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Abstract: Integrated development of urban agglomeration is emerging as the main pattern of China’s
new modernization. Yet, atmospheric pollution continues to have an adverse impact on public health,
challenging efforts to promote coordinated regional development. To better understand the interac-
tion between atmospheric pollution-related health burdens and urbanization, this study employed
deep learning technology to obtain high-resolution satellite-derived PM2.5 concentration data across
the Yangtze River Delta (YRD) region. Using the Global Exposure Mortality Model (GEMM), this
study estimated premature mortality resulting from long-term exposure to PM2.5 and innovatively
incorporated exposure factors to improve accuracy. Results indicated that while PM2.5 concentrations
decreased by 16.13% from 2015 to 2019, the region still experienced 239,000 premature mortalities
in 2019, with notable disparities among cities of different economic levels and sizes. Furthermore,
it was found through correlation analysis that residential density and GDP per capita were highly
associated with premature mortality. In conclusion, these findings highlight the continuing challenge
of achieving equitable effectiveness of joint air pollution control across regions in the context of
integrated development of urban agglomeration.

Keywords: deep learning; air pollution; premature mortality; Yangtze River Delta; integration
development; urban agglomeration

1. Introduction

Public health concerns have garnered considerable attention on a global scale, par-
ticularly in step with unprecedented urbanization and economic development [1,2]. A
new annual standard (5 µg/m3) for PM2.5 (particles with an aerodynamic diameter equal
to or less than 2.5 µm) was proposed by the World Health Organization (WHO, Geneva,
Switzerland) on 22 September 2021 [3], since emerging evidence demonstrated its strong
association with increased morbidity and mortality [4–7]. PM2.5 are a prominent compo-
nent of air pollution, damaging public health and impeding the well-being of the Chinese
populace. Although significant progress has been made in curbing PM2.5 concentrations in
China, levels are still far above 5 µg/m3 in most parts of the country, thereby jeopardizing
human health.

China has been building comprehensive and influential regional collaboration mech-
anisms for joint prevention and control of atmospheric pollution since 2010, with the

Remote Sens. 2023, 15, 2770. https://doi.org/10.3390/rs15112770 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15112770
https://doi.org/10.3390/rs15112770
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0006-0507-6559
https://doi.org/10.3390/rs15112770
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15112770?type=check_update&version=1


Remote Sens. 2023, 15, 2770 2 of 14

Beijing–Tianjin–Hebei region (BTH), the Yangtze River Delta (YRD), and the Pearl River
Delta (PRD) listed as key regions for improving air quality. In 2013, China released the
“Action Plan for the Prevention and Control of Air Pollution” (referred to as “Atmospheric
Ten”), proposing a target of reducing fine particulate matter concentrations in the BTH,
YRD, and PRD regions by 25%, 20%, and 15%, respectively, and clearly stipulating Joint
Prevention and Control of Atmospheric Pollution (JPCAP) as an effective approach to ad-
dressing regional environmental issues [8]. Following deeper research on air pollution, the
JPCAP policy was revised and updated in 2015 to reflect the changing regional conditions
of integrated development and regional characteristics of air pollution [9].

The implementation of the JPCAP policy has given rise to a complex interplay be-
tween the imperatives of economic development and environmental protection, as well as
regional cooperation. This is because different regions are at varying stages of urban devel-
opment and exhibit varying levels of connectivity between them [10]. However, existing
literature has inadequately examined the impact of jointly controlling air pollution on both
environmental and economic outcomes with a disproportionate focus on the PM2.5 levels
in China’s megacities [11]. Furthermore, PM2.5-related premature mortality was mainly
discussed at the national scale or regional scale, thus potentially overlooking the public
health burden faced by lower-level administrative areas in regions undergoing integration
development, where priority and beneficiary areas are dominant [1,12,13]. In light of this,
more refined and precise data is required to remedy the research gap.

Satellite station hybrid models were widely used to map PM2.5 concentrations at
various spatiotemporal scales [14]. Unlike in situ PM2.5 measurements, this method lever-
ages the high accuracy of ground data and continuous spatial coverage of remote sensing
data [15,16]. In previous studies, satellite-derived aerosol optical depth (AOD) products
were proven to estimate PM2.5 concentrations effectively [17]. Many statistical regres-
sion models, such as simple linear regression models, multiple linear regression models,
and geographically weighted regression (GWR) models have been employed to retrieve
high-quality AOD products [16,18–20]. Nonetheless, these methods may oversimplify
the complex non-linear AOD-PM2.5 relationships and may also suffer from missing val-
ues [21,22]. Thus, non-linear models are increasingly being explored to build a robust
correlation between satellite-derived AOD and PM2.5, such as generalized additive models
(GAM) and random forest models. Unfortunately, these models were likely to be limited
by insufficient AOD data, existing emission uncertainties, or incomplete descriptions of
chemical transformations. In conclusion, a more efficient and appropriate research method
is needed to address the aforementioned challenges.

To estimate the health burden, it is crucial to consider the concentration response
mechanism and human activity patterns. Concentration response functions (CRFs) based
on epidemiological studies have been widely applied to estimate mortality from air pol-
lution [3]. However, most CRFs adopted in previous studies were derived from cohort
studies in North America and Europe, where the annual PM2.5 concentrations were rela-
tively low [12,23]. To better reflect highly polluted regions in China, the newly developed
Global Exposure Mortality Model (GEMM) based on global exposure range was intro-
duced [24]. In addition, human activity patterns exhibit spatial heterogeneity and should
be considered when estimating premature mortality [13,25]. Previous studies have shown
that neglecting exposure factors may lead to overestimation of the total number of pre-
mature mortalities [12]. Therefore, in this study, provincial-level respiratory rates and
time spent outdoors were incorporated into the GEMM model to more accurately estimate
premature mortality caused by PM2.5.

Accordingly, this study took the YRD region as the study area and investigated the
spatiotemporal evolution of public health burden of exposure to long-term PM2.5 in the
context of regional integration development and the JPCAP policy. To evaluate PM2.5-
related exposure more reliably, this study first applied an interpretable self-adaptive deep
neural network (SADNN) to obtain high-resolution satellite-derived PM2.5 concentrations.
The GEMM model was then combined with exposure factors and age-grouped population
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data to estimate premature mortality caused by PM2.5. The spatiotemporal variations in
PM2.5-related premature mortality at the city level in the YRD region from 2015 to 2019 were
analyzed, and potential correlations between health risks induced by long-term exposure
to PM2.5 and urban development features were explored. Findings from this study will
support assessing the effectiveness of JPCAP policy in the YRD region from 2015 to 2019
and guide the optimization of future regional joint governance of atmospheric pollution
problems. Ultimately, these results will promote the integrated development of urban
agglomerations and facilitate high-quality modernization.

2. Study Area

The YRD region is an alluvial plain situated in the lower Yangtze River basin and
proximate to the Yellow Sea and the East China Sea (Figure 1). The whole region covers a
vast area of 3.58 × 106 km2, including Shanghai Municipality, the central city of integrated
development, and Zhejiang, Jiangsu, and Anhui Provinces. This region, which constitutes
merely 4% of the total land area of China, is inhabited by around 1/6 of the population
and generates 1/4 of the nation’s total economic output. Despite being set up as one
of the “key regions” conducting the Joint Prevention and Control Action Plan (JPCAP)
policy to address point source pollution and regional pollution, the YRD region continues
to face challenges in terms of environmental quality, with annual PM2.5 concentrations
exceeding WHO guidelines (5 µg/m3) and occasional heavy pollution events. In light of its
development trajectory, it is imperative to evaluate the impact of environmental factors on
public health within the YRD region, with a particular emphasis on promoting high-quality
integration development.
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Figure 1. (a) Location of the Yangtze River Delta; (b) Digital elevation map of the YRD region;
(c) Urban distribution of the YRD region.

3. Materials and Methods

This study developed a comprehensive approach to estimate PM2.5 concentrations and
evaluate their health burden on the public in the YRD region from 2015 to 2019 (Figure 2).
The technical framework combined an interpretable self-adaptive deep neural network
(SADNN) and GEMM NCD + LRI with exposure factors and age-grouped population data
to accurately calculate premature mortality caused by PM2.5. To investigate population
aggregation and air pollution levels in different regions, we conducted a Bivariate Local
Moran Index analysis which identifies areas with dense populations simultaneous with
severe PM2.5 pollution. Then correlation analysis was utilized to find out the potential
relationship between PM2.5 pollution and urban characteristics in the context of YRD
integration development.
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3.1. PM2.5 Concentration Mapping

In this study, we utilized a validated modeling approach for estimating PM2.5 con-
centrations, specifically an interpretable self-adaptive deep neural network (SADNN),
which was published previously in our research [21]. The SADNN model was employed
to estimate annual PM2.5 concentrations in the YRD region at a spatial resolution of 0.01◦

from 2015 to 2019. This SADNN model, which was developed from traditional deep neural
networks (DNN), has the capacity to self-adaptively model and correct the complicated non-
linear AOD-PM2.5 relationships by innovatively introducing the attention module after the
input layer. Essentially, this attention module adopts a gating activation function to classify
the input predictors by different importance weights and additionally analyze the interac-
tions of predictors, and is thus able to improve the interpretability of the modeling results.
Five-fold sample-based cross-validation results showed a high estimation accuracy of the
SADNN model, with a coefficient of determination value of 0.86. The specific structure and
detailed procedures of the SADNN model are included in the Supplementary Materials.

The input predictors in this study mainly consist of in situ PM2.5, AOD products and
auxiliary data. The in situ PM2.5 data was deployed as the dependent variable for modeling
with the time spanning from January 2015 to December 2019. The AOD products were
retrieved from MODIS Terra and Aqua satellites, and the data gaps were filled by means of
random forest (RF). According to our previous research [21], the correlation coefficient of
the filled AOD data was 0.89 with a low RMSE value of 0.24. Except for AOD products and
PM2.5 monitoring data, data used as potential variables to map PM2.5 concentrations also
included Normalized Difference Vegetation Index (NDVI) data, Digital Elevation Model
(DEM) data, and ERA-5 hourly meteorological data. ERA-5 is the fifth generation European
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis of global climate and
weather for the past 4 to 7 decades [25]. The following were selected as predictors in this
study: 2-meter temperature (T2M), 10-meter U wind component (WU10M), 10-meter V
wind component (WV10M), boundary layer height (BLH), surface pressure (SP), and rela-
tive humidity (RH). All data were resampled to a spatial resolution of 0.01◦ by employing
bi-linear interpolation. Table S1 summarizes the details of the datasets used in the SADNN
model and validation of the results can be found in the Supplementary Materials. Detailed
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analysis of spatial–temporal variations of PM2.5 concentrations in the YRD region from
2015 to 2019 is included in the Supplementary Materials (Figures S1–S3).

3.2. Hot Spot Analysis

We utilized a Bivariate Local Moran Index (Iab
i ) in conjunction with significance anal-

ysis and cluster analysis to investigate the spatial association between air pollution and
population density. Those pixels with high z scores and small p values were defined as
hotspots showing spatial agglomeration features. Bivariate Local Moran Index analysis
was completed on GeoDa software, a widely used platform for spatial data analysis [26].
The formula is calculated as follows:

Iab
i = xa

i

n

∑
j=1,j 6=i

wijxb
i (1)

Z(Iab
i ) =

Iab
i − E

(
Iab
i

)
√

Var
(

Iab
i

) (2)

E
(

Iab
i

)
= −

∑n
j=1,j 6=i wij

n− 1
(3)

Var
(

Iab
i

)
= E

(
Iab
i

2)− E
(

Iab
i

)2
(4)

n =
n

∑
i=1

n

∑
j 6=1

wij (5)

where xa
i and xb

i represent the mean standardized (z-scores) values of variable a and variable
b, respectively, at the ith and jth pixels, and wij is the spatial weight value of 1 or 0 depending
on the distance between pixel i and j and was refined through multiple experiments to
identify the most pronounced spatial aggregation features within a 10 km radius.

3.3. Public Health Burden Analysis
3.3.1. Demographic Data Correction

The demographic data in the YRD region from 2015 to 2019 was obtained from
WorldPop (https://www.worldpop.org, accessed on 15 January 2022), which provides
high-resolution geospatial data on population distributions, demographic, and dynamics.
In this study, the datasets of population containing age and sex structures at a spatial
resolution of 3 arc (approximately 100 m at the equator) were collected. To ensure accuracy,
we also utilized statistics from the China Population and Employment Statistical Yearbook
(https://navi.cnki.net/knavi/yearbooks/YZGRL/detail?uniplatform=NZKPT, accessed
on 12 January 2022) to correct the population distribution data. Details of the correction
process are explained in the Supplementary Materials.

3.3.2. Exposure Factors

As air pollution exposure involves complicated interactions including both air quality and
individual-level factors such as daily physical activity, we introduced respiratory rates and time
spent outdoors into the GEMM model based on our previous study [12]. These parameters
were drawn from the first Chinese Environment Exposure-Related Human Activity Patterns
Survey (CEERHAPS), with provincial-level statistics used in this study [27,28].

3.3.3. Premature Mortality Estimation

Since GEMM was built relying on long-term exposure to PM2.5 and focused on non-
communicable diseases (NCDs) and lower respiratory infections (LRIs), the model was

https://www.worldpop.org
https://navi.cnki.net/knavi/yearbooks/YZGRL/detail?uniplatform=NZKPT
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denoted as GEMM NCD + LRI in this study. First, premature mortality attributed to
long-term exposure to PM2.5 for the total population group (aged ≥ 25 years) in grid j
was calculated:

Mj
(
Cj
)
= Pj × B×AF

(
Cj
)

(6)

where Cj is the concentration in grid j; Pj represents the total population amount in grid j;
B represents the baseline mortality incidence rates of NCD+LRI for a population group,
which were selected from the GBD data on the Global Health Data Exchange (GHDx)
website (http://ghdx.healthdata.org/gbd-results-tool, accessed on 28 October 2021); and
AF
(
Cj
)

is the fraction of NCD + LRI attributed to long term PM2.5 exposure at a given
concentration level Cj, which was obtained from the Supplementary Materials.

In the second stage, exposure factors including respiratory rates and time spent
outdoors were introduced to correct premature mortality at the provincial level. The
weighted coefficient Ej was determined by the following equation:

Ej =
Lj

Lave
×
(

tj + β×
(
24− tj

)
tave + β×

(
24− tj

)) (7)

where Lj is the respiratory rate for a given population in the grid j and Lave is the national
average value of the respiratory rates across mainland China; similarly, tj is the time spent
outdoors for the given population in the grid j, and tave is the national average value of
time spent outdoors; and β represents the ratio of indoor PM2.5 (in residential buildings) to
outdoor PM2.5. These parameters have been validated, and more details are explained in
the study by Zou et al., (2019) in China [12].

Finally, the estimation of premature mortality was calculated as:

Mortalityj = M
j
× Ej (8)

where Mortalityj represents final premature mortality estimation in the grid j for a popula-
tion group.

4. Results
4.1. Hot Spot Analysis of PM2.5 Concentrations and Population Density

High-density populations exposed to air pollution tend to bear the greatest public
health burden. Figure 3 illustrates the spatial inconsistency analysis between PM2.5 concen-
trations and population density with a 10-km spatial resolution in the YRD region from
2015 to 2019. The results were classified into four distinct types based on the aggrega-
tion features.

In general, the spatial patterns of the four types showed distinct regional characteris-
tics. The high-high type, characterized by significantly high population density and annual
PM2.5 concentrations, was observed in the northern YRD region, represented by Shang-
hai Municipality and its surrounding areas. It also included Hangzhou, the provincial
capital of Zhejiang Province, as well as some cities in the east of Jiangsu Province, such
as Nanjing, Wuxi, Nantong, Yancheng, Lianyungang, and cities such as Hefei, Bozhou,
Fuyang, Huainan, Tongling, and Wuhu in Anhui Province. The low-low type, where both
population density and annual PM2.5 concentrations were relatively low, was centered in
the southwestern mountainous and hilly areas of the YRD region, featuring high forest
coverage and less human activity. The low-high type was primarily found in coastal areas,
mainly in Zhejiang Province, including Ningbo, Taizhou, and Wenzhou, where annual
PM2.5 concentrations were relatively low while population density was distinctively high.
On the other hand, the high-low type was mainly observed in Chuzhou City, which is
situated on the border between Anhui Province and Jiangsu Province and is one of the core
cities in the integrated development of the YRD region.

http://ghdx.healthdata.org/gbd-results-tool
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Figure 3. PM2.5-population autocorrelation clustering diagram in the Yangtze River Delta from 2015
to 2019: (a) 2015; (b) 2016; (c) 2017; (d) 2018; (e) 2019. The high–high type is characterized by both
high population density and high annual PM2.5 concentrations. The low–low type is characterized by
both low population density and annual PM2.5 concentrations. The low–high type features regions
where annual PM2.5 concentrations are relatively low but population density is significantly high.
The high–low type represents regions where annual PM2.5 concentrations are distinctively high but
population density is relatively low. Gray squares on the graph show areas of significant change.

Notably, during the study period, only Shanghai and its surrounding areas changed
from the high-high type to the low-high type as the grey square in Figure 3a,e demonstrates,
indicating that annual PM2.5 concentrations were not accompanied by an increase in popu-
lation density. In contrast, other types remained stable. This suggests that the public health
burden associated with air pollution has been effectively alleviated in the metropolitan
areas under the JPCAP, while the lower-level administrative cities have not experienced
significant changes.

Overall, the findings highlight the regional characteristics of the spatial inconsistency
between population density and PM2.5 concentrations in the YRD region and provide
valuable insights for policymakers to develop targeted strategies to mitigate the adverse
effects of air pollution on public health.

4.2. Provincial and City Level Variations of Premature Mortality

Utilizing annual PM2.5 concentrations, population, baseline mortality rates, and the
GEMM NCD + LRI model, we estimated premature mortality in the YRD region from 2015
to 2019. In 2015, the total PM2.5-related premature mortality was estimated to be 242,859
(95% CI: 190,520; 290,782), and this figure decreased to 239,257 (95% CI: 186,481; 288,278)
by 2019, representing a reduction of 1.48%. There were obvious variations among the
different provinces. Figure 4 illustrates PM2.5-related premature mortality and premature
mortality per 100,000 inhabitants at the provincial level, depicted by the bar chart and
folding line chart, respectively. Specifically, in 2019, Jiangsu Province and Anhui Province
had much higher rates of premature mortality per 100,000 inhabitants, estimated at 172 (95%
CI: 134; 207) and 171 (95% CI: 134; 205) respectively, followed by Shanghai Municipality
and Zhejiang Province, with estimates of 152 (95% CI: 117; 182) and 139 (95% CI: 108;
168), respectively. Over the past five years, Shanghai Municipality showed the most
notable sharp downward trend in premature mortality per 100,000 inhabitants, which
corresponds to the results of the hot spot analysis demonstrating a reduction of 29.79% in
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PM2.5 concentrations. However, Anhui Province had the smallest reduction in premature
mortality per 100,000 inhabitants, even with an increasing trend in total premature mortality.
Regarding interannual variability, premature mortality per 100,000 inhabitants in Shanghai
Municipality and Zhejiang Province continued to decrease, whereas the rest of the provinces
experienced fluctuations, particularly in 2017 in Anhui Province. This trend is consistent
with the rebound of PM2.5 concentrations observed in 2017.
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Figure 4. PM2.5-related premature mortality at the provincial level from 2015 to 2019. The bar chart
represents premature mortality, while the folding line chart with black triangles represents premature
mortality per 100,000 inhabitants.

Figure 5 displays the spatiotemporal changes in premature mortality per 100,000 in-
habitants attributed to PM2.5 at the city level from 2015 to 2019 with the YRD region. Most
cities in the region exhibited a decreasing trend, except Fuyang, Anqing, and Chuzhou,
which are in the western region of Anhui Province. The largest reduction in mitigating the
health burden associated with air pollution was observed in Shanghai and its surrounding
areas, including Suzhou, Jiaxing, Wuxi, and Nantong. Moreover, the capitals of the other
three provinces, as well as the eastern coastal regions, demonstrated relatively effective
mitigation, forming a “mitigation corridor” connected by four central cities, thereby illus-
trating the radiation effect of a central developed city on the surrounding areas. The overall
pattern suggests a decreasing progression from coastal cities to inland areas in reducing pre-
mature mortality per 100,000 inhabitants. However, in 2019 the top five cities with the most
extensive premature mortality were Shanghai Municipality, Suzhou, Nanjing, Hangzhou,
and Hefei, including all the capital cities, as shown in Figure S5. This underscores that
the capital cities of each province in the YRD region are still at a higher risk of premature
mortality attributed to PM2.5 pollution due to their high population density and advanced
economy, despite the achieved mitigation effectiveness. These findings highlight the need
for tailored interventions for different types of regions. Continued efforts are required
to reduce PM2.5 concentrations in capital cities and their surrounding areas due to their
large population size. Moreover, it is worthwhile to continue playing a radiating role in
developed areas. Above all, targeted policies and attention should be directed towards the
areas under development that may face a deteriorating trend of health burden exposed to
air pollution.
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4.3. Potential Influence of Urban Development on Premature Mortality

Urban agglomerations are composed of cities of different natures, types, and scales.
To better understand the effectiveness of the JPCAP policy and identify potential dis-
crepancies that need to be considered in the context of YRD integration development,
this section explores the correlation between PM2.5 pollution and urban characteristics
among cities in the YRD region. Using data from the China Urban Statistical Yearbook
(https://navi.cnki.net/knavi/yearbooks/YZGCA/detail, accessed on 11 May 2022), sev-
eral urban development metrics, including GDP per capita (GDPpc), residential density
(RD), urban greening rate (URG), and share of secondary industry in GDP (SSIG), were
selected. Collinearity analysis was conducted, and the Variance Inflation Factor (VIF) was
used to check the collinearity between the selected factors, which was found to be low
(VIF = 2). Pearson correlation coefficients of these factors in forty cities of the YRD region
were calculated for each year from 2015 to 2019 (Table 1). The results show that residential
density had the highest correlation with premature mortality density at a significance level
of p < 0.01. GDP per capita was also positively correlated with mortality, and the correlation
coefficient increased over time. In contrast, a significant negative correlation was found
between the share of secondary industry in GDP and mortality. As for the urban greening
rate, there was a significant negative correlation (p < 0.05) with mortality in 2017 and 2019.
Moreover, the correlation between urban greening rate and mortality increased during the
study period.

Table 1. The correlation coefficient between potential factors and mortality density from 2015 to 2019
(Pearson correlation).

GDP per Capita Residential Density Urban Greening Rate Secondary Industry

2015 0.494 ** 0.787 ** −0.268 −0.504 **
2016 0.538 ** 0.789 ** −0.249 −0.496 **
2017 0.564 ** 0.808 ** −0.363 * −0.502 **
2018 0.552 ** 0.815 ** −0.295 −0.391 *
2019 0.560 ** 0.813 ** −0.366 * −0.476 **

** Significant correlation at 0.01 level (bilateral); * Significant correlation at 0.05 level (bilateral).

https://navi.cnki.net/knavi/yearbooks/YZGCA/detail
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These findings suggest that urban development metrics can significantly influence
premature mortality attributed to PM2.5 pollution in the YRD region. Higher levels of
residential density and GDP per capita were associated with an increased risk of prema-
ture mortality. Therefore, it is essential for economically developed metropolitan areas
and densely populated regions to prioritize environmental health issues. However, the
Pearson correlation coefficient of the SSIG, which is known as a significant pollution source
though [29], was observed to be significantly negative. One plausible explanation for
this result is that despite having a more developed tertiary industry, premature mortality
in metropolises were still higher than those observed in smaller cities due to the larger
population size. In light of the development characteristics of the correlation between
SSIG and mortality, it can be inferred that cities in industrial development tended to suffer
higher mortality as the share of secondary industry in GDP increased. Thus, policymakers
must prioritize controlling air pollution from the source and developing a higher-quality
economic mode for relatively backward areas. In summary, these findings have important
implications for urban planning and public health policy in the YRD region and underscore
the need for a comprehensive approach to address the adverse health impacts of urban
development in the YRD region and beyond.

5. Discussion
5.1. Evaluation of the Integrated Development of the Urban Agglomeration

The regional atmospheric environment is a vital part of the integration development
process due to the transfer of pollutants between adjacent cities [30]. The results of the study
suggest that the integrated development of urban agglomerations is crucial for managing
the regionality and spillover of environmental problems. China’s establishment of a joint
prevention and control mechanism for air pollution has been effective in reducing PM2.5
concentrations in the Yangtze River Delta region since 2015. However, the changes in PM2.5
concentrations varied significantly at the sub-regional level, with the largest reductions
occurring in Shanghai Municipality due to changes in the industrial structure and layout of
the YRD region. According to the Yangtze River Economic Belt Economic Development
Report, by 2019, the output value of the tertiary sector in Shanghai Municipality was 45.7%
higher than that of secondary industry, with the secondary sector accounting for the least
in the YRD region. This shift towards the tertiary sector in Shanghai Municipality has led
to a significant improvement in air quality and a reduction in public health burden.

Despite the overall success of the joint prevention and control mechanism, regional
disparities still exist. The hot spot analysis revealed that the conflict between humans
and the environment had been alleviated first in the metropolis, while non-priority cities,
particularly in the northern part of the YRD region, bore a more severe public health burden
due to exposure to air pollution. This disparity can be attributed to the integration policy,
with Anhui and northern Jiangsu Provinces taking over many traditional industries phased
out from Shanghai Municipality and southern Jiangsu Province. Specifically, Su-Huai
urban agglomeration (Figure 6), as a particular policy area of Northern Anhui Province to
undertake industrial transfer, has rapidly developed due to the advantages of traffic location
conditions and original industrial base. Thus, PM2.5 concentrations were likely to increase
with the acceleration of socioeconomic development. Similarly, Xuzhou Metropolitan Area
actively undertook industrial transfer in the YRD region, becoming the primary economic
growth pole. Its traditional heavy chemical industries, heavy machinery, traffic, and
other industrial clusters have developed in the past ten years, contributing to the primary
production of air pollution. Therefore, more efforts are needed to implement coordinated
clean air policies and to ensure their effectiveness in all regions under integration.

In conclusion, the study highlights the importance of coordinated efforts in managing
environmental problems in urban agglomerations, particularly with regards to air pollution.
The successful implementation of joint prevention and control mechanisms can lead to
significant improvements in air quality and public health. However, the regional disparities
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in the effectiveness of these policies underscore the need for a more comprehensive and
tailored approach to environmental management in different regions under integration.
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5.2. New Periods of the Integrated Development of Urban Agglomeration

However, it is worth noting that the level of PM2.5 concentrations all over the YRD
region was still far from the WHO-recommended AQG levels (5 µg/m3) after adopting
measures such as industrial transfer and clean transfer heating projects, construction site
shutdowns, diesel vehicle bans. This highlights the need for new strategies to address
air pollution in the context of integrated development. At present, Chinese ecological
civilization construction has entered a critical period with the aim of achieving carbon
neutrality. The YRD region, as one of the top three urban agglomerations, plays an ex-
emplary role in this process. Studies suggest that by 2030, China could reach a PM2.5 air
quality annual standard of 35 µg/m3 and reduce PM2.5 exposure of most of the population
to below 10 µg/m3 by 2060 in a carbon-neutral scenario [31]. Thus, investigating the
relationships between air pollution and carbon emissions, and their coupling relationship
with economic and social energy, is an urgent need. By understanding the mechanisms of
synergistic reduction of pollution and carbon, policymakers can develop effective strategies
for improving air quality and promoting sustainable regional socioeconomic development
and environmental protection. Measures such as promoting renewable energy, implement-
ing low-carbon transportation, and encouraging green building construction should be
considered in the future integrated development of the YRD region.

5.3. Comparison with Similar Studies

In terms of the technical framework of this study, the incorporation of exposure-
related human activity patterns and the reallocation of exposure factors to the GEMM
NCD + LRI model resulted in theoretically more accurate estimates of premature mortality
than previous studies. Previous PM2.5-related results estimated by different methods
were compared, as illustrated in Figure 7 [12,23,32,33]. It was found that previous studies,
such as the one conducted by Maji KJ. (2020), which barely used the GEMM NCD + LRI
model, tended to overestimate premature mortality. On the other hand, compared to
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the results estimated by the IER model, the mortality estimated by GEMM was much
higher. This can be attributed to the fact that GEMM employed new cohort studies,
including those conducted in China, and hazard ratio predictions increased with PM2.5
concentration, showing a near-linear association at higher concentrations [24,33]. Moreover,
satellite-based PM2.5 mapping combined with the DNN model, taking advantages of high-
resolution capabilities, could accurately capture the spatial variations of air pollution,
thereby providing reliable data support for analysis.
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5.4. Limitations and Future Improvements

There are some limitations and uncertainties in this study. Firstly, the composition of air
pollution is complex and dynamic, and the current approach using satellite remote sensing
in combination with chemical transport models and ground-based measurements needs
to be further developed to better capture pollution levels, factors, and their synthesized
impact. Therefore, future research should integrate carbon emissions and other pollution
factors into a comprehensive model to serve the goal of synergistic reduction of pollution
and carbon emissions, and to improve public health outcomes. Secondly, the adverse
impact of short-term exposure to PM2.5 was investigated by previous research and should
also be considered in future studies [34]. Moreover, while this study analyzed several
urban development factors and their potential impact on health risks exposed to PM2.5,
more potential factors covering industry, energy, transport, and land structure, should be
analyzed using more sophisticated methods to better understand the mechanisms and
provide evidence-informed recommendations for governments and policymakers.

6. Conclusions

In summary, PM2.5 concentrations have decreased significantly in the YRD region
from 2015 to 2019 under the implementation of the JPCAP policy, while the effectiveness of
the joint policy at the sub-regional level was demonstrated with a distinct geographical
characteristic. Developed cities, such as Shanghai Municipality, took the lead in lightening
the health burden of exposure to PM2.5 while some relatively backward cities, particu-
larly in northern Anhui and Jiangsu Provinces, still faced significant risks. The conflict
between humans and the environment has been alleviated primarily in metropolises, such
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as Shanghai–Suzhou Metropolitan Area, while non-priority cities become more prominent
with the expansion of urban areas and economic development. Therefore, more attention
should be paid to non-priority cities, such as by adopting differentiated and focused inte-
gration development measures, green economic models, and low-carbon energy structures
under the integrated development of the YRD region. Findings in this study provided valu-
able insights for the YRD region to achieve green, shared, and harmonious development
during the stage of high-quality modernization.
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in the Yangtze River Delta from 2015 to 2019, Figure S7: Structure of the SADNN model and the
attention module, Table S1: Detail description of the datasets used in SADNN model, Table S2:
Baseline mortality incidence rates of NCD+LRI for 25 plus population group, Table S3: Provincial-
level statistics of air pollution related exposure factors in this study, Table S4: Parameters for GEMM
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