denotes the mean Earth radius. ρe and ρw are the Earth’s mean density and freshwater
density, respectively. ∆Cnm and ∆Snm are monthly residual SHCs in each month. Wnm
represents the spatial smooth (Gaussian filter). kn is the load Love numbers. Pnm denotes
the normalized Legendre function of degree n and order m. Moreover, signal variance σn
per degree of the GRACE/GFO mass field reflected signal power in the spherical harmonic
domain as follows:

σn = 2

√
∑n

m=0

{
(Wnm)2 ×

(
∆C2

nm + ∆S2
nm

)}
. (2)

3.2. The PnMl Method and the ELP Filter

There is an irrational correlation between SHCs of the specific degree (odd or even)
for an order m [62]. Some studies used the PnMl (e.g., P4M6) method to remove the noise
for the mass estimation of ice caps [26], mountain glaciers [63], and TWS [64]. For instance,
in the case of the P4M6 method, this algorithm reserves the SHCs of low degrees (0~6). It
subsequently identifies the correlated error in SHCs using a 4th-order polynomial within a
given order from 7 to 50 (nmax − 10). However, after using the P4M6 method, the residual
stripe noise is still significant due to the insufficient decorrelation in the high-degree zone.
To overcome it, we analyze the residual stripe noise in the planar spectrum and suppress
the noise with a planar filter.

The Fourier spectrum Y of a planar data X (i.e., GRACE/GFO global mass field) can
be described as follows [65]:

Y(p, q) = ∑a
j=1 ∑b

k=1 f(j−1)(p−1)
a f(k−1)(q−1)

b × X(j, k). (3)

where fa = e−2πi/a and fb = e−2πi/b. i is the imaginary unit. a and b are the length of
sequences of longitude index j (1 ≤ j ≤ a) and latitude index k (1 ≤ k ≤ b), respectively.
(p, q) denotes the frequency sequence of longitude and latitude direction, respectively
(1 ≤ p ≤ a, 1 ≤ q ≤ b).
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After the Fourier transforms, we can obtain the Fourier spectrum (Figure 4) of the
GRACE/GFO (without or with the P4M6 method) and GLDAS mass field (soil moisture
plus snow water equivalent). After adopting the P4M6 method, the spectrum power
reduces obviously within a special region (longitude frequency within ±0.22). However,
the outside is still evidently strong, as is the spectrum in the raw mass field. Moreover, there
is only weak power outside this region in the GLDAS spectrum. Consequently, we believe
the residual stripe noise is mainly due to this outside region in the spectrum domain.
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To suppress this residual noise, we designed the ELP filter. The workflow of the
ELP filter is shown in Figure 5. The ELP filter is defined in the Fourier spectral domain
as follows:

F(p, q) =
{

1, p < Nc
0, p < Nc

, (4)

where Nc is the specific index in p that represents the cut-off longitude frequency (±0.22
Hz). After filtering Y by F in the spectral domain, we execute an inverse Fourier transform
to YELP and obtain the filtered mass field XELP [65].

YELP = Y · F. (5)

XELP(j, k) =
1
a∑a

j=1
1
b∑b

k=1 f−(j−1)(p−1)
a × f−(k−1)(q−1)

b × YELP(p, q). (6)
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3.3. SNR Index and TCH Method Assessment

Assuming both GRACE/GFO land and ocean errors are approximately at the same
level, Chen et al. [23] defined a land–ocean RMS (root mean square) ratio from GRACE/GFO
estimated mass fields as the SNR index. To reduce the leakage of signals from land, we use
a 300 km buffer zone.

SNR = RMS(Landmass + Err)
RMS(Oceanmass + Err) (7)

Err represents the error. Landmass and Oceanmass are the true mass fields over land
and ocean, respectively. The RMS (Err) keeps between zero and a much larger positive
value (much larger than RMS(Landmass)). Moreover, RMS(Landmass) is expected to be
larger than RMS(Oceanmass) at any error level. Accordingly, we can deduce that SNR falls
between one and RMS(Landmass)

RMS(Oceanmass) . In this work, the SNR index is adopted to assess the mass
field after using the ELP filter.

In addition, the uncertainty of the mass field is estimated via the TCH method. Chen
et al. [66] pointed out that the TCH method provides an alternative technique for assess-
ing the approximate uncertainty of the GRACE/GFO mass field when the true signal is
unknown. The TCH method toolbox is provided by Xu et al. [67,68].

4. Results
4.1. Performance of the ELP Filter

We first investigate the performance of the ELP filter in the spatial domain. The
GRACE/GFO mass fields in April and October 2002 from CSR SHCs products (random
SDCs) are selected to test the four strategies (Figure 6a–h) because water storage annual
cycles achieve a local peak/valley value in April/October each year, which can emphasize
the improvement by a relatively significant SNR.

The original result (Figure 6a,e) covers significant north–south stripe noise. After
only applying the ELP filter, the stripe noise is mainly suppressed in the low latitudes
(Figure 6b,f). After only applying the P4M6 method, the stripe noise in the high-latitude
region can be suppressed (Figure 6c,g). Additionally, the combination of the P4M6 method
and the ELP filter can efficiently suppress noise (Figure 6d,h).

Nonetheless, there are still weak stripes and random noise in the filtered result with
this combination. The 300 km Gaussian filter can further suppress the residual noise in
each strategy (Figure 6i–p). Among the results with the Gaussian filter, the result with the
ELP filter and the P4M6 method is significantly less stripe noise over the ocean, which is
the best (Figure 6l,p).
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We subsequently check the signal variance of the mass field. The original signal
variance (Figure 7) presents an irrational rebound after degree 30, which can be suppressed
via the P4M6 method. However, the signal variance in the high-degree zone (51~60) is still
larger because of the insufficient process in the P4M6 method, which can be addressed with
the ELP filter. Additionally, the application of the 300 km Gaussian filter leads to a more
clean filtered result by further diminishing the noise in the high-degree SHCs.
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In the end, the ELP filter is checked in the time domain. For separating the contribution
of the Gaussian filter, the TWS change in Nicaragua (Figure 8) is computed via the four
strategies without the Gaussian filter. Among the four strategies, the combination of the
ELP filter and the P4M6 method performs better. Its corresponding time series becomes
more seasonal, and the unreal peak signals are removed.
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4.2. Assessment of the ELP Filter

To quantify the uncertainty of the ELP filter, the mass field of each SDC is computed
via four strategies (NONE, P4M6, ELP, and P4M6 + ELP) without Gaussian filters. Sub-
sequently, the mass field with the same strategy from three SDCs is input into the TCH
method, which outputs the uncertainty grid of each SDC in terms of standard deviation
(STD). In the case of the ELP filter, the global gridded STD of three SDCs (Figure 9) presents
an evident diminishment in low latitude (30◦S~30◦N). Since there is residual stripe noise
and random noise in the mass fields with four strategies, a Gaussian filter is necessary.
The uncertainty results (Figure 10) of the above four strategies plus a 300 km Gaussian
filter are also estimated via the TCH method. The application of the Gaussian filter further
diminishes the uncertainty.

Afterward, the global and Nicaragua average STDs in Figures 9 and 10 are computed
(Figure 11). Additionally, the SNR of each SDC is also computed via the previous eight
strategies. The SNR in Figure 11 is the average of each monthly mass field. Moreover, the
SNR and regional STD of the mean mass field (three SDCs) are also estimated in Figure 11.

To separate the contributions of the Gaussian filter, we first focus on the improvement
in the case without any Gaussian filter (Figure 11a–c). All Nicaragua or global STDs are
improved after adopting the ELP filter. Among Nicaragua STDs, the STD of the mean mass
field (Figure 11a) diminishes from 123.26 mm to 69.11 mm after only using the ELP filter.
Moreover, there is a significant increment in the SNR of the mean mass field from 1.67 to
1.8 (Figure 11c) after adopting the ELP filter. Even in the case of the 300 km Gaussian filter
(Figure 11d–f), there are also slight improvements after applying the ELP filter. Furthermore,
the combination of the P4M6 method and the ELP filter achieves better performance than
the single method.
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Figure 10. Global gridded STD of three SDCs (a–c) with 300 km Gaussian filter, (d–f) with the P4M6
method and 300 km Gaussian filter, (g–i) with the ELP filter and 300 km Gaussian filter, and (j–l)
with the P4M6 method plus the ELP filter and 300 km Gaussian filter. (left) from CSR. (middle) from
GFZ. (right) from JPL.
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4.3. Mass Change in Nicaragua

Except for the P4M6 method and the ELP filter, an additional 300 km Gaussian filter is
employed to suppress residual noise in the GRACE/GFO mass field. After that, we adopt
the forward modeling technique to restore the leakage signal. The input of the technique is
the mean filtered mass field from three SDCs in each month.

In Figure 12, the Nicaragua basin TWS is calculated via the cosine latitude weighted
average of the outputs (i.e., the monthly global mass field from the forward modeling
technique), which is named SHCs TWS. We also compute other time series in Nicaragua,
including the TWS from CSR-M, SWS, and precipitation. The long-term mass change in
Nicaragua accords with the annual precipitation. Subsequently, the Nicaragua basin GWS
subtracts the SWS from GRACE/GFO-derived TWS in Nicaragua. The two in situ GWS
observations (MW01 and Hand Dug) are used to validate the basin GWS.

The medium positive correlation (0.44 and 0.5) between two GWS estimations (SHCs
and CSR-M) and in situ observation of the Hand Dug well indicates that GWS estimation
is rational in a way. Compared with the SHCs GWS, the RMS of the difference between the
CSR M GWS and two in situ observations is smaller (Table 1).

Table 1. Pearson correlation coefficients and RMS of the difference between two groundwater
estimations. The correlations are computed at the 95% confidence level. * denotes p > 0.05.

GWS Hand Dug MW01

correlation RMS (mm) correlation RMS (mm)
SHCs 0.5 96.68 0.4 * 56.93

CSR-M 0.44 46.42 0.26 * 52.32
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Figure 12. (a) The mass changes (TWS and SWS), precipitation, and annual precipitation time series
in Nicaragua. (b) The basin GWS estimation and in situ GWS observation. To accomplish the
continuous time series analysis, the missing value in the monthly time series is interpolated via
Singular Spectrum Analysis iterative interpolation.

5. Discussion
5.1. Potential Signal Distortion

A simulation is used to test the signal distortion of the ELP filter. A simulated true
mass field consists of GLDAS soil moisture and snow water storage over land and the CSR
M mass field over Antarctica. To keep the Earth’s mass balanced, the ocean mass must be
uniform and equal to the negative land mass. The simulated true mass field (Figure 13a) is
transformed into a noisy-free observation (Figure 13b) with a truncated degree and orders
up to 60 (termed DO/60). The filtered observation (Figure 13c) is filtered by the ELP filter
from the simulated observation.

After using the ELP filter in the simulated observation, the signal loss (Figure 13d) is
minor. The maximum and minimum values in Figure 13d are 13.94 mm and −13.94 mm,
respectively. The RMS of the time series difference (i.e., signal loss due to the ELP filter)
in Nicaragua (Figure 13e) is about 2.84 mm, which is 3.3% and 2.7% of observation (84.68
mm) and true (105.93 mm) separately. Consequently, the ELP filter removes the real signal
slightly, which is acceptable.
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Figure 13. (a) A simulated true mass field in April 2002; (b) simulated noise-free observation with
a truncated degree and order up to 60 (i.e., DO/60), (c) simulated observation via the ELP filter,
(d) difference between b and c (i.e., (b,c)), and (e) Nicaragua TWS change time series, same as the
method in sub-figures (a–d). Notice that the range of the graph has been narrowed down in d to
show small differences.

5.2. Signal Leakage in Different Truncation

Different truncations lead to different strengths of signal leakage in the basin signal.
To investigate the influence in Nicaragua of different truncations, the noisy-free observa-
tion with DO/60 and DO/96 is derived from the simulated true mass field (Figure 14a).
A 300 km Gaussian filter is used to smooth the two kinds of observations. After that,
the forward modeling technique is adopted to restore the signal leakage in observation
(Figure 14b).
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Figure 14. The TWS time series in Nicaragua from simulation. (a) comparison between the truncated
and smooth time series. (b) comparison between the recovered and the true time series.FM denotes
the recovered result with the forward modeling technique. G300 denotes the smooth result with the
300 km Gaussian filter. DO/60 and DO/96 denote the observation with a truncated degree and order
up to 60 and 96, respectively.

The RMS of the leakage signal (i.e., the difference between true and smooth time
series) from DO/60 and DO/96 with a 300 km Gaussian is 57.86 mm and 57.51 mm,
respectively. After using the forward modeling technique, the RMS of the difference
between the two recovered signals is 0.8 mm. Although different truncations lead to
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different strengths of signal leakage, the recovered signals are almost close. Moreover, the
RMS of the unrecovered component (i.e., the difference between the true and recovered
signals) is about 6.0–6.5 mm (5.7% of the RMS of the true signal). Consequently, we
confirm that leakage in Nicaragua can be addressed with the forward modeling technique,
which concentrates the leakage signal into the constrained region by iteration with an
acceptable loss.

5.3. Analysis of Long-Term Periodic Signal

The previous result shows that the long-term mass change in Nicaragua accords with
the annual precipitation. We here investigate the connection between the Nicaragua mass
change and ENSO via wavelet coherent analysis (Figure 15). There is a significant negative
resonance with a period of 2~4 years between precipitation and ENSO, which is similar to
the TWS-ENSO resonance both in SHCs and CSR-M. Additionally, SWS-ENSO negative
resonance also presents a relatively weak intensity. These negative resonances are consistent
with the previous study that ENSO regulates long-term precipitation to influence TWS and
SWS changes [33,34,69–73]. However, only the SHCs GWS shows a similar weak resonance
(insignificant) with ENSO before 2012, rather than the CSR M GWS. We deduce that CSR M
may influence the long-term variation since there are relatively strong constraints on time
information in the regularization.
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(c), SHCs GWS (d), CSR-M GWS (e), plus precipitation (f). The solid red lines denote the edge
of the influence cone. The 5% significance level against red noise is exhibited as thick black lines.
The relative phase relationship is denoted by black arrows with directions. The right/left direction
corresponds to the in-phase/antiphase. The arrow pointing straight down means the time series
(mass changes or precipitation) is leading ENSO by 90◦.

We can find its suppression of CSR M in the aliasing signal (~3.74-year). The influence
of aliasing error is great in the coastal area (e.g., Nicaragua coast), which is caused by the
imperfect data processing in GRACE/GFO data [74]. Two basin GWS estimations show a
~3.8-year periodic signal (Figure 16), which should be the aliasing signal rather than the real
hydrological signal because ENSO is without this significant 3.8-year periodic signal. The
amplitude of this ~3.8-year periodic signal in CSR M GWS (~14 mm) is two times smaller
than that of SHCs GWS (~30 mm). This difference may indicate that CSR M achieves a
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relatively intensive constraint in time information, and the forward modeling technique in
the SHCs inversion may move the residual ocean signal to the coast.
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5.4. Limitation and Outlook

Compared with the DO/60 (~333 km) truncation, the truncation of DO/96 (~208 km)
simultaneously leads to a high numerical spatial resolution and potentially involves more
potential high-frequency error from high-degree SHCs in the results. This residual noise
may lead to unpredictable noise accumulation in the iteration of the forward modeling
technique [75]. However, our concern is with the basin average signal rather than the spatial
detail variation in the mass field. Consequently, we here use the SHCs product with DO/60
instead of DO/96, although the former has a lower spatial resolution in numerical terms.

This work also uses CSR M products, but its resolution is not necessarily higher
than SHCs product with a truncation of DO/60. Compared with the SHCs product, the
regularization for the CSR M product appears to have a high spatial resolution (~200
km) [47]. However, indeed, the resolution of these GRACE/GFO products is still limited
by GRACE’s fundamental spatial resolution limitation, which is roughly equivalent to
Gaussian smoothing of a 300 km radius.

Compared to the GRACE practical resolution (300 km), Nicaragua appears small in
area, but its spatial span (11◦N–14◦N, 83◦W–88◦W) and signal strength (annual amplitude
~100 mm) is sufficient for the study of regional average mass change. It can be seen from the
results (Figure 12) that the TWS changes of the two products are close to the SWS (the major
component of the TWS), and both capture the regional quality change signal of Nicaragua.

To validate the two GRACE/GFO estimations, we try to indirectly analyze the TWS
changes by comparing the basin GWS estimation with the in situ GWS observation. How-
ever, since there is limited in situ GWS observation and multiple uncertain sources from
signal separation in GWS estimation, the mass change in Nicaragua cannot be validated ef-
fectively. In future work, we hope to obtain more independent measurements across longer
periods and regular observations to compare and analyze the mass change in Nicaragua.

6. Conclusions

Here, we put forward the ELP filter dedicated to further removing stripe noise. This
filter was developed based on the Fourier spectral domain. The real and simulated mass
fields are used to investigate the ELP filter. Additionally, the TCH method and SNR index
are adopted to assess the ELP filter. The following can be concluded:

1. The ELP filter mainly performs in the tropical region and slightly removes the true
signal in Nicaragua, which is acceptable;

2. The ELP filter mainly removes the noise in the SHCs from degrees 51 to 60;
3. Unreal peaks in mass change time series can be further suppressed;
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4. In the case of the mean mass field, the Nicaragua regional STD diminishes from 123.26
mm (original) to 69.11 mm (the ELP filter), and the SNR improves from 1.67 to 1.8.

Subsequently, aiming to estimate the Nicaragua regional mass changes, the ELP filter,
the P4M6 method, a 300 Gaussian filter, and the forward modeling technique are adopted
to process the mean mass field from three SDCs. Finally, the GRACE/GFO-derived TWS
and GWS are combined with other hydrological observations to analyze and verify the
mass changes. Correspondingly, the major conclusions are divided into two aspects:

1. There is a negative resonance between TWS and ENSO with a period of 2~4 years in
Nicaragua, which is linked with the interannual precipitation;

2. The ~3.8-year periodic signal in Nicaragua basin GWS is significant on account of
aliasing error, which is an imperfect pre-process in GRACE/GFO level-2 data.

In this work, we know that GRACE/GFO products have the potential to reveal changes
in the mass change in Nicaragua, but the inversion and verification of mass changes are still
challenging. Our study can provide a reference for investigating mass change in Nicaragua.
Additionally, we expect new gravity satellite missions to be able to observe the Earth’s
gravity field with higher resolution and accuracy.
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