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Abstract: The Gravity Recovery and Climate Experiment (GRACE) satellites have been widely used
to estimate groundwater storage (GWS) changes, yet their uncertainties related to the multi-source
datasets used are rarely investigated. This study focuses on quantifying the uncertainties of GRACE
GWS estimates in mainland China during 2003–2015, by generating a total of 3456 solutions from the
combinations of multiple GRACE products and auxiliary datasets. The Bayesian model averaging
(BMA) approach is used to derive the optimal estimates of GWS changes under an uncertainty
framework. Ten river basins are further identified to analyze the estimated annual GWS trends
and uncertainty magnitudes. On average, our results show that the BMA-estimated annual GWS
trend in mainland China is −1.93 mm/yr, whereas its uncertainty reaches 4.50 mm/yr. Albeit the
estimated annual GWS trends and uncertainties vary across river basins, we found that the high
uncertainties of annual GWS trends are tied to the large differences between multiple GRACE data
and soil moisture products used in the GWS solutions. These findings highlight the importance of
paying more attention to the existence of multi-source uncertainties when using GRACE data to
estimate GWS changes.

Keywords: GRACE; groundwater storage changes; uncertainty; Bayesian model averaging

1. Introduction

Groundwater plays an indispensable role in human society and in natural systems [1].
Unreasonable use of groundwater resources has led to serious groundwater storage (GWS)
depletion in many regions of the world, thereby threatening the safety and security of
human water supplies [2–5]. It is thus essential to gain insight into the changing regularity
of GWS so as to promote the sustainable use of groundwater resources. Traditional mon-
itoring of GWS changes often relies on well observations. Even with high accuracy and
reliability, it is difficult to obtain information on large-scale GWS changes due to the limited
number of monitoring wells and high maintenance costs [6]. The Gravity Recovery and
Climate Experiment (GRACE) satellites, launched in 2002, are capable of detecting monthly
terrestrial water storage (TWS) changes by measuring the time-variable gravity fields of
the Earth. Further deducting the changes of non-GWS components (e.g., surface water
storage (SWS), soil moisture storage (SMS), snow water equivalent (SWE), canopy water
storage (CWS), glacier water equivalent (GWE), etc.) from GRACE TWS, regional GWS
changes can be calculated accordingly [7,8]. Up to now, the approach of GRACE-based TWS
decomposition has been widely used to investigate large-scale GWS changes in various
regions, such as the northern India [9], the Central Valley of California [10], and the North
China Plain [11].

The accuracy and reliability of GRACE-based GWS estimation, however, are directly
related to a range of errors [12]. Specifically, the raw GRACE Level-2 data products are
released in a format of spherical harmonic (SH) solution. Due to the limited measurement
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accuracy of satellite instruments and the degree/order truncation (usually 60 or 90) of
SH coefficients, GRACE data contain inherent measurement errors [13]. The north–south
striping errors are also tied in GRACE TWS inversion because unwanted correlation exists
in odd and even order SH coefficients, respectively [14]. When a low-pass filtering is used
to suppress the noise of SH coefficients, it could induce the mutual signal leakages between
grid cells, that is, the leakage error [15]. In further analysis of multiple GRACE and ancillary
datasets with inconsistent spatiotemporal resolutions, rescaling the datasets to reconcile
their resolutions, if required, could lead to the resampling errors [16,17]. Moreover, existing
studies that focused on quantifying the annual trends or periodic changes of TWS and
GWS, may vary in the estimated results owning to the different fitting approaches used,
thereby introducing the fitting errors [18–20]. Currently, some correction approaches (e.g.,
the decorrelation filtering, scale factor and the forward modeling) have been developed to
effectively suppress the errors of north–south striping and signal leakage in GRACE TWS
inversion. The later released mass concentration (Mascon) algorithm can also well derive
TWS changes from GRACE data by correcting the relevant errors [21]. There are three main
approaches to performing Mascon solutions. The first is to use a priori information from
geophysical models and remote sensing observations to constrain the solution within a
Bayesian framework, represented by the JPL Mascon solution [22]. The second is based
on finite order SH coefficients truncated by the spacing velocity or spacing acceleration,
represented by the GSFC Mascon solution [23]. The third is the calculation on an equal-area
geodesic grid by defining each mass tile as a finite truncated SH solutions without using
external geophysical models or data, represented by the CSR Mascon solution [24].

Another source of errors in further estimating GWS with GRACE data is the uncer-
tainty contribution of the non-GWS component data used in TWS decomposition. As the
large-scale changes of SWS and SMS in most regions are difficult to obtain from site obser-
vations, previous studies related to GRACE GWS estimation tend to use the simulated data
of non-GWS components from model simulations. One thing to note is that the outputs of
different models for the same hydrological variable may differ due to inconsistent driving
data, biased parameter values, and imperfect physical structure used in the modelling.
This further leads to varying GWS estimates when different model outputs are used for
GRACE TWS decomposition [25]. Many previous studies have confirmed the existence of
multi-source errors regarding non-GWS components and their larger impacts on GRACE
GWS estimation [26,27]. For example, by using the Global Land Data Assimilation System
(GLDAS) and the WaterGAP Global Hydrology Model (WGHM) to estimate non-GWS com-
ponent changes, respectively, Jin and Feng [28] confirmed that the maximum difference of
annual GWS trends estimated by GRACE can reach 1.66 mm/yr in Asia, Europe, and North
America, with the opposite estimates in South America. Yin et al. [29] likewise documented
that the choice of different model data had a remarkable influence on the GWS estimation
in Australia, that is, the annual GWS trend estimated by GRACE-GLDAS combination is
1.8 times larger than that estimated by GRACE-WGHM combination. Given the impor-
tance of multi-source errors regarding non-GWS components and their non-negligibility
in GRACE TWS decomposition, this study intends to perform the GRACE-based GWS
estimation on the mainland of China. The commonly used model data in existing GRACE
GWS studies are collected to quantify the multi-source uncertainties of non-GWS compo-
nents, and eventually reassess the GWS changes of mainland China under an uncertainty
framework [25,30,31].

Previous studies of GRACE GWS estimation in mainland China mainly focused
on analyzing the spatiotemporal patterns and potential drivers of GWS changes [32–34]
by using models to estimate non-GWS components, they often choose to calculate the
average of multiple model outputs or validate with site observations for optimal selection,
with the purpose of enhancing the credibility of GRACE GWS estimation. For example,
Feng et al. [35] chose to decompose GRACE TWS by deducting the averaged non-GWS
component changes simulated from four GLDAS models and estimated the GWS changes
in three main aquifers of China. Zhang et al. [36] compared the SMS changes simulated



Remote Sens. 2023, 15, 2744 3 of 18

by four GLDAS models with site observations and finally selected the best-fitting one to
derive GWS changes from GRACE data in North China Plain. Huang et al. [37] adopted
well-observed groundwater level data to validate the GRACE-estimated GWS changes and
then analyzed the groundwater budget in karst area of southwest China. Zhang et al. [38]
used the simulated GWS changes from well-established hydrological model as a validation
of GRACE GWS estimates in Haihe River basin of China and confirmed the feasibility of
satellite gravity technology in estimating GWS changes. Yi et al. [39] estimated the GWS
changes in 10 major basins of China from 2003 to 2014 and likewise chose to average the
outputs of non-GWS components from GLDAS models in GRACE TWS decomposition.
Although these studies have attempted to estimate regional GWS changes using GRACE
data throughout China, few or no studies have provided a holistic analysis on the multi-
source uncertainties caused by different modelling data of non-GWS components used in
GRACE GWS estimates. GRACE does have the capacity to provide a “big picture” view
of large-scale GWS changes, but the existence of multi-source errors regarding non-GWS
components may influence the robustness of GRACE-estimated GWS changes [40].

In this study, six GRACE datasets (three Mascon solutions and three SH solutions),
three land surface model products (CLSM, VIC, and NOAH models from GLDAS-2.1), two
global hydrological model products (WGHM v2.2d and PCR-GLOBWB 2), one reanalysis
data product (ERA5-land), and two glacier datasets (degree-day glacier dataset and global
glacier mass loss dataset), are collected to obtain a total of 3456 possible estimates of GWS
changes in mainland China. By using the statistical metrics to quantify the differences
of TWS and non-GWS component changes estimated by multi-source datasets, their un-
certainty contributions to GRACE-estimated GWS changes are analyzed subsequently.
Moreover, the Bayesian model averaging (BMA) ensemble approach is used to investigate
the annual trends and posteriori information of GWS changes at the basin scale. Compared
to previous studies, this study highlights the impacts of different model data choices on
GRACE GWS estimates and reassesses the GWS changes in mainland China, which is
expected to provide a scientific basis for further optimization of national groundwater
resources management.

2. Study Area and Datasets
2.1. Study Area

China has a vast territory with diverse topography and climate, resulting in a com-
plex hydrometeorological regimes over land. In terms of the topography and identified
watersheds, the mainland of China can be divided into 10 major river basins (Figure 1):
Songhua River basin (SRB), Liao River basin (LRB), Haihe River basin (HRB), Yellow River
basin (YRB), Huaihe River basin (HHB), Yangtze River basin (YZRB), Pearl River basin
(PRB), Southeast Rivers basin (SEB), Southwest Rivers basin (SWB), and Continental asin
(CB) [41]. The eastern and southern coastal river basins receive abundant precipitation
recharge with annual amounts above 1200 mm, whereas the northwest and interior basins
are relatively dry with annual amounts below 200 mm. A few western river basins (e.g.,
SWB and CB) can receive water recharge from melting mountain glaciers. Similar to the
pattern of precipitation, actual evapotranspiration in 10 river basins decreases gradually
from southeast to northwest [42]. The uneven spatial distribution of hydrometeorological
features has resulted in abundant water resources (accounting for ~80% of the national
total) in southern China but scarce (accounting for ~20%) in northern China [43].

Groundwater is a vital source of human water use in mainland China. More than
100 km3 of groundwater resources are extracted annually throughout the nation, primarily
for agricultural irrigation and residential water consumption. Long-term overexploitation
of groundwater resources has led to a significant decline of groundwater level in some
river basins [44]. For instance, the GWS in plain area of HRB was found to show a
significantly decreasing trend in a rate of −32.0~−17.0 mm/yr during 2003–2018 [11].
Some localized areas in SRB, LRB, and YRB also experienced notable GWS depletion,
which was confirmed to be related to the groundwater-fed agricultural irrigation and
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anthropogenic revegetation [35,45]. The excessive GWS depletion has caused a series
of environmental problems (e.g., river blanking, land subsidence, and soil salinization),
posing potential threats to economic development and food security. Hence, monitoring
and understanding the changes of GWS in each basin is of great importance to identify
areas where groundwater is over-exploited and aid in the development of sustainable water
management strategies in China.
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2.2. Datasets
2.2.1. GRACE Data

GRACE satellites, a joint mission of the National Aeronautics and Space Agency and
the German Aerospace Center, were launched on 17 March 2002. Their major mission is
to monitor the mass redistribution of the Earth’s surface by remotely sensing the time-
variable gravity field of the Earth [46]. Changes in TWS induce mass redistribution and,
therefore, can be estimated from GRACE data after removing atmospheric, ocean, and other
time-variable gravity information. Initially, three official organizations, that is, Center for
Space Research (CSR), GeoForschungs Zentrum (GFZ), and the Jet Propulsion Laboratory
(JPL), are responsible for processing GRACE data into 0, 1A, 1B, and 2 levels to meet the
requirements of various end-users [8]. To facilitate the investigation of TWS changes, the
release of GRACE Tellus Level-3 data becomes a more convenient choice to provide the
global monthly TWS changes with a spatial resolution of 1◦ × 1◦. Another type of GRACE
Level-3 product is the Mascon solution that claims to require no further error correction.
Compared to SH processing, GRACE Mascon data show lower uncertainty and higher field
observation correlation [24,47]. Currently, three types of Mascon products are generally
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used in existing studies, that is, CSR RL06 Mascon, JPL RL06 Mascon, and GSFC RL06
Mascon [48]. The spatial resolution of CSR RL06 Mascon data is 0.25◦ × 0.25◦, whereas
the resolutions of JPL and GSFC RL06 Mascon data are both 0.5◦ × 0.5◦. In this study,
multiple estimates of 2003–2015 monthly TWS changes in mainland China are achieved
from three GRACE Tellus Level-3 products released by CSR, JPL, and GFZ, as well as
three GRACE Mascon products released by CSR, JPL, and GSFC. To unify the spatial
resolution of TWS data for subsequent analysis, we resampled all GRACE TWS data to
1◦ × 1◦ resolution using the nearest neighbor interpolation algorithm. Doing so may alter
the spectral properties of raw TWS data to some extent, but is an essential process for
performing subsequent TWS decomposition and uncertainty analysis.

2.2.2. Global Models and Reanalysis Data

The outputs of two global hydrological models (i.e., PCR-GLOBWB 2 [49] and
WGHM [50]), three land surface models (i.e., CLSM-F2.5 [51], NOAH-3.6 [52], and VIC-
4.1.2 [53] from GLDAS-2.1), and the ERA5-land [54] reanalysis product, are used to estimate
monthly non-GWS component changes in mainland China during 2003–2015. A summary
of the spatial resolution of each model and reanalysis product, as well as their estimated
non-GWS components is listed in Table 1. Given the inconsistency of spatial resolution
between datasets, all non-GWS data estimated by global models and reanalysis products
are uniformly rescaled to 1◦ × 1◦ grid cells by using the nearest neighbor interpolation
algorithm, similar to the processing of GRACE TWS data. In general, the global hydro-
logical models quantify the human utilization of groundwater and surface water, as well
as the water flow and storage, to assess the change of terrestrial water cycle across the
globe [55,56]. The land surface models aim to generate the best land surface simulations
by assimilating satellite and ground observation data through advanced land surface
modeling and data assimilation techniques [57]. They are currently applied to investigate
climate variability and hydrological cycles worldwide [58,59]. ERA5-Land is a reanalysis
dataset to describe the evolution of water and energy cycles over land from 1950 to the
present. Compared to previous ERA5, ERA5-Land combines model data with more ground
observations, eventually forming a more complete and consistent dataset at the global
scale [60,61].

Table 1. List of non-groundwater components provided by global hydrological models, land surface
models, and reanalysis data product.

Data Spatial Resolution SWS SMS SWE CWS

WGHM 0.5◦ × 0.5◦
√ √ √ √

PCR-GLOBWB 2 0.5◦ × 0.5◦
√ √ √

CLSM 1◦ × 1◦
√ √ √

NOAH 1◦ × 1◦
√ √ √

VIC 1◦ × 1◦
√ √ √

ERA5-land 0.1◦ × 0.1◦
√ √

2.2.3. Glacier Datasets

Asia’s mountain glaciers have been proven to be rapidly melting and shrinking under
climate warming, while contributing to regional TWS changes [62]. Here, two glacier
datasets, one from the degree-day model glacier dataset [63] and the other from the global
glacier mass loss dataset at the beginning of the 21st century [64], are used to estimate
the monthly GWE changes in mainland China during 2003–2015. The degree-day model
is a function of precipitation and temperature that describes the changes of glacier mass
balance with altitude by simulating the hydrological processes of precipitation, snow
accumulation, and snow and ice melting and refreezing [65]. This model has been widely
used for estimating GWE changes globally [66,67]. More details regarding the forcing data
and parameter assignment of the degree-day model we used can be found in Table S1
of the Supplementary Materials. Another dataset of global glacier mass loss uses high-



Remote Sens. 2023, 15, 2744 6 of 18

precision digital elevation models to estimate global glacier mass balance. Its reliability
and uncertainty estimates can be accurate to the scale of individual glaciers on a global
scale. The raw datasets of glacier mass changes are represented as mass unit at 0.1◦ × 0.1◦

spatial resolutions. We further aggregate the raw datasets in a summation mode to the
spatial resolution of 1◦ × 1◦ and then translate into GWE changes in a unit of equivalent
water height by combining with the areas of grid cells.

3. Methods
3.1. GRACE-Based Estimation of GWS Changes

Theoretically, TWS comprises SWS, SMS, SWE, CWS, GWE, and GWS [68]. Obtaining
the GWS is as simple as subtracting other water storage components from the TWS via the
following formula:

GWSA = TWSA − SWSA − SMSA − SWEA − CWSA − GWEA (1)

where letter A represents the anomaly values that are calculated by subtracting the long-
term mean of the corresponding TWS or individual storage component data from 2003 to
2015. Given that the data of six TWSA, two SWSA, six SMSA, six SWEA, four CWSA, and
two GWEA, are used in this study, a total of 3456 (=6 × 2 × 6 × 6 × 4 × 2) GWSA solutions
are obtained by their combined operation.

3.2. Performance Metrics for Quantifying the Uncertainties of GWS Estimation

To further quantify the discrepancies of TWSA and its component estimates from multi-
source datasets, as well as their uncertainty contributions to GWS estimates, we employed
three performance metrics, namely, standard deviation (SD), coefficient of variation (CV),
and component contribution ratio (CCR):

SD =

√√√√ 1
N − 1

N

∑
n=1

(xn −
–
x)2 (2)

CV =
|–x|
SDi
× 100% (3)

CCR =
SDi

SDtotal
× 100% (4)

Note that, as the purpose of this study is to analyze the uncertainty contribution of
different data choice on the estimation of annual GWSA trend, xn and

–
x hereby are one of

the annual trends and their arithmetic mean for the total number of N estimates of TWS
or individual storage component, respectively. SDtotal is the total SD value equaling to
the sum of SDi values for the ith set including TWSA and all components. Simply put,
SD is an indicator to measure how large the uncertainties in estimated annual trends of
TWSA or individual storage components. CV measures the variability of estimated annual
trends relative to their arithmetic mean value. As GWSA is linearly related to TWSA and
non-GWSA components in Equation (1), the SD value of GWSA is not equal to the sum of
the SD values of TWSA and non-GWSA, but rather a square root relationship. Hence CCR
here reflects the normalized contribution ratios of multi-source uncertainties quantified by
SD values to the estimated annual GWSA trends.

3.3. Merging GWS Changes Based on BMA

After obtaining GWSA ensemble solutions, the BMA approach is used to adjust the
weights of each GWSA member with the aim of obtaining a statistically optimal estimation.
The reference model is used as an estimate of the prior probability in BMA modelling by
empirically selecting an estimated GWSA with relatively small uncertainty, that is, the
GWSA estimation by subtracting the WGHM-simulated non-GWSA components (including
SWSA, SMSA, SWEA, and CWSA) and the averaged GWEA of two glacier datasets from
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the TWSA estimation of GRACE CSR mascon data. We set the 2003–2011 timespan as the
training period for BMA model calibration and the 2012–2015 timespan as the validation
period for BMA merging. The weight ratios of GWSA ensemble are adjusted at each grid
cell in the study area. Based on the derived weights, the optimal GWSA solution is obtained
by multi-source fusing all GWSA solutions from 2003 to 2015. We calculate the annul trends
of all GWSA solutions and BMA estimation using least squares harmonic analysis and
further investigate their magnitudes and uncertainties in combination with the probability
density function (PDF) statistics across 10 river basins. The specific steps of BMA-merging
are described as follows [69]:

Step 1 assumes that y is the ensemble of 3456 GWSA solutions. f = f 1, · · · , fk repre-
sents the estimated data of k members (in this study, k = 3456). yT is the GWSA reference
model. The optimal solution of GWSA ensemble is unknown. Hence, transforming the
probability distribution p( fk|yT) to a normal distribution, with the mean as a simple linear
function ai + bi fk of the original model data (variance is expressed as σ2

k ), as shown in
Equation (5):

y| f1, · · · , fk, yT ∼ N(ai + bi fk, σ2
k ) (5)

where ai and bi are the bias correction terms obtained through linear regression.
Step 2 is to obtain the weights of candidate models by a probability-weighted average,

as shown in the following Equation (6):

p[y|( f1, · · · , fk, yT)] =
k

∑
k=1

p( fk|yT)pk(y|( fk, yT)) (6)

The posterior probability p( fk|yT) of estimated values for each GWSA solution in
Equation (6) is the weight ratio ωk of k-th GWSA member. pk(y|( fk, yT)) is the conditional
probability density function associated with the GWSA solution fk. p( fk) is the prior
probability of optimal estimation that can be taken as a uniform distribution in the absence
of specific information, that is p( fk) = 1/k.

Step 3 is to calculate the expected value of multi-source BMA merging, as shown in
Equation (7):

E(y|( f1, · · · , fk, yT)) =
k

∑
k=1

p( fk|yT)·E[g(y| fk, σ2
k )] =

k

∑
k=1

ωk fk (7)

where g(y| fk, σ2
k ) represents a normal distribution regarding fk and σ2

k . In this study, ωk and
σ2

k are calculated by the Markov Chain Monte Carlo algorithm based on its advantage in
applying to samples with arbitrary probability distributions [70]. Since the initial probability
distributions of GWSA ensemble are different, the state transfer matrix of the Markov
chain model can be made independent of the initial state probability distribution after
convergence, so that the probability distributions of the final state can converge to the same
stable probability distribution.

4. Results and Discussion
4.1. Uncertainty Estimation of TWS and Non-GWS Component Changes

Figure 2 uses SD values to show the differences of the annual trends of TWSA and
its non-GWSA components (including SWSA, SMSA, CWSA, SWEA, GWEA) estimated
by multiple datasets in mainland China during 2003–2015. The spatially averaged SD
values, arithmetic mean and CV values of the annual trends for individual water storages
at the basin scales are summarized in Table 1. The spatial distributions of annual trends
for TWSA and non-GWSA components estimated by individual datasets are shown in
Supplementary Figures S1–S6 in the Supplementary Materials.
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As shown in Figure 2a, the notable discrepancies of annual TWSA trend estimates are
found among six GRACE datasets, especially in regions with large annual trend magnitudes,
such as the central–eastern, northwestern, and southwestern regions of China.

This is mainly because the Mascon algorithm can better constrain the leakage errors
in regions with large TWS changes compared to the SH solutions [24,47,71], such that the
magnitude of annual TWSA trend estimated by Mascon data is relatively larger in these
regions than the estimated results of SH products (Supplementary Figure S1) [72]. At
the basin scale (Table 1), the uncertainty of estimated annual TWSA trends is highest in
SWB with an SD value of 5.18 mm/yr and lowest in PRB with an SD of only 1.55 mm/yr.
The estimated annual TWSA trends in other river basins exhibit moderate uncertainties,
with SD values varying in the range of 1.72–4.46 mm/yr. However, it is noteworthy that
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if comparing the percentage of SD value to the mean annual trend (i.e., the CV value
showing the level of dispersion around the mean), the river basin where uncertainty has
the greatest impact on the estimation of annual TWSA trend is SRB (CV = 188%). The
mean annual trend of TWSA in SRB is only 0.91 mm/yr, whereas the SD value is as high as
1.72 mm/yr (Table 1). This indicates that the difference of estimated annual TWSA trends
using different GRACE data is objectively existing in SRB. A similar case can be found in
CB and YZRB where CV values reach 126% and 85%, respectively, likewise suggesting
the need for caution when using GRACE data to estimate TWS changes in these river
basins [73–76].

Conversely, the CV value in HRB is only 33%, which is mainly because the significant
decreasing trend of TWS (−13.36 mm/yr) and the relatively consistent estimates of GRACE
data with the SD value equal to 4.46 mm/yr (Figure S1). The LRB, YRB, and PRB all have
the similar pattern that the SD values account for less than half of the mean annual TWSA
trends (Table 2).

Table 2. Spatial mean statistics of multi-source estimated annual water storage trends as well as their
SD and CV values in 10 river basins of mainland China.

Basin
ID

TWSA SWSA GWEA SWEA CWSA a SMSA

Trend
(mm/yr)

SD
(mm/yr)

CV
(%)

Trend
(mm/yr)

SD
(mm/yr)

CV
(%)

Trend
(mm/yr)

SD
(mm/yr)

CV
(%)

Trend
(mm/yr)

SD
(mm/yr)

CV
(%)

Trend
(10−3

mm/yr)

SD
(10−3

mm/yr)

CV
(%)

Trend
(mm/yr)

SD
(mm/yr)

CV
(%)

SRB 0.91 1.72 188 0.51 0.49 96 — — — 0.45 0.24 53 0.77 0.89 115 1.33 1.92 145
LRB −6.09 2.21 36 0.13 0.56 442 — — — 0.20 0.15 76 0.08 0.86 1100 0.06 2.37 4037
HRB −13.36 4.46 33 0.38 0.77 201 — — — 0.01 0.06 996 −0.30 0.64 210 −2.19 3.29 150
YRB −6.01 2.48 41 2.66 2.86 107 −0.01 0.01 106 0.02 0.10 560 −0.15 1.00 676 −1.24 2.50 201
HHB −7.86 3.76 48 −3.37 2.65 79 — — — −0.01 0.02 242 −1.00 1.16 113 −4.41 4.70 106
YZRB 2.78 2.36 85 0.71 1.05 149 −0.06 0.07 108 −0.01 0.11 786 0.86 1.43 165 −0.69 1.85 268
PRB 3.63 1.55 43 0.38 0.37 97 — — — 0.01 0.01 124 −0.30 1.00 331 1.44 1.56 108
SEB 4.31 1.95 45 2.08 1.67 80 — — — −0.01 0.02 119 0.36 1.00 277 2.63 0.79 30
SWB −9.60 5.18 54 0.03 0.24 818 −0.63 0.65 103 −0.65 1.80 275 −0.44 1.23 280 −2.23 2.74 123
CB −2.31 2.91 126 0.55 0.72 130 −0.08 0.16 210 0.03 0.37 1161 0.09 0.78 830 −0.48 2.27 475

a Statistics for annual CWSA trends and SD values are presented as scientific counts due to their small magnitude.

Differences are observed in the annual trends of non-GWS components estimated
by multi-source datasets (Figure 2b–f). The SD values estimated for annual SWSA trends
are larger in some scattered grid cells located in central and eastern China, with values
ranging from 1.05 to 2.86 mm/yr. The underlying cause for the large SD values is that the
number of reservoirs and lakes considered by different models in simulating SWS changes
is not exactly the same. For example, the PCR-GLOBWB simulates SWS changes of Miyun
Reservoir (116.88◦E, 40.47◦N) and Xidayang Reservoir (114.83◦E, 38.84◦N), but they are
not simulated by the WGHM, leading to significant differences in estimating SWSA for
the correspinding grid cells. Due to the largest number of reservoirs/lakes simulated by
different models in YRB and the largest variability of SWS in this region, the largest SD
value (2.86 mm/yr) of estimated annual SWSA trends occurs in YRB, corresponding to
the mean annual trend of 2.66 mm/yr and the CV value of 107% (Table 1). Furthermore,
even if all models simulate SWS changes for the same reservoir, the simulated results
may differ due to the differences of model structure and parameterization schemes. Take
the Three Gorges Reservoir (111.08◦E, 30.84◦N) as an example, the SWS simulated by
WGHM increased in an rate of 4.9 mm/yr, while that simulated by PCR-GLOBWB showed
a larger increasing trend (21.1 mm/yr) during 2003–2015 (Figure S2). Such a discrepancy
somewhat reflects the shortcoming and inconsistency of current global hydrological models
in simulating SWS changes [49,50,77].

GWEA and SWEA show a similar pattern to SWSA, with larger SD values of annual
trends appearing in some scattered grid cells (Figure 2c,d). For GWEA, the annual trends
estimated by global glacier dataset reveal the loss of glacier mass in CB and SWB, whereas
those estimated by degree-day model show the slight increasing trends of glacier mass
in these areas (Figure S4). This may be related to the uncertainties of parameter values in
degree-day model [64,78–81]. Among 10 basins, the SD values of multi-source datasets in
estimating annual GWEA and SWEA trends are both highest in SWB, with SD values of 0.65
and 1.08 mm/yr, corresponding to CV values of 103% and 275%, respectively. However,
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the estimated annual SWEA and GWEA trends in CB have higher CV values, 1161% and
210%, respectively, suggesting the requirement of carefully selecting models to assess SWE
and GWE changes in CB. Further, as the magnitude of annual CWSA trends estimated
by all models is so small (−1.1 × 10−3 to 7.8 × 10−4 mm/yr nationally), the magnitude
of further calculated SD values is also small (6.4 × 10−4 to 1.4 × 10−3 mm/yr nationally)
(Figure 2e). Nevertheless, the comparisons of annual CWSA estimates among individual
models still reveal relatively similar patterns simulated by CLSM and VIC, but with signifi-
cant differences compared to the simulations of NOAH and WGHM (Figure S5). NOAH
clearly reflects decreasing and increasing trends of CWSA in southern and northeastern
China, respectively, whereas the estimation of WGHM is not clear in spatial variability and
even shows some randomness among grid cells (Figure S5).

The SD values regarding annual SMSA trends are significantly larger in central, west-
ern, and northwestern China (Figure 2f), mainly attributed to the overestimation of annual
SMSA trends by ERA5-land (Figure S6). Due to the imperfect parameterization scheme
of soil freeze–thaw processes, ERA5-land has difficulty in capturing the increased soil
moisture caused by snowmelt in winter and early spring in the regions of northern HHB
and HRB, thereby resulting in an overestimation of the decreasing trends of SMSA [82,83].
Compared to other models, ERA5-land simulates permafrost changes other than liquid
soil water in SWB [84]. This may partly explain the relatively high trend of increasing
SMS estimated by ERA5-land in this region compared to other models (Figure S6). On the
basis of the statistics in Table 2, the largest dispersion of annual SMSA trends estimated
by multi-source datasets appears in HHB, with mean annual trend and SD value of −4.41
and 4.70 mm/yr, respectively. The CV value in this river basin is equal to 106%. Other
river basins all have lower uncertainty in multi-source estimated annual SMSA trends than
HHB, with mean annual SMSA trends ranging from −2.23 to 2.63 mm/yr and SD values
from 0.79 to 3.29 mm/yr (Table 2). Except for SEB, the CV values of annual SMSA trends
are higher than the mean annual SMSA trends in the remaining river basins, indicating
that the selection of which model to estimate SMS changes in these regions should be
carefully considered. Such a case is particularly evident in LRB where multiple models
estimate positive or negative annual SMSA trends but with arithmetic means so close to
zero (0.06 mm/yr), thereby resulting in large SD and CV values of 2.37 mm/yr and 4037%,
respectively (Figure 2f and Table 2).

4.2. Estimation of Multi-Source Uncertainties in GRACE-Based GWS Changes

Figure 3 depicts the SD values of estimated annual GWSA trends from 3456 combina-
tions in mainland China during 2003–2015, and the basin-scale statistics of multi-source
uncertainty contributions of TWSA and non-GWSA components to annual GWSA trend
estimates. As seen, the uncertainties of annual GWSA trends expressed by SD values do
not correspond well to the arithmetic mean of annual GWSA trends in terms of the spatial
pattern (Figure S7), due to the complicated influences of uncertainty contributions from
TWSA and non-GWSA components. The regions with significantly large uncertainties
are mainly located in the central and western regions of mainland China, indicating the
existence of high uncertainties in estimating GWS changes from GRACE data (Figure 3).
The uncertainties of estimated annual GWSA trends are less than 5 mm/yr in the vast
majority of grid cells. However, there are some scattered grid cells with extremely high
uncertainties in annual GWSA trend estimation, which is directly related to the large uncer-
tainties of annual trend estimates for SWSA, GWEA, and SWEA (Figure 2b–d). To sum up,
the spatially mean uncertainty of annual GWSA trend estimated by multi-source datasets
across mainland China is 4.50 mm/yr and the uncertainties of 10 river basins ranges from
2.41 mm/yr for PRB to 8.41 mm/yr for HHB (Figure 3).
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Figure 3. Spatial distribution of SD values for annual GWSA trend estimates and the multi-source
uncertainty contribution of annual GWSA trends from TWSA and non-GWSA components in main-
land China. The percentage contribution of TWSA and non-GWSA components to the uncertainty of
GWSA in each of the 10 river basins and mainland China is separately counted and illustrated in
a ring chart. CWSA is not shown in the ring chart as its contribution to the uncertainty of annual
GWSA trend estimate is too small (≤1%).

The further quantification of uncertainty contribution percentage shows that the
annual trend uncertainties of TWSA and SMSA contributes most to the uncertainty of
GWSA in 8 out of 10 river basins (Figure 3). Their averaged CCR values for uncertainty
contribution reach 42% and 36%, respectively, and the total contribution of both is close
to 80% in 8 river basins. Moreover, SWSA has largest contribution to the uncertainty of
annual GWSA trend estimation in YRB with a CCR value of 36%, followed by TWSA and
SMSA with both CCR values of 31%. SWSA ranks 2nd in SEB following the uncertainty
contribution of TWSA to GWSA (CCR values of 44% for TWSA and 38% for SWSA). The
uncertainty contribution of SWSA to GWSA is equally significant in HHB, ranking 3rd
with a CCR value of 24%. Except in SWB and CB, the CCR values of SWEA and GWEA in
the remaining river basins are relatively low (average values of 4% and 1%, respectively),
and can be almost ignored. In SWB, apart from the primary uncertainty contribution from
TWSA (CCR = 49%) and SMSA (CCR = 26%), the total contribution of SWEA and GWEA
to the uncertainty of annual GWSA trend estimates exceeds 20%. The level of uncertainty
contribution from SWEA (CCR = 6%) and GWEA (CCR = 2%) in CB is lower than in SWB,
but can also account for a 10th of the total CCR in this region. These indicate that the
impacts of SWEA and GWEA uncertainties on GWSA estimation is objective presence and
cannot be ignored in SWB and CB [35,85]. On average in the entire mainland China, the
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uncertainty contribution of TWSA to GWSA estimation is always the largest, followed by
SMSA and SWSA, which correspond to the CCR values of 42%, 36%, and 17%, respectively
(Figure 3).

4.3. BMA-Based Estimation of GWS Changes under Uncertainty Framework

Figure 4 shows the spatial pattern of 2003–2015 annual GWSA trends in mainland
China estimated by merging multi-source annual trend solutions using BMA algorithm,
The PDF fitting of estimated annual GWSA trends and the optimal estimation of BMA-
merging in each of the 10 river basins are plotted together. As seen, the annual GWSA
trends in north, northwest, and southwest mainland China decrease significantly, whereas
those in central and west mainland China increase obviously. The annual trends of GWSA
in other regions are moderate relatively (Figure 4). Such a spatial pattern of GWS changes is
quite consistent with the findings of Yi et al. [39] and Yin et al. [33]. However, if comparing
the PDF-fittings of ensembles for mean annual GWSA trends in each basin, two curve
types are found to confirm the existence of uncertainties in multisource-based estimation of
GWS changes in mainland China. For the first type, the fitted PDF curves of annual GWSA
trends for CB, SRB, YZRB, PRB, and SEB show only one peak feature with steep kurtosis,
suggesting that the multisource-estimated annual GWSA trends in these river basins are in
relatively good agreement with low uncertainty. There is a 95% probability that the annual
GWSA trends for CB and SRB are in the −4 to 1 mm/yr interval, a 95% probability of being
in the 0 to 5 mm/yr interval for YZRB and PRB, and an 95% probability of being in the −4
to 1 mm/yr interval for SEB due to a slightly lower concentration of ensemble estimation
(Figure 4). The PDF curves of annual GWSA trends in SWB and LRB also exhibit one-peak
feature but with slightly flat kurtosis, which means the larger uncertainty of estimating
GWS changes in these river basins than aforementioned basins. The estimated annual
GWSA trend of SWB has a 95% probability of being in a −14 to 0 mm/yr interval, whereas
that in YRB has a 95% probability of being in the value interval of −12 to 0 mm/yr.

Regarding the second type of PDF-fitting, the fitted curves of annual GWSA trends
show a multi-peak feature, that is, double-peaks in YRB, and triple-peaks in HRB and
SEB (Figure 4). It is noted that more peak features mean flatter kurtoses and larger value
intervals with the same conditional probability for equal sample sizes in this study. YRB has
slightly flat peaks with a relatively long interval between two peaks, suggesting the large
uncertainty in estimating annual GWSA trend in this area. The distribution of estimated
annual GWSA trends in YRB is quite dispersed with a 95% probability of occurrence in
the range of −14 to −1 mm/yr. The triple-peaks of PDF curves appearing in HRB and
HHB imply the larger uncertainty of GWSA estimation. For HRB, the highest peak value
corresponds to an annual GWSA trend of about −12 mm/yr, but there is a 95% probability
that it will vary from −20 to −4 mm/yr. For HHB, however, the highest peak corresponds
to an annual GWSA trend value of about −3 mm/yr, but a 95% probability of varying from
−8 to 12 mm/yr.

By comparing the BMA-estimated annual GWSA trends of this study with previous
ones, our study shows a decreasing trend of GWSA (−11.54 mm/yr) in HRB during
2003–2015, smaller than previous estimate of −22.00 mm/yr (2003–2010) by Feng et al. [35],
but similar with Cao et al. [86]−14.67 mm/yr (1960–2008) and Yin et al. [33]−10.30 mm/yr
(2002–2016). The annual GWSA trend of YRB estimated by BMA-merging is −7.38 mm/yr,
comparable to the estimation of Xie et al. [87] (−6.50 mm/yr) during 2005–2014, but
differing greatly to the estimation of Zhang et al. [88] (−3 mm/yr) during 2005–2013.
Regarding the annual GWSA trends of LRB and HHB, the estimated annual GWSA trend
of LRB in this study is −6.46 mm/yr that is significantly larger than the finding of Zhong
et al. [89] (−3.16 mm/yr during 2005–2011). However, the estimated annual GWSA trend in
HHB is−0.52 mm/yr, smaller than the−1.14 mm/yr estimated by Su et al. [90] from 2005 to
2012. For the annual GWSA trend of SWB, the BMA output of this study is −5.95 mm/yr,
which is contrary to the result (5.59 Gt/yr) estimated by Zou et al. [91] in the Tibetan
Plateau during 2013–2016. The discrepancies are likely related to the differences of datasets,
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methodology, and the size of study area. Overall, the BMA-estimated annual GWSA trends
shown in Figure 4 are approximately the same as previous studies in terms of spatial
pattern, but differs in the magnitude of annual trends in some localized areas.
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Figure 4. Spatial distribution of the 2003–2015 annual GWSA trends (unit: mm/yr) estimated by the
combination of GRACE multi-source ensemble and BMA-merging algorithm in mainland China. The
PDF of estimated annual GWSA trends in each of the 10 river basins and the optimal estimation of
trend value by BMA-merging are shown in histograms and inserted values, respectively.

5. Conclusions

By collecting the multi-source datasets of TWSA and non-GWSA components from
GRACE data, global models, and reanalysis products, this study generated an ensemble
estimation of GWSA totaling 3456 members in mainland China from 2003 to 2015. The
BMA algorithm was used to derive the optimal estimates of GWS changes for the entire
mainland China, and the mean annual trends of GWSA in 10 major river basins were
further explored under an uncertainty framework. The main objective of this study is
to investigate how large the uncertainties in the estimation of GWS changes caused by
different choices of datasets in GRACE TWS decomposition, in particular for the calculated
annual GWSA trends.

The results show that TWSA and SMSA contributes most to the uncertainties of GWSA
estimates in 8 out of the 10 river basins in mainland China, whereas TWSA and SWSA
have the largest contribution to the uncertainties of estimated GWSA in the remaining
two river basins (i.e., YRB and SEB). The BMA-based estimation of GWSA for the entire
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mainland China shows a slightly decreasing trend in a rate of −1.93 mm/yr, but the
corresponding uncertainty is as high as 4.50 mm/yr, arising from the different choices
of multi-source datasets used in GRACE TWSA decomposition. The findings should be
valued because the uncertainty magnitude is already larger than the estimated annual
GWSA trend value, potentially leading to the low robustness of estimated GWS changes
from GRACE data. Albeit the quantitative relationship between estimated annual GWSA
trend and its uncertainty may vary in various river basins and grid cells, the differences
of estimated GWS changes cannot be ignored when decomposing GRACE TWS using
different datasets.

To sum up, our findings highlight the importance of accounting for multi-source
uncertainties caused by dataset selection when estimating GWS changes using GRACE
data. There are still considerable discrepancies in current datasets of TWS and storage
components published by various official institutions. It is expected that these discrep-
ancies can be reduced in the coming future with the continuously improved models and
algorithms, thereby allowing for better estimates of GWS changes by using GRACE data.
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mascon; (d) CSR SH; (e) GFZ SH; (f) JPL SH; Figure S2: Spatial distribution of annual trends for
2 SWSA products from 2003–2015 (in mm/yr): (a) WGHM; (b) PCR-GLOBWB; Figure S3: Spatial
distribution of annual trends for two GWEA products from 2003–2015 (in mm/yr): (a) Degree-Day
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