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Abstract: The mainstream methods for change detection in synthetic-aperture radar (SAR) images
use difference images to define the initial change regions. However, methods can suffer from
semantic collapse, which makes it difficult to determine semantic information about the changes.
In this paper, we proposed a hierarchical fusion SAR image change-detection model based on
hierarchical fusion conditional random field (HF-CRF). This model introduces multimodal difference
images and constructs the fusion energy potential function using dynamic convolutional neural
networks and sliding window entropy information. By using an iterative convergence process, the
proposed method was able to accurately detect the change-detection regions. We designed a dynamic
region convolutional semantic segmentation network with a two-branch structure (D-DRUNet) to
accomplish feature fusion and the segmentation of multimodal difference images. The proposed
network adopts a dual encoder–single decoder structure where the baseline is the UNet network
that utilizes dynamic convolution kernels. D-DRUNet extracts multimodal difference features and
completes semantic-level fusion. The Sobel operator is introduced to strengthen the multimodal
difference-image boundary information and construct the dynamic fusion pairwise potential function,
based on local boundary entropy. Finally, the final change result is stabilized by iterative convergence
of the CRF energy potential function. Experimental results demonstrate that the proposed method
outperforms existing methods in terms of the overall number of detection errors, and reduces the
occurrence of false positives.

Keywords: change detection; hierarchical fusion; CRF; D-DRUNet; local boundary entropy

1. Introduction

Change detection using remote sensing technology is a valuable research technique in
the field of Earth observation [1–3]. It quantitatively analyzes multi-temporal images of the
same geographical area to determine surface change characteristics [4].

The needs and standards in the field of communication are increasing [5,6] in response
to the expanding range of human trajectories. The proposed integrated space–air–ground
network has the potential to greatly enhance the efficiency of acquiring various types of
information data and improve the computational efficiency of such data [7,8]. Incorpo-
rating edge computing tasks can improve the overall availability and scalability of the
system [9–11]. By combining edge computing technology with remote sensing and satellite
communication networks, the quality of satellite communication can be improved and the
processing capability of satellite tasks can be enhanced, all while ensuring efficient resource
scheduling [12,13]. Overall, the proposed integrated space–air–ground network has the
potential to greatly influence the efficiency of acquiring various types of information data
as well as the computational efficiency of such data.

The rich remote sensing data acquired by airborne remote sensing satellites can be
used to describe urban land use, cover types and their detailed changes over time [2,14,15].
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The field of remote sensing image change detection mostly utilizes a single optical image
data source as the research target [16]. However, the imaging quality of optical remote
sensing images is highly susceptible to complex weather, as well as satellite performance.
Synthetic-aperture radar (SAR) images contain richer pixel information and clearer detailed
information, which can effectively improve the limitations of optical image-based methods
in the field of remote sensing change detection. SAR is an active microwave remote sensing
technique [17,18] that could operate in less restricted natural environments [19] and plays
an important role in remote sensing. The remote sensing change-detection method based
on SAR images demonstrates significant advantages in the integrated space–air–ground
tasks, such as urban building change detection [20], forest fire location [21], and geological
disaster monitoring [22–24].

Currently, the predominant techniques of image change detection are based on
difference-image detection [25], which involves analyzing the difference images generated
from simultaneous phase images to obtain the final binary change maps [26]. Recently,
deep learning has been applied to remote sensing image change detection, with the aim
of learning complex features by constructing multilayer network models and training on
huge amounts of data [27–30]. How to handle deep-level change information [31] is one
of the key challenges in applying deep learning to change detection in the field of remote
sensing imagery.

Taking advantage of the powerful feature-capture capability of the convolutional
neural network (CNN) [32–34], Chen [28] proposed DSMS-CN and DSMSFCN methods
for change detection of multi-temporal high-resolution remote sensing images based on
multi-scale feature convolution units. Wu J et al. [29] proposed a deep supervised network
(DSAHRNet) model. After the network extracts the decoding change information, the
features are refined by parallel stacking of convolutional blocks, and more discriminative
features can be obtained with the deep supervised module.

The attention mechanism is introduced in change-detection convolutional networks to
focus on change information in complex information as well. Chen, J et al. [30] proposed
DASNet, a change-detection model based on the dual attention full convolutional twin
neural network, to obtain change-detection results by extracting rich features from dual
temporal phase maps. Li et al. [35] introduced the pyramidal attention layer structure into
the full convolutional network framework to further extract multi-scale variation informa-
tion from the difference-feature maps processed by the original network encoder structure.
Song et al. [36] proposed AGCDetNet by combining a fully convolutional network with an
attention mechanism. The network takes into account the joint use of a spatial attention
mechanism and channel attention mechanism. The paper verifies that AGCDetNet is able
to enhance the discrimination of changing targets and backgrounds while improving the
performance of feature representation for changing information. Lv et al. [37] proposed a
hybrid attention semantic segmentation network (HAssNet), which incorporates a spatial
attention mechanism and a channel attention mechanism based on a fully convolutional
network [38]. This approach effectively utilizes multi-scale extracted features and global
correlation to locate and segment targets in the image.

Nevertheless, most of the work only uses the deep features of CNN to build semantic
feature descriptions, which ignores the fine-grained information contained in the shallow
features [39]. Du et al. [40] designed a bilateral semantic fusion twin network (BSFNet)
integrating shallow and deep semantic features in order to better map dual-temporal images
to semantic feature domains for comparison, and obtained pixel-level change results with
more complete structures. The UNet network [41] has outstanding performance in the
field of semantic segmentation, and has been widely adopted into the field of remote
sensing change detection. Zhi, Z et al. [42] proposed a UNet-based CLNet network with
a cross-layer structure to improve the change-detection accuracy by improving the way
of contextual information fusion. By incorporating the advantages of dense connections
for multi-scale information mining within UNet++, Li et al. [43] introduced multiple
sources of information to supplement the channel information of remote sensing images
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in their framework. The resulting model exhibits excellent performance across various
datasets. Chen et al. [44] combined the attention mechanism with UNet to design the
Siamese_AUNet twin neural network. The model performs well in solving the problems
related to weak change detection and noise suppression. Furthermore, for change detection,
the conditional random field (CRF) based on probabilistic graphical models (PGM) [45] and
the Markov random field (MRF) [46] have been introduced. Zhang et al. [47] used the CRF
model to improve the traditional change-detection method. A half-normal CRF (HNCRF)
method is proposed to construct the interaction between pixel points in the spatial analysis
of difference images, which is effective when the change region is small. Lv et al. [48]
proposed a hybrid conditional random field (HCRF) model that combining traditional
random field methods with object-based techniques. The improved model fully exploits
the spectral spatial information, thereby enhancing the change-detection performance of
high-spatial-resolution remote sensing images, improving the traditional change-detection
method with the CRF model. A half-normal CRF (HNCRF) method is proposed to construct
the interaction between pixel points in the process of the spatial analysis of difference
images, which is effective when the change region is not significant. However, CRF ignores
the image–global-distribution relationship. The localization accuracy of the fully connected
conditional random field (FCCRF) [49,50], coupled with the recognition ability of the deep
convolutional neural network shows better boundary localization in the change-detection
results. Y. Shang et al. [51] introduced a novel approach to mitigate the issue of excessive
feature smoothing in the fully connected conditional random field (FCCRF) model by
incorporating region boundary constraints. This method involves obtaining a complete
set of pixels in a multi-temporal image, and calculating the average pixel probability, to
enable the refinement and classification of boundary information through the regional
potential function. Gong et al. [52] proposed the patch matching method for fully connected
CRF optimization, which combined with the results of semantic segmentation network
to detect architectural changes in dual-temporal images. However, the post-processing
method based on the front-end output still causes the loss of change-detection information.
To address this limitation, Zheng et al. [53] proposed a new end-to-end deep twin CRFs
network (PPNet) for high-resolution remote sensing images. The detection results obtained
by PPNet are able to refine the edges of change regions and effectively eliminate noise.

Overall, deep learning has shown promising results in change detection of the remote
sensing image, and the proposed models and techniques have significantly improved the
accuracy and efficiency of the process. Although the change-detection methods for remote
sensing imagery have made significant progress, there are still challenges in detecting the
direction of areas of change by analyzing difference images, which can be summarized
as follows. Firstly, difference images may cause a semantic collapse phenomenon. The
original temporal image, as shown in Figure 1a,b, contains obvious feature classification
information, i.e., semantic information. However, the difference operation, as shown in
Figure 1c,d, can quickly locate the change region, but it also leads to a typical semantic
collapse phenomenon where the semantic classification information disappears.
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Figure 1. Plot of the difference of Berne data processed by different methods. (a) Multitemporal
image 1. (b) Multitemporal image 2. (c) Log-ratio difference image. (d) Mean-ratio difference image.
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Secondly, the multimodal difference images provide complementary information. As
demonstrated in the two modal difference images of the Berne data in Figure 1c,d, the
log-ratio difference image has less interference, but the change information is weak, which
results in serious missed alarms. On the other hand, the mean-ratio difference image
has prominent change information, but the strong interference leads to high false alarms.
Thus, the interference and change performance of the two modal difference images are
quite different, and improving the semantic perception of change detection through the
complementary information of modal difference images is key to improving the overall
performance of change detection.

To address the challenges mentioned above, this paper proposes a hierarchical fusion
SAR image change-detection method based on hierarchical fusion conditional random field
(HF-CRF). The main contributions are as follows.

• Designing a dynamic region convolutional semantic segmentation module with a dual
encoder–single decoder structure (D-DRUNet). It involves constructing a unary poten-
tial function by fusing multimodal difference-image features using neural networks,
and enhancing the semantic perception capability of the CRF model.

• Introducing a boundary prior to constructing a pair-wise potential function based on
multimodal dynamic fusion, and enhancing the boundary perception capability of the
CRF model.

This paper consists of the following three parts: the Method section provides a de-
tailed description of the principle and implementation steps of the proposed method; the
Experiment section provides the experimental results and analysis; and the Conclusion
section summarizes the article.

2. Materials and Methods

The principle framework of the proposed HF-CRF hierarchical fusion SAR image
change-detection method is shown in Figure 2. The HF-CRF method employs the CRF as
the fusion framework. To establish the unary potential function and the pair-wise potential
function, the mean-difference image [54] and the logarithmic-difference image [55] are
used through neural networks and local sliding windows, respectively. In Branch I, the
D-DRUNet neural network is adopted to fuse multimodal difference-image features. The
network structure is a dynamic convolutional UNet with a dual encoder and a single
decoder, and the encoder completes the semantic-feature fusion at the bottom layer, and
the dual-jump connection structure obtains the fused segmented image during the decod-
ing process. In Branch II, a CRF pair-wise local boundary entropy potential function is
constructed by using a local sliding window to extract the boundary a priori information
of the multi-modal difference image. Finally, the CRF model iteratively reasons the fused
energy potential function to obtain the optimized change-detection results.
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2.1. D-DRUNet Fusion Semantic Segmentation Network

UNet networks based on an encoder–decoder structure are commonly employed in
medical imaging and change-detection segmentation tasks, due to their ability to learn from
small datasets [56]. However, U-Net does not have multimodal feature fusion capability,
due to the limitation of a single encoder structure. Additionally, the fixed convolutional
kernel model limits its ability to generalize feature extraction, which results in difficulty in
detecting change details and the increasing of missed alarms in detection.

In order to solve the above two problems, we designed a novel D-DRUNet segmenta-
tion network model, which mainly includes three features: adopting a dual encoder–single
decoder structure to solve the network-level multimodal fusion design problem; introduc-
ing a dynamic region convolution kernel (DRConv) and designing a multiscale guide mask
module to improve the feature extraction capability of the network; a hierarchical fusion
mechanism to realize the bottom and upsampling stages in turn of the multi-level network
feature fusion. The specific network structure is shown in Figure 3, and we elaborate it in
the following sections.
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2.1.1. Dual-Encoder and Single-Decoder Structure

The proposed method utilizes the log-ratio difference map and mean-ratio difference
map as dual encoder inputs, enabling the network to extract change features simultaneously
from different modal difference images. The method employs different fusion strategies at
different stages of image encoding and decoding. The encoder consists of a convolution
operation and a downsampling operation, where the convolution process characterizes the
image information and the downsampling process obtains the contextual information of
the image. The shallow features obtained at the two-way encoding stage retain rich detailed
information, while the deep features ensure semantic structure integrity. The single-way
decoder side performs multiple upsampling operations for the fused features to recover
the compressed feature maps in the spatial dimension in the original input size, layer by
layer. The dual encoder–single decoder structure effectively improves the information
perception capability of the network by designing a multimodal feature extraction and
fusion approach.

2.1.2. Layered Fusion Mechanism Design

We proposed a layered feature fusion mechanism for multimodal disparity images
based on the encoder–decoder structure. This mechanism enhances the feature expression
capability and regional change localization capability of the disparity maps. The proposed
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method employs different fusion strategies at different stages of image encoding and
decoding. The layered feature fusion is realized by two stages. In the first stage, the
depth features extracted from the two difference images are fused in the bottom layer in a
splicing way to achieve semantic fusion before up-sampling and decoding. In the second
stage, the multimodal information of the corresponding resolution is supplemented by the
two-way jump connection during the decoding up-sampling to achieve pixel fusion. In
the decoding pixel-level fusion structure marked in the decoding side of Figure 3 network,
the splicing features at the same level contain three parts: the logarithmic modal coding
features and the mean modal coding features at the encoding side, and the up-sampling
fusion features at the decoding side. In order to improve the fusion efficiency and reduce
the computational effort, both semantic-level fusion and pixel-level fusion of features are
used in the concatenation method.

2.1.3. Dynamic Convolution Kernel with Multi-Scale Guide Mask

Traditional UNet networks use the CNN structure, and the convolution kernel size
needs to be determined in advance, which is difficult to adapt to changes in dynamic
remote sensing image content. The D-DRUNet network introduces a dynamic region
sensing method [57] and adopts the feature pyramid network (FPN) structure [58] to
improve the dynamic convolutional guide mask generation method to dynamically divide
the spatial dimensional distribution, according to the input features.

Dynamic region-aware convolution (DRConvs) consists of a learnable guide mask
module and a filter generation module that automatically generates region-sharing patterns
of filters, based on each input image’s features. The guide mask module divides the features
with similar semantic information into the same region, which determines the distribution
of filters in the spatial dimension; the filter module generates the corresponding filters
that would be assigned to different regions, and different filters extract the information at
different abstraction levels.

In particular, the D-DRUNet network is designed with the FPN structure to improve
the guide mask generation of DRConvs by fusing features among three scales to increase
the content localization capability of the guide mask, and the principle of the method
is shown in Figure 4. Figure 5 shows the visualization result graph of the improved
guide mask region segmentation on the Berne dataset. Figure 5a shows the Berne log and
mean-difference maps, and Figure 5b shows the results of the guide mask delineation on
the corresponding difference maps with higher false alarms; Figure 5c shows the region
delineation results of the FPN structure guide mask, and the accuracy improvement is
obviously significant.
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To verify the effect of the D-DRUNet network, we conducted local validation exper-
iments on the Ottawa dataset, and the results are shown in Figure 6 and Table 1. The
D-DRUNet-S method is a semantic segmentation model with a decoder structure that
includes a single skip connection. It shows significant improvement in detection perfor-
mance, compared to the UNet network. However, the detection results exhibit a high
false alarm rate, as shown in the dashed box in Figure 6c. This is likely caused by severe
reconstruction distortion due to the lack of encoding information from another modality,
resulting in an imbalanced performance between false alarms and missed alarms, and poor
Kappa performance. The D-DRUNet achieves a favorable trade-off between false positives
and false negatives by adopting a double-skip-connection fusion method, resulting in a
significant improvement in performance.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

D-DRUNet 1206 894 2100 97.93% 0.9229 

 

    

(a) GT (b) UNet (c) D-DRUNet-S (d) D-DRUNet 

Figure 6. Experimental test result graph of Ottawa data section. The red dashed boxes mark the 
false alarms detected by the D-DRUNet-S method. 

2.2. Boundary Entropy Dynamic Fusion CRF Model 
CRF [59] is a well-known discriminative model, widely utilized in various domains 

such as image segmentation [60]. The CRF model for change detection [61] comprises two 
components. Modeled as a probability distribution map, the unary potential function rep-
resents the intrinsic energy of each pixel, which is generated by processing the clustering 
algorithm with either the temporal phase map [62] or the semantic segmentation network 
[53]. The pair-wise potential function models the second-order neighborhood potential 
energy, incorporating both the positional and color information as feature functions, 
which can be expressed using Equation (1) [59],where ( | )Z X Y is the regularization con-
stant, ( | )E X Y is the energy function, and ( )u ixψ , ( , )p i jx xψ  are the expressions for the 
one-dimensional potential function and the two-dimensional potential function, respec-
tively. 

( | )1( | )
( )

( | ) ( )+ ( , )

E X Y

u i p i j
i i j

P X Y e
Z Y

E X Y x x xψ ψ

−

<

=

= 
 (1)

The fully connected CRF model calculates the pair-wise potential function by consid-
ering all pixels in the image as neighborhood relations. It employs the mean-field infer-
ence model [45] to achieve the model solution through downsampling convolution. 
Herein, we introduced a hybrid pair-wise potential function using the fully connected 
CRF model. The segmentation result obtained from D-DRUNet serves as a unary potential 
function, while the multimodal difference map is incorporated as Equations (2)–(6). 𝛼  
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Figure 6. Experimental test result graph of Ottawa data section. The red dashed boxes mark the false
alarms detected by the D-DRUNet-S method.

Table 1. Performance metrics of different methods on Ottawa dataset.

Method FP FN OE PCC Kappa

U-Net 5076 3451 8527 91.60% 0.6969
D-DRUNet-S 3908 274 4182 95.88% 0.8583
D-DRUNet 1206 894 2100 97.93% 0.9229

2.2. Boundary Entropy Dynamic Fusion CRF Model

CRF [59] is a well-known discriminative model, widely utilized in various domains
such as image segmentation [60]. The CRF model for change detection [61] comprises two
components. Modeled as a probability distribution map, the unary potential function repre-
sents the intrinsic energy of each pixel, which is generated by processing the clustering algo-
rithm with either the temporal phase map [62] or the semantic segmentation network [53].
The pair-wise potential function models the second-order neighborhood potential energy,
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incorporating both the positional and color information as feature functions, which can be
expressed using Equation (1) [59], where Z(X|Y) is the regularization constant, E(X|Y)
is the energy function, and ψu(xi), ψp(xi, xj) are the expressions for the one-dimensional
potential function and the two-dimensional potential function, respectively.

P(X|Y) = 1
Z(Y) e−E(X|Y)

E(X|Y) = ∑
i

ψu(xi) + ∑
i<j

ψp(xi, xj)
(1)

The fully connected CRF model calculates the pair-wise potential function by consid-
ering all pixels in the image as neighborhood relations. It employs the mean-field inference
model [45] to achieve the model solution through downsampling convolution. Herein, we
introduced a hybrid pair-wise potential function using the fully connected CRF model.
The segmentation result obtained from D-DRUNet serves as a unary potential function,
while the multimodal difference map is incorporated as Equations (2)–(6). αi and βi are the
corresponding weights of the first pixel of the two modal difference images; P(xi = lk) is
the probability that the predicted label xi of the i-th pixel point in the network segmentation
result is lk; u(xi, xj) is the class–label consistency function, which limits the energy which
can be conducted from one to the other under the condition of consistent labels;ωm is the
weight parameter, Km

G ( fi, f j) is the feature function, and the vector fi and f j is the feature
representation of the pixel i and j under the same feature space.

E = ∑
i

ψu(xi)+∑
i<j

αiψL(xi, xj) + ∑
i<j

β jψM(xi, xj) (2)

Ψu(xi) = −ln(P(xi = lk)) (3)

ΨL(xi, xj) = u(xi, xj)∑ ωmKm
G ( fi, f j) (4)

ΨM(xi, xj) = u(xi, xj)∑ ωmKm
G ( fi, f j) (5)

Km
G ( fi, f j) = exp(−1

2
( fi, f j)

TΛ(m)( fi, f j)) (6)

The pair-wise potential function in Equation (2) is a hybrid potential function that
significantly influences the final iterative results. The weight coefficients αi and βi play a
key role in this function. Two factors must be considered while determining these weights.
Firstly, the dynamic changes in the semantic content of the multimodal difference map
should be reflected, and fixed weights may not adequately account for the dynamic content
of the image. Secondly, the boundary information in the multimodal difference image
should be strengthened, as it can accurately reflect the change region, and is crucial for the
convergence of the CRF model.

To address these issues, we proposed a dynamic weight construction method based on
local boundary entropy. Image information entropy is introduced to measure the dynamic
change of image content in our method, which is defined as in Equation (7) [63], where
p(n) is the proportion of the pixel points with gray value n in the image to the total pixel
points in the image.

Q = −∑
t

p(n)× lnp(n) (7)

Figure 7 displays the log-ratio modal difference maps and corresponding local infor-
mation entropy feature maps for both the Berne and Ottawa datasets. It is observed that
entropy values could reflect the semantic content changes in the difference images. To
be specific, we first partition the images into sub-blocks, and calculate the corresponding
image information entropy values for each sub-block. These entropy ratios serve as the
foundation for determining dynamic weights. Additionally, an image-sharpening tech-
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nique is utilized to enhance the boundary information in the difference maps, whereby
its significance in the dynamic weight calculation is increased. We choose three different
sharpening operators for performance comparison. Both the Sobel operator and the Prewitt
operator use a pixel window to compute the first-order derivatives of the image in the x
and y directions, respectively, with the edge operator for the convolution summation oper-
ation, thus processing each pixel point of the image to extract the edges of the image. The
Laplacian operators are based on the second-order derivatives, specifically, the Laplacian
operator with a four-neighborhood template is used in this paper. The parameters of opera-
tors are shown in the Table 2. Figure 8a,d show the sharpening results of the sharpening
operators [64,65] on the Berne dataset, and (e) to (h) show the figures of the sharpening
results on the Ottawa dataset. The comparison shows that the Sobel operator [66] has
the optimal boundary strengthening effect on both datasets, as shown in the blue box.
Therefore, we use the Sobel operator as the final sharpening operator.
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Table 2. Parameters of the three image-sharpening operators.

Sx Sy

The Laplacian operator
 0 −1 0
−1 4 −1
0 −1 0

 −1 −1 −1
−1 8 −1
−1 −1 −1


The Prewitt operator

−1 0 1
−1 0 1
−1 0 1

 −1 −1 −1
0 0 0
1 1 1


The Sobel operator

−1 0 1
−2 0 2
−1 0 1

 −1 −2 −1
0 0 0
1 2 1



In summary, the proposed local boundary entropy pair-wise potential function is
constructed as follows.

• First, sharpening image by using the Sobel operator to obtain sharpened log-difference
images XL and sharpened mean-difference images XM, respectively.

• Second, sliding window with fixed block size on two image blocks Xl
(i) and Xm

(i) with
the same position on the sharpened images XL and XM, respectively, and calculating
them based on local information entropy, as shown in Equations (8) and (9), where
sub-blocks Ql and Qm represent the image boundary entropy values on the i-th image
block Xl

(i) and Xm
(i) corresponding to the modalities.

Ql = −∑
i

p(n)× lnp(n) (8)

Qm = −∑
j

p(n)× lnp(n) (9)
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• Third, the entropy ratio method is used to calculate the log-difference modal coun-
terpart weights α and the mean-difference modal weights β in the mixed pair-wise
potential function.

α =
Qm

Ql + Qm
,β =

Qm

Ql + Qm
, s.t.


α ∈ [0, 1]
β ∈ [0, 1]
α+ β = 1

(10)
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Figure 8. Two dataset showing sharpening-processing difference boundary maps. (a) Original
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results with the Prewitt operator. (d) Sharpening results with the Sobel operator. (e) Original
difference image of Ottawa data. (f) Sharpening results with the Laplacian operator. (g) Sharpening
results with the Prewitt operator. (h) Sharpening results with the Sobel operator.

Figure 9 shows the result plots of the D-DRUNet semantic segmentation network and
the HF-CRF model for detection on the Ottawa dataset. By analyzing the detection results, it
can be concluded that the dynamic fusion iterative structure CRF optimization significantly
reduces the false detection phenomenon, with finer change boundaries. The improved CRF
model uses a multimodal fusion method to achieve information complementarity between
modes, and a more accurate change-detection region is obtained.
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3. Experiment and Analysis
3.1. Datasets

In this study, we utilized eight publicly available SAR image sets to generate mean
difference maps and log-ratio difference maps. To construct the training set, we employed
data enhancement techniques. The effectiveness of our algorithm was then evaluated
using four SAR datasets, with the composition of the training set being readjusted for each
validation process. All datasets consist of two temporal phase maps and the corresponding
GTs. The first dataset is a remotely sensed image of the Berne area with a pixel resolution
of 301× 301, as shown in Figure 10; the second dataset is a remotely sensed image of the
Ottawa area with a pixel resolution of 290× 310, as shown in Figure 11; the third dataset is
a remote sensing image of the Mexico region with a pixel resolution of 256× 256, as shown
in Figure 12; the fourth dataset is a remote sensing image of the San Francisco region with
a pixel resolution of 512× 512, as shown in Figure 13.
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3.2. Parameter Setting and Evaluation Indexes

D-DRUNet parameter settings: the number of guide mask regions m = 2; the learning
rate is set to 0.001; the batch size is set to 8. The image block size is 256× 256; the overlap
step is 4; and the number of training iterations is 200.

Boundary entropy dynamic fusion CRF parameter setting: ω1 = 20; ω2 = 20; θα = 12,
θβ = 12, θγ = 2; the number of iterations is 3; the boundary entropy sliding window size is
25× 25 and the step size is 1.

Simulation of experimental environment: Core (TM) i7-7820X CPU @ 3.60 GHz, Nvidia
RTX 2080Ti × 2, Ubuntu18.04, python3.7, pytorch1.4, cuda10.0.

The number of false alarms, FP; the number of missed detection, FN; the correct rate,
PCC; and the Kappa coefficient, which measures the classification accuracy, are used as the
evaluation metrics for the experiments in this paper, which could formulated as follows.

PCC =
TP + TN

TP + FP + TN + FN
× 100%,

Kappa =
PR0 − PRC

1− PRC
.

3.3. Ablation Experiments

We conducted ablation experiments on the Berne dataset to verify the effectiveness of
the D-DRUNet fusion semantic segmentation network, and the experimental results are
shown in Figure 14 and Table 3. Methods 1 and 2 are the change-detection results with uni-
modal difference images as input, while methods 3 and 4 are the change-detection results
with bimodal difference images as input. Moreover, method 1 utilizes the conventional
CNN convolutional kernel, and methods 2, 3, and 4 use the dynamic convolutional kernel.
Table 4 shows the performance metrics of the change-detection results of the four methods.
The comparison results in Figure 14a with the ground truth revealed that the segmentation
results of method 1 had serious false alarms and blurred boundaries of the change region.
However, method 2, which employed a single encoder, detected a more comprehensive
change region, with significantly reduced false alarms. Method 3, with an asymmetric
encoder and jump connection structure, destroyed the change-region structure and resulted
in obvious leakage detection in the detection results. In contrast, method 4, which utilized
a dual encoder and a dual jump structure, effectively reduced the leakage alarm, with
more refined change boundaries. It can be seen that the D-DRUNet network incorporates
multimodal difference information, and the detection effect is significantly improved.
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Table 3. Results of ablation experiments of the D-DRUNet.

Method DRConv Single
Encoder

Dual
Encoder

Single-Skip
Connection

Dual-Skip
Connection FP FN OE PCC Kappa

1
√ √

1384 25 1409 98.44% 0.6091
2

√ √ √
311 137 448 99.51% 0.8172

3
√ √ √

11 532 543 99.48% 0.7075
4

√ √ √
230 152 382 99.58% 0.8379
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Table 4. Performance metrics of different methods on Ottawa dataset.

Method FP FN OE PCC Kappa

D-DRUNet 1206 894 2100 97.93% 0.9229
HF-CRF 208 1163 1371 98.65% 0.9480

3.4. Comparison Experiments

In this paper, we select the mainstream DD-CNN [67], Trans Unet [68], and ES-
MOFCM [69] in change detection to verify the performance of the HF-CRF model proposed
in this paper on the Berne, the Ottawa, the Mexico, and the San Francisco datasets; the
change-detection results are shown in Figures 15–18, respectively, and the performance
index analysis results are shown in Tables 5–8.
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Table 5. Performance metrics of different methods on the Berne dataset.

Method FP FN OE PCC Kappa

DD-CNN 130 200 330 99.64% 0.8596
TransUnet 350 49 399 99.39% 0.7925
ESMOFCM 112 199 311 99.65% 0.8643
Our Method 105 187 292 99.68% 0.8673
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Table 6. Performance metrics of different methods on the Ottawa dataset.

Method FP FN OE PCC Kappa

DD-CNN 848 842 1690 98.33% 0.9375
TransUnet 881 2543 3424 95.78% 0.8474
ESMOFCM 540 1932 2472 97.56% 0.9051
Our Method 208 1163 1371 98.65% 0.9480

Table 7. Performance metrics of different methods on the Mexico dataset.

Method FP FN OE PCC Kappa

DD-CNN 1076 3692 4768 98.18% 0.8918
TransUnet 1543 3674 5217 98.01% 0.8827
ESMOFCM 3637 6670 10,307 87.93% 0.8030
Our Method 1648 2174 3822 98.54% 0.9165

Table 8. Performance metrics of different methods on the San Francisco dataset.

Method FP FN OE PCC Kappa

DD-CNN 428 393 821 98.75% 0.9060
TransUnet 321 509 830 98.73% 0.9058
ESMOFCM 295 437 732 98.88% 0.9170
Our Method 359 354 713 98.91% 0.9181

The detection results of the four methods on the Berne dataset are shown in Figure 15b–e.
The comparison of the red areas shows that the TransUnet method has the blurred contours
and higher false alarms, followed by DD-CNN, while ESMOFCM has obviously missed
alarms, and the proposed method maintains clearer and more accurate segmentation
boundaries, with more complete contours. The performance on the Ottawa dataset is
shown in Figure 16b–e. As shown in the green box area 1 of Figure 16, the TransUnet
model forms larger joint holes in the hole area with serious leakage, the ESMOFCM model
produces more holes and leakage in the green area 2, the DD-CNN and HF-CRF models
have more complete contours overall with less leakage, while the contours of HF-CRF
model are clearer than the DD-CNN model. From the results in Table 6, the overall results
of the ESMOFCM model and TransUnet are not satisfactory; the DD-CNN model has
more balanced false and leaky alarms and higher Kappa coefficients, and the HF-CRF
model has slightly higher false alarms and low leaky alarms but the lowest total errors, so it
achieves the highest detection performance, which is due to the better segmentation baseline
achieved by the D-DRUNet network. The dynamic second-order potential function further
refines the contours and edges by iteration, but the balance of the HF-CRF false alarms is
not enough, and the number of missing detections is higher. The next improvement step of
the proposed method in this paper will also focus on reducing the missed alarms.

Figure 17 shows the detection results of different models on the Mexico dataset.
The ESMOFCM model has more false alarms and a poor detection performance, due to
background interference. In contrast, the DD-CNN, TransUnet, and HF-CRF models have
more complete contours. However, the DD-CNN and TransUnet models have blurred
boundary information and missed alarms in certain areas. On the other hand, the proposed
method captures more detailed information and has a clear-edge detection effect. According
to Table 7, the proposed method achieves optimal performance in terms of both PCC and
Kappa evaluation indexes by reducing false detections and missed alarms.

The detection results of the methods in this paper on the San Francisco data are
presented in Figure 18. All four methods obtain more complete change-region detection
results. Both modal difference images of the San Francisco dataset are strongly disturbed by
the background when modal complementarity is weak, so the performance advantage of
HF-CRF for change-detection results on this dataset is diminished, while the FCM structure
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based on traditional algorithms is suitable for such data. Our method has a significant
improvement over the neural network-based comparison method, and achieves better
results in terms of generalization ability for multiple datasets. The method proposed in this
article demonstrates the best performance in terms of boundary detection accuracy and the
missed alarms. As shown in Figure 18, the portion circled in green highlights the superior
accuracy of this method in boundary segmentation compared to the other three methods,
with more precise edge contours.

The HF-CRF network fuses the semantic information of the modal difference maps at
multiple levels to ensure the integrity of the changing semantics, and designs a CRF model
with a fusion iteration structure based on local boundary entropy to realize the information
complementation between the multimodal difference maps and enhance the optimization
capability of the CRF model.

3.5. Efficiency Comparison Experiments

The neural-network-based comparison methods DD-CNN, as well as TransUNet in
Section 3.4, are selected for the comparison of network computational efficiency. The
network parameters (Params) and the number of floating-point operations (FLOPs) are
used as effective indicators of the computational complexity of the network model. The
specific calculation results are shown in Table 9.

Table 9. Comparison of module parameters and computation amount.

Method Params FLOPs

DD-CNN 11.2 M 73,279.01 M
TransUNet 93.19 M 64,357.53 M

Our method 63.27 M 85,928.02 M

We propose a new change-detection model that outperforms existing methods in terms
of evaluation metrics. Unlike the DD-CNN approach, our model does not incorporate
residual structures, resulting in a significantly larger number of parameters. However, com-
pared to TransUNet, our model has fewer parameters while achieving better performance.
This trade-off between model complexity and detection performance is a key contribution
of our work.

Our proposed model utilizes a two-branch modal encoding strategy and a two-skip
connection structure, which allows for effective fusion of multimodal differences. This
approach introduces a new avenue for multimodal fusion in change detection.

4. Conclusions

To address the problem of semantic collapse caused by disparity computation, we
proposed a hierarchical fusion SAR image change-detection model based on HF-CRF.
This model adopts a hierarchical structure to compensate for the lost semantics, uses
a D-DRUNet neural network to realize the fused semantic segmentation of multimodal
disparity maps, constructs the first-order potential function of CRF, and uses local boundary
entropy to realize the fused second-order potential function, which accurately reflects the
dynamic semantic changes of multi-modal images. The CRF model is driven to converge
with the change boundary accurately by minimizing the energy function. To verify the
effectiveness of the method, we conduct experiments on the publicly available SAR dataset.
The experimental results show that the HF-CRF model proposed in this paper achieves
superior results on the test dataset compared with both traditional methods, as well as
deep learning methods. In future work, we will combine self-supervised learning and the
Siamese network structure to directly locate remote sensing change-detection regions in
the spatiotemporal domain, to address the semantic loss caused by discrepant operations.
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