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Abstract: Due to the limitations of LiDAR, such as its high cost, short service life and massive
volume, visual sensors with their lightweight and low cost are attracting more and more attention
and becoming a research hotspot. As the hardware computation power and deep learning develop
by leaps and bounds, new methods and ideas for dealing with visual simultaneous localization and
mapping (VSLAM) problems have emerged. This paper systematically reviews the VSLAM methods
based on deep learning. We briefly review the development process of VSLAM and introduce
its fundamental principles and framework. Then, we focus on the integration of deep learning
and VSLAM from three aspects: visual odometry (VO), loop closure detection, and mapping. We
summarize and analyze the contribution and weakness of each algorithm in detail. In addition, we
also provide a summary of widely used datasets and evaluation metrics. Finally, we discuss the open
problems and future directions of combining VSLAM with deep learning.

Keywords: simultaneous localization and mapping; machine vision; deep learning; visual odometry;
loop closure detection; mapping

1. Introduction

Simultaneous localization and mapping (SLAM) refers to a technology that enables
robots to achieve self-localization and mapping while moving in an unexplored environ-
ment. In the initial stage, SLAM relied heavily on sonar and LiDAR sensors, which provide
a high level of accuracy but come with considerable weight, high costs, and fragility. In
contrast, visual sensors are lightweight, affordable, and easily deployable, and thus be-
came an alternative. Visual simultaneous localization and mapping (VSLAM) can utilize
visual sensors that work as human eyes to perceive the surrounding environment and gain
rich environmental information, facilitating positioning and navigation in complicated
real-world environments. VSLAM technology plays a significant role in several fields, in-
cluding intelligent robots, autonomous vehicles, drones, unmanned vessels, military rovers,
augmented reality (AR) and virtual reality (VR). In the intelligent factory, for example,
the robots automatically sort and transport the goods, achieving a completely automated
production line. In special scenarios where the global positioning system (GPS) fails (such
as caves, tunnels, deep water, electromagnetic interference, etc.), self-driving vehicles,
rescue robots, and unmanned underwater vehicles can rely on VSLAM to complete the
rescue, detection, and long-distance cruising. In hazardous military areas, military de-
tection vehicles can carry out high-risk tasks, including reconnaissance, demining, and
hazardous waste disposal. Additionally, the emerging AR and VR technologies in recent
years interweave virtual cyberspace with the physical world. The 3D map reconstructed by
VSLAM can provide geometric information about the scene, and render the superimposed
virtual objects to maintain their geometric consistency with the real world, making the
virtual space more realistic. As the demand for VSLAM technology surges, various novel
methods and technologies are emerging, making it a hot spot in research.
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The concept of SLAM was initially presented at the IEEE Robotics and Automation
Conference in 1986. Smith et al. [1] proposed the application of the estimation theory-based
method for the localization and mapping of robots, marking the integration of robotics with
artificial intelligence. SLAM has since developed over three decades. The first research on
visual navigation was carried out by Ayache and Faugeras [2] in 1988, while Crowley [3]
investigated Kalman filter-based visual navigation for mobile robots. Prior to 2000, filter-
based methods were commonly used in SLAM. Although some excellent papers, such as
PTAM [4], used bundle adjustment (BA) optimization for VSLAM, the error of nonlinear
optimization and high computational load made it unpopular among researchers. In
2009, the sparsity of BA was discovered [5], which led to the rise of graph optimization-
based methods such as DTAM [6], LSD-SLAM [7], SVO [8], ORB-SLAM [9] and other
outstanding algorithms. With the rapid development of artificial intelligence technology
and deep learning, researchers began to explore how to apply deep learning to traditional
filtering and graph optimization-based methods to address the inevitable environmental
adaptability problems of traditional filtering methods. Consequently, employing deep
learning to resolve SLAM-related problems has emerged as a prevalent trend.

Currently, VSLAM methods can be broadly categorized into three classes: filter-
based, optimization-based, and deep learning-based methods. The filter-based methods,
including Kalman filter (KF), extended Kalman filter (EKF), unscented Kalman filter (UKF),
and particle filter (PF), are not capable of handling large-scale outdoor scenes. As the
requirements of people for VSLAM technology increase, optimization-based methods have
emerged, mainly based on graph optimization. In recent years, the application of deep
learning in machine vision has achieved greater improvements in operation efficiency,
performance precision, and robustness. There is growing interest in using data-driven
learning methods to resolve VSLAM problems.

The advantages of deep learning-based methods can be listed as follows:

1. More powerful generalization ability. Compared with hand-crafted features, deep
neural networks can automatically extract the features relevant to tasks, take full ad-
vantage of rich image information, and adapt better to complex scenes, such as motion
blur, dynamic environment and large-scale scenes, that were previously difficult to
handle with traditional algorithms.

2. Advanced semantic information. Deep learning can extract more advanced semantic
information, which can aid in the construction of semantic SLAM and the under-
standing of scene semantics. Furthermore, learning-based methods are more prone
to establishing a connection between abstract elements (such as semantic labels) and
understandable terms, which is difficult to achieve using mathematical theories.

3. The data-driven form. Deep learning is a data-driven approach, which is more in line
with the form of human–environment interaction and has greater development space
and research prospects.

4. The capability of fully exploiting vast amounts of sensor data and the hardware’s
computational power. As the VSLAM system operates, a significant amount of data
generated by the sensors and optimization parameters of the neural network result
in a substantial computational load. Fortunately, advances in hardware computing
power have provided a reliable solution for maintaining real-time performance. Deep
learning-based VSLAM methods can be optimized for parallel computing and large-scale
deployment, which can lead to faster processing speed and lower power consumption.

5. Learning from past experience. Deep learning-based methods can continuously
enhance their models by drawing on past experience. By building generic network
models, learning-based methods can automatically train and discover new solutions
when faced with new scenarios, further improving their models.

As VSLAM has exploded in popularity, several reviews have been published in re-cent
years. However, these reviews have not been systematic, comprehensive, and in-depth
enough. Chen et al. [10] proposed a taxonomy of the vslam algorithms and classified
these algorithms, but did not include the latest progress. Debeunne et al. [11] focused on
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solutions for the fusion of vision SLAM and LiDAR SLAM from the perspective of the
6G wireless network. Huang et al. [12] summarized the technology of VSLAM, LiDAR
SLAM, and their fusion, covering topics such as sensor products, open-source systems,
multi-sensor calibration and the fusion of hardware, data, and task layer. Jia et al. [13]
provided details on the classical structure of VSLAM as well as the latest algorithms, but
did not focus on deep learning as the main part. Chen et al. [14] focused on semantic
information and summarized the outstanding research on combining semantic information
and traditional VSLAM for localization and mapping.

Our contributions can be outlined as follows:

1. Systematic review of deep learning-based methods for VSLAM. We make a compre-
hensive review of deep learning-based methods for VSLAM.

2. In-depth analysis and summary of each algorithm. We summarize and analyze the
significant deep learning approaches applied in VSLAM, and deeply discuss the
contribution and weakness of each approach.

3. A summary of widely used datasets and evaluation metrics. We list the widely used
datasets and evaluation metrics for VSLAM. For the convenience of readers, we have
also provided the link to each dataset.

4. Discussion of the open problems and future directions. We comprehensively discuss
the existing obstacles and challenges to deep learning-based VSLAM and indicate the
potential development direction for future research.

We provide an overview of the latest VSLAM methods based on deep learning in
recent years, aiming to assist researchers in related fields to better understand the research
status and development prospects of deep learning-based VSLAM. This paper is organized
as follows. In Section 2, we briefly review the development process and basic framework of
VSLAM. In Sections 3–5, we comprehensively summarize the deep learning-based VSLAM
method from three aspects: visual odometry (VO), loop closure detection, and mapping.
We analyze the strengths and limitations of each algorithm in detail. In Section 6, we
provide a summary of widely used datasets and evaluation metrics. Based on existing
work, we discuss the open problems and future directions in Section 7. Finally, we conclude
our review in Section 8.

2. Key Structure of SLAM System

Similar to the classical SLAM system, VSLAM system consists of four primary com-
ponents: the frontend, the backend, loop closure detection and mapping. The frontend
is mainly concerned with the motion relations of the camera, utilizing adjacent frames
to estimate the camera pose and reconstruct a local map. The role of the backend is to
optimize the results obtained from the frontend, which obtain optimal positional estimates
and more accurate maps via a filter or nonlinear optimization-based methods. Loop closure
detection is used to determine whether or not the robot has returned to its previous position.
According to the results of loop closure detection, the frontend can update the trajectory
and map while eliminating the error accumulation to obtain a global consistent trajectory
and map. The mapping aims to construct a map required for navigation, positioning, and
other tasks.

2.1. Frontend

The frontend obtains image frames as the camera moves while calculating the changes of
camera pose between adjacent frames. Since the inter-frame estimation only considers adjacent
frames and the motion error between two images is inevitable, this error will accumulate
after multiple transmissions, resulting in trajectory drift. Therefore, backend optimization and
loop closure detection are necessary for eliminating error accumulation. The main methods of
frontend can be classified into the feature-based method and direct method.

The feature-based method relies on feature points. The commonly used feature points
include scale-invariant feature transform (SIFT) [15], speeded up robust features (SURF) [16]
and oriented FAST and rotated BRIEF (ORB) [17]. SIFT is invariant to rotation, scaling and
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luminance changes, which makes it highly significant and informative. It is suitable for
fast and accurate matching in massive databases with minimal misidentification. However,
the large number of floating-point operations required by SIFT makes it challenging to
process in real-time. On the other hand, SURF is an optimized version of SIFT. SURF is
based on the Hessian matrix for feature point detection and uses box filters to simplify the
two-dimensional Gaussian filter when constructing the scale space. It greatly accelerates
the detection speed and provides better stability. Meanwhile, ORB combines Features
from accelerated segment test (FAST) [18] feature point and Binary robust independent
elementary features (BRIEF) [19] feature descriptor. The FAST feature point offers fast
operation speed but lacks both scale invariance and rotation invariance. ORB improves the
original BRIEF to achieve the combination of the speed of FAST and both scale invariance
and rotation invariance, making it able to be processed in real-time. Nonetheless, ORB is
very sensitive to feature missing, and has weak robustness in environments with weak or
no texture.

After feature points are detected, the next step is feature matching. When there is
significant motion and appearance change between adjacent frames, calculating the distance
between descriptors, such as Hamming distance and Euclidean distance, is necessary for
feature point matching. The commonly used methods of matching include brute force, cross
and K-nearest neighbor (KNN). Additionally, optical flow tracking is suitable for a situation
with minor changes, whereby the motion relationship of camera is obtained by tracking key
points to minimize the photometric error between two consecutive frames. The operation
of optical flow tracking is fast because the descriptor is not necessary. However, it follows
the gray-scale invariant assumption and is extremely sensitive to luminosity changes. In
the case of significant luminosity changes, tracking loss is prone to occur.

The direct method does not rely on feature points or descriptors for motion estimation
as it directly computes the motion relationship between two frames based on pixel-value
information. The optimization of the camera pose is achieved by minimizing the pho-
tometric error function. So, it is particularly robust in environments with weak or no
texture. However, like the feature-point method, the direct method is greatly affected by
lighting variations and requires slow camera movements or a high sampling frequency.
Additionally, the feature point method suffers from the loss of potentially valuable image
information due to the involvement of only a few pixels. The non-convexity of the image
also makes the optimization of the direct method prone to falling into a local optimum.

2.2. Backend

Backend optimization is essentially a state estimation problem, consisting of two
methods: the filter method and the BA method.

The early backend optimization frameworks mainly utilized filters. In 1960, Kalman [20]
proposed a recursive algorithm for discrete systems to achieve linear filtering, which was
applicable to a linear system with Gaussian-distributed noises. However, in practice, a linear
mathematical model is often insufficient for describing system characteristics, and many
systems exhibit different degrees of nonlinearity. To account for this, the extended Kalman
filter (EKF) [21] is proposed. The performance of EKF depends heavily on the degree of
local nonlinearization and the original uncertainty. When a system is strongly nonlinear, EKF
violates the assumption of local linearity and neglects the higher-order terms, which may
result in significant error and divergence.

Furthermore, as the operation of the system continues, the data that need to be updated
and maintained, as well as the size of the co-variance matrix, increase exponentially. This
not only occupies a large amount of storage space but also renders the EKF unsuitable
for large-scale environments. Ullah et al. [22] apply linear the Kalman filter (KF) and EKF
SLAM in mobile robots. These algorithms are tested via simulations, which demonstrate
their accuracy and viability for locating landmarks and mobile robots. Based on the idea of
deterministic sampling, Julier et al. [23] proposed the unscented Kalman filter (UKF), which
combines the unscented transform (UT) with the Kalman filter. Unlike the EKF, the UKF
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avoids the complex Jacobian matrix and does not increase the difficulty of implementation
because of a more complex system model, and the higher-order terms are not ignored.

Particle filter (PF) [24] is another commonly used filter method that employs the Monte
Carlo simulation approach to achieve optimal estimation in the Bayesian filtering frame-
work. PF obtains a set of continuously updated particles in the state space by importance
sampling, where the particles with smaller weights are discarded, and those with larger
weights are replicated to make the particle distribution closer to the practical state proba-
bility distribution. However, resampling leads to more offspring of particles with larger
weights and fewer or even no offspring of particles with smaller weights, which is prone to a
lack of sample validity and diversity, as well as the problem of sample impoverishment [25].
Thus, it is equally unsuitable for application in large-scale environments.

The filter methods are not suitable for large-scale SLAM because of their limitations.
Additionally, the Markov property of filters makes subsequent loop closure detection
difficult to deal with. Furthermore, the filter methods only use part of the historical data,
while the nonlinear optimization method uses all data, theoretically leading to better
performance. Through a series of Monte Carlo experiments, Strasdat et al. [26] demonstrate
that the nonlinear method is better than the filter-based method in unit computing time.

The nonlinear method minimizes a cost function, which is constructed based on the
error of the observed value and estimated value, to make the model function more closely
to the actual model. Since the cost function is always nonlinear, it needs to be solved
via least squares, which is what we call BA [27]. The general idea of BA is to solve the
corresponding least squares problems, which are constructed according to pose estimation
and spatial point position. Commonly used methods include the Gauss–Newton algorithm,
gradient descent, and Levenberg–Marquart.

No matter which method is used, the final results of the incremental equation are in
the form of H∆x = g or

(
HλDT D

)
∆x = g. For complicated models, calculating the H

matrix is challenging. The consensus amongst scholars is that the heavy computational
burden associated with BA optimizing renders it impractical for real-time applications.
With the increased recognition of the sparse structure of the H matrix [5], this issue is
resolved. In contrast to the Markov assumption employed in filter-based algorithms, which
only consider two adjacent states, nonlinear optimization utilizes all previous states and
benefits from all historical information. Moreover, the sparsity of the state matrix also
makes the computation faster and loop closure detection easier.

2.3. Loop Closure Detection

Backend optimization can correct the maximum error of frontend results, but the
cumulative error always exists. Loop closure detection can eliminate the influence of
the cumulative error, which plays a significant role in system precision and the global
consistency map.

Bag-of-words (BoW) [28] is a widely used method for loop closure detection. It
generates dictionaries by clustering visual features (such as SIFT and SURF) in images
and determines loop closure by calculating the similarity of dictionaries across keyframes.
Furthermore, the bag-of-words model is essentially an unsupervised machine learning
process, and the computation of similarity between two frames can essentially be seen as a
classification problem; researchers have begun to explore how to integrate deep learning
with loop closure detection. In recent studies, Li et al. [29] replaced the relevant structures in
ORB-SLAM with various feature point extraction and matching networks of deep learning
(Superpoint, D2NET, HF-NET, etc.) for relocation and loop closure detection. Gao et al. [30]
proposed a multilayer neural network based on stacked denoising autoencoders (SDAs) to
learn image features from original image data in an unsupervised manner. These studies
demonstrate the trend toward integrating deep learning into loop closure detection as part
of the continued development of SLAM technology.
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2.4. Map Types

The purpose of mapping is to simultaneously achieve self-localization and construct a
map of the unknown environment. This map should accurately describe the environment’s
characteristics while minimizing the complexity of the map to ensure real-time perfor-
mance. Therefore, the representation of the map should be selected according to the specific
environmental requirements and actual tasks. In terms of dimensions, the map’s represen-
tation can be divided into two-dimensional and three-dimensional. Two-dimensional maps
include the geometric map, grid map and topological map [31].

The geometric map consists of a series of geometric features (such as points, line
segments and curves), which offers high precision and requires little computation. However,
a large amount of perceptual data is needed for large-scale environments [32]. A grid map
divides the map into equal-sized grids with three states, occupied, free, and unknown, to
distinguish passable areas from obstacle areas. It is widely used for path planning and
navigation but may suffer from inadequate real-time performance in either large-scale
environments or excessively detailed grid subdivisions. Additionally, the topological map
models the environment as a graph, which is composed of the nodes and the edges between
nodes, with the nodes corresponding to the places in the real environment and the edges
corresponding to the connection between different places. This map offers a more abstract
representation of the environment and has advantages in path planning and navigation,
particularly for larger-scale environments.

Among the 3D maps, the point cloud map is the most widely used. Although it retains
detailed information about the original environment, it is generally large-scale and takes
up a lot of memory for information which is unnecessary for tasks. Based on the octree
structure, octomap [33] is a compressed 3D grid map, with less ambiguity compared to
the 2D grid map and less memory compared to point cloud map. However, it is hard for
real-time path planning and searching because of its complexity. Other types of maps,
such as feature maps, the ESDF map [34], TSDF map [35], semantic map [36], offer further
options for mapping and analysis.

Different map types vary in memory usage, complexity and properties, thereby ren-
dering them suitable for specific tasks. We present a summary of their properties and
frequently employed tasks in Table 1. To enhance the readers’ perceptual understanding of
diverse maps, we provide a visualization of different maps in Figure 1.

Table 1. Comparison of different map types.

Map Type Memory Complexity Localization Navigation

Grid map High Medium
√ √

Topological map Low Low
√

Feature map Low Low
√

Semantic map Medium Medium
√ √

Point cloud map High High
√

Octomap Medium High
√

ESDF map Medium High
√ √

TSDF map Medium Medium
√ √
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3. Visual Odometry (VO) with Deep Learning

Combining deep learning with VSLAM has been a general trend; the common practice
is to replace one or more modules and steps of VSLAM with those of deep learning
methods. In this paper, we provide a comprehensive overview of the combination of
deep learning and different components of VSLAM, including visual odometry (VO), loop
closure detection and mapping.

Visual odometry tracks and calculates two adjacent frames to obtain the camera pose,
depth map and local consistent trajectory. The feature extraction step can be re-placed with
a deep neural network. Conventionally, feature detection and extraction are performed
using handcrafted features, which is time-consuming and extremely dependent on prior
domain knowledge. Conversely, deep learning methods automatically extract the features
required for tasks through adopting the highly expressive deep neural net-work as a
universal approximator. That is why deep learning models are more adaptable to various
environments, especially because the situation is hard to model manually, such as in
instances of a dynamic environment, complex scene and motion blur.

3.1. Feature Extraction

Employing deep neural networks to extract features is a common operation in the
VSLAM system. DeTone et al. [37] proposed a self-supervised framework that is suitable for
multi-view geometry problems. SuperPoint consists of a shared encoder and two decoders.
The VGG-style shared encoder is used to reduce the dimension of input images. The output
of encoder is shared by the detector decoder and descriptor decoder. The trained interest
point detector decoder, called MagicPoint [38], generates the pseudo-ground truth interest
points. However, when the viewpoint changes, many potential interest points are missed.
To overcome this limitation, homographic adaptation is introduced, which warps the input
image multiple times to help MagicPoint obtain the potential interest points from different
viewpoints and scales. The descriptor decoder is similar to the UCN and outputs a semi-
dense descriptor, then performs bicubic interpolation and L2 normalization to generate a
unit-length descriptor eventually. The computation and representation are shared between
interest point detection and descriptor generation, and both are optimized simultaneously.
Even though SuperPoint performs exceptionally well, the complex operations involved still
cause time-consuming issues. To resolve this, MobileSP [39] proposes several algorithm and
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hardware level design techniques through algorithm-hardware codesign, greatly improving
processing speed while maintaining high precision.

For 3D projective geometry, Tang et al. [40] proposed a feature extraction algorithm
GCNv2 and designed a binary descriptor that can easily replace ORB. The GCN [41]
consists of an FCN with a resnet-50 backbone for feature extraction and a bidirectional
re-current network for keypoint location. The large network architecture limits the ap-
plication of GCNv2 to hardware platforms with limited resources, and the bidirectional
recurrent network requires two or more frames to be input at the same time, increasing the
computational complexity. Inspired by the idea of SuperPoint, GCNv2 performs prediction
independently on a single image at a low resolution and greatly simplifies the network
architecture. Furthermore, both the binarization of the feature vector and binary descriptor
greatly speed up the matching. GCNv2 maintains high precision while improving computa-
tion efficiency. LIFT-SLAM [42] is a deep learning feature-based monocular system, which
combines deep learning-based feature descriptors with the traditional geometry of VSLAM.
The learned invariant feature transform (LIFT) network consists of a detector, orientation
estimator and descriptor which function independently of one another to extract local
features, estimate orientations, and calculate descriptors, respectively. Original LIFT was
trained on the phototourism image sets that differed from the VO dataset. LIFT-SLAM
uses transfer learning to fine-tune the network with the VO dataset and improves the
performance on cross-datasets. Additionally, an adaptive method is created to adjust the
matching threshold according to the characteristics of different datasets.

Unlike the above methods that directly extract varying types of features, Xue et al. [43]
proposed an end-to-end visual odometry framework to guide feature selection based on
a deep convolutional dual-branch recurrent network. A context-aware feature selection
mechanism was introduced in both spatial and temporary domains to enhance the ability
of feature selection and distill motion-sensitive information for each branch. The model
achieves great performance on KITTI and ICL_NUIM datasets and gains great generaliza-
tion ability in various scenarios.

Most deep learning-based methods often rely on training datasets and struggle to
adapt to unknown environments, sometimes even at the cost of efficiency for increased
precision. DF-SLAM [44] designs local feature descriptors to enhance the precision of
data association between frames, effectively replacing handcrafted descriptors. Although
deep neural networks can improve performance with more layers, they can also be time-
consuming. DF-SLAM adopts TFeat with a triplet network. Borrowing from the hard
negative mining strategy of HardNet, it combines the hard negative mining strategy with
TFeat to improve the model performance. The result shows that it not only improves
efficiency and stability but also strong robustness in challenging scenes, such as intense
illumination changes. Additionally, the shallow network architecture of TFeat ensures
real-time performance.

Furthermore, the static feature information in the image, dynamic features also merit
our consideration. You only look once (YOLO) is the most classical target detection net-
work, which can detect video or images in real-time with high accuracy. Soares et al. [45]
employed YOLOv1 and Mask-RCNN for object detection and instance segmentation sep-
arately. Once a person appears in the image, the object detection switches to instance
segmentation and then removes the key points inside the people. Otherwise, only object
detection is active. However, this work only focuses on the people and neglects other dy-
namic objects. Based on the LeGO-LOAM, Kim et al. [46] adopted YOLOv3 to multi-target
recognition and described the position of targets on the reconstructed indoor 3D map. Wu
et al. [47] proposed a lightweight network version of YOLOv3 by replacing the original
darknet-53 backbone network with darknet-19, achieving high-speed detection. Compared
with YOLOv3, YOLOv4 replaces the backbone network from Darknet53 to CSP Darknet53
and introduces spatial pyramidal pooling to better extract features at various scales. Bala
et al. [48] used YOLOv4 to detect objects, and the input image features were updated with
the ORB features extracted from the objects. Object detection inevitably suffers from the
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problems of missed and false detections. To mitigate these issues, Wang et al. [49] incor-
porated YOLOv5n object detection with a leak detection judgment and repair algorithm,
which effectively decreased the influence of dynamic features.

In the VO problems, the difference in geometric feature information across frames is of
more concern. The introduction of an efficient attention mechanism in the network enhances
the representational capacity of model and raises the weight of the feature region, learning
to feature information relevant to tasks more easily. Attention-SLAM [50] simulated the
navigation behavior pattern of humans and proposed a saliency model, SalNavNet, to
predict the salient areas with different degrees of importance and adopt them as weights.
Differently from the traditional BA methods, a weighted BA method is proposed to pay
more attention to feature points of salient areas and reduce the trajectory error effectively.
Additionally, an adaptive exponential moving average (EMA) module is introduced to
mitigate the center bias problem.

Most deep leaning-based methods directly extract features from original images.
SuperPoint [37] introduces homographic adaptation to help the network learn from the
images that captured from different viewpoints, which make it more suitable for multi-view
geometry problems. The binary features designed by GCNv2 [40] can easily replace the
traditional ORB features, which lead to an acceleration of subsequent feature processing.
Due to using SIFT as the supervise signal, LIFT [42] inherits the rotation and scale invariance
of SIFT, and deep learning makes it exhibit powerful robustness across datasets. The feature
selection mechanism [43] can select the most suitable feature type based on the current
scene, and applying it to different types of features may be a good idea, such as the three
features mentioned above. Additionally, the attention mechanism [50] makes the feature
regions more significant and gains more precise features. However, it is not common to
add attention modules to a feature extraction network. That is because weighting the
entire image requires a large amount of computation, which is time-consuming. To deal
with dynamic features, many efforts [45–49] utilize YOLO to detect objects, some of which
accelerate inference speed by replacing lightweight backbone networks [47], obtain more
accurate dynamic information combined with instance segmentation [45] and repair leak
detection [49].

Employing deep neural networks to extract image features has become a well-established
method, as these deep features exhibit superior generalization and robustness compared
to traditional manual features. The network architecture design becomes more lightweight
to ensure real-time performance. To accelerate subsequent feature processing, the feature
designed in binary form and hardware algorithm optimization are both available solutions. A
summary of feature extraction algorithms in Table 2 is presented.

It can be seen from Table 2 that most feature extraction methods are supervised and
focus on indoor scenarios. However, outdoor scenarios present greater challenges due
to various weather conditions, environmental settings, and dynamic objects, which can
significantly affect the quality of extracted features, including motion blur, occlusion, and
changes in lighting. In light of this, several methods employ different networks, such as
GAN, recurrent network, YOLO, and Mask-RCNN, to design features that are specific to
particular scenarios and datasets. The huge architecture results in the time-consuming
issue, and some studies aim to accelerate the inference speed through various solutions,
including replacing lightweight backbone networks, compressing network parameters and
only considering a single category of features. To some extent, although some methods
achieve real-time performance, sometimes precision is sacrificed for a faster inference speed.
In addition, most methods have not yet been tested on real-world robots, suggesting a
limitation in the practical application of these approaches.
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Table 2. A summary of the feature extraction.

Method Supervision Scenario Contributions Weakness

[37] Self-supervised Indoor,
Outdoor

homographic adaptation
pseudo-ground truth

the high repetition rate of feature points
it does not learn from actual data

[42]

Supervised

Urban,
Indoor

transfer learning
Learned invariant feature transform (LIFT)

the performance will become poor
when loop closure cannot be detected

[43] Urban,
Indoor, Highways

dual-branch recurrent network
context-aware guidance mechanism used for
feature selection

could not run in real-time

[45] human populated YOLOv1 for dynamic object detection
Mask-RCNN instance segmentation

only the category of person was
considered

[48] Road YOLOv4 for object detection it has not been tested in real world

[40]

Indoor

GCNv2 simplified network
binary descriptor vector as the ORB feature
eigenvector binarization accelerates training

it predicts projective geometry and not
generic feature matching
only considers indoor scenarios

[44]
very lightweight network framework
robustness of intense illumination changes
can run in real time

fewer comparison algorithms

[46] YOLOv3 for object detection only single object detection

[47] lightweight network Darknet19-YOLOv3
a depth-RANSAC screening method

performance degradation because of
the camera rotation

[49] YOLOv5n for object detection
a leak detection judgment and repair algorithm

it sacrifices some of the accuracy for
the advantage of speed

[50] visual saliency model (SalNavNet)
exponential moving average module

poor performance under motion blur
and rapid rotation

3.2. Motion Estimation

The depth information of objects in an image can be used to optimize the pose.
However, a monocular VSLAM system cannot recover the depth information for a single
image. Generally, the traditional methods gain the depth information of map points
via triangulation, inverse depth, time of flight (TOF) and structured light. Despite the
advancements made in depth estimation, there are still limitations associated with current
methods. Fortunately, deep learning techniques have seen immense popularity and show
great potential in promoting further development in this field.

Zhou et al. [51] proposed a completely unsupervised end-to-end framework, namely
SFMLearner, which includes depth, pose and explainability modules. The single-view
depth prediction adopts the dispnet [52] architecture and outputs the depth maps of input
images. The pose module takes both the target view and the nearby view as input and
predicts the 6-DoF relative pose. The supervision signal for depth and pose modules is
generated by synthesizing source images from different camera poses. The explainability
module predicts multi-scale explainability masks for the corresponding source–target pair.
On the other hand, for dynamic scenes, occlusion, and non-Lambertian surfaces, gradient
corruption easily occurs, leading to training failure.

Differently from SFMLeaner directly generated a depth map, Godard [53] regarded
depth estimation as an image reconstruction problem and proposed an unsupervised
depth estimation network architecture to generate disparity images which are used to
rebuild pixel depth. A depth estimation training loss with an inbuilt left–right consistency
check is introduced to enforce consistency between the predicted depth maps during
training, improving the robustness and performance of the system. GeoNet [54] is a jointly
unsupervised learning framework for depth, optical flow and pose, adopting a divide-and-
conquer strategy to solve the scene’s rigid flow and object motion adaptively. The network
architecture is composed of DepthNet, PoseNet and ResFlowNet. The rigid structure
reconstructor consists of DepthNet and PoseNet, aiming to reconstruct the rigid scene’s
structure. ResFlowNet is also called a non-rigid motion localizer which is used to learn
the residual non-rigid flow and acts as compensation for dynamic objects. For occlusions
and non-Lambertian surfaces, an adaptive geometric consistency loss is introduced which
consists of a forward–backward consistency check and left–right consistency check. The
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experiment result shows that GeoNet performs well in texture-ambiguous regions and
shaded dim areas.

Similarly to SFMLearner and GeoNet, D3VO [55] proposed a self-supervised depth es-
timation network that tightly incorporates depth, pose and uncertainty. This self-supervised
network consists of depthnet and posenet and they are bridged by minimizing the pho-
tometric error originating from both static stereo warping and temporal warping. It also
predicts the brightness transformation parameters to solve the problem of inconsistent
illumination between training image pairs. However, only modeling brightness change is
not sufficient to solve all violations of the photometric constancy assumption. Therefore,
it also predicts the photometric uncertainties based on the distribution over the possible
brightness values of each pixel to improve the accuracy of depth estimation and provide a
learned weighting function for the photometric residuals.

The three methods mentioned above leverage different networks and strategies to
consider depth, pose and uncertainty. Unlike utilizing CNN to generate depth information
directly, GANVO [56] firstly combined the generative adversarial network (GAN) with the
recurrent unsupervised learning approach to jointly estimate pose and depth. The depth
network was designed based on GAN and consists of a generator network, a discriminator
network and an encoder network. The input image is mapped to the feature vector by the
encoder network. The generator network maps the feature vectors to the depth images. The
output depth image is mapped to the color space and the discriminator distinguishes this
mapping between the original image and the output of the generator. The pose network
outputs the 6-DoF relative pose after a CNN and two LSTM modules. SGANVO [57] firstly
applied stacked GAN for self-motion and depth estimation. The network structure of
each layer is similar to that of GANVO, including generator and discriminator, and the
convLSTM is added to connect each layer.

Differently from the methods that require a priori information, the a priori object
model is unnecessary for CubeSLAM [58], which extends the 3D object detection of a single
image to multi-view object SLAM to jointly optimize the object and camera pose. This
method adopts YOLOv2 for indoor scenarios and MS-CNN for outdoor scenarios to per-
form 2D object detection and generate 2D bounding boxes. According to the 2D bounding
box based on the vanishing point (VP), the intersection of parallel lines after projection onto
perspective images, high-quality cuboid proposals are generated. CubeSLAM proposes dif-
ferent cost functions to score them. Additionally, an object association method is proposed
for the occlusion and dynamic. To jointly optimize the pose of cameras, objects and points,
the multi-view BA with new object measurements is proposed. MonoRec [59] is a semi-
supervised reconstruction architecture that consists of a MaskModule and a DepthModule.
Based on the structural similarity index measure (SSIM) instead of the sum of absolute
differences (SAD), the information from multiple consecutive images is used to construct a
cost volume. The MaskModule predicts moving object masks according to the photometric
inconsistencies encoded in the cost volumes to indicate the possibility of pixels belonging
to moving objects. By incorporating moving object masks and cost volumes, DepthModule
outputs the accurate depth map of static and dynamic objects. Shamwell et al. [60] pro-
posed an online error correction (OEC) module and an unsupervised deep neural network,
namely visual–inertial odometry learner (VIOLearner). The OEC module is used to correct
intermediate output errors of a network. VIOLearner performs convolution on Jacobian
functions at multiple spatial scales for multi-step trajectory estimation and generates a
trajectory estimator to correct the trajectory online.

The images captured by RGB-D cameras come with depth information and make pose
estimation easier. The dynamic objects in the scenes will impact the performance of the
system. DDL-SLAM [61] is an RGB-D SLAM framework used to decrease the influence
of moving objects on the pose estimate. DUNet is adopted for semantic segmentation
and a multi-view geometry algorithm is introduced to filter out the dynamic content of a
scenario. The obscured background of the current frame will be reconstructed, leveraging
the static information of prior frames. These synthesized RGB frames without dynamic
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objects and their corresponding depth maps are used to generate the local point cloud.
Although DDL-SLAM performs more accurately and robustly in highly dynamic scenarios,
the problem of real-time performance requires improvement.

Similarly to DynaSLAM [62], DynaSLAM II [63] adopts Mask-RCNN to perform
semantic segmentation as a priori semantic information. Differently from DynaSLAM,
which ignores dynamic object information, DynaSLAM II leverages different dynamic
objects in the scene to perform multi-objective tracking. The final experiments show that
multi-objective tracking benefits motion estimation and not only provides rich information
for scenario understanding but also improves localization and trajectory precision. WF-
SLAM [64] adopts Mask-RCNN [65] on original RGB-D images to implement semantic
segmentation and generate semantic masks. However, it is hard to detect objects which are
semantically static but actually dynamic, such as a book shaking in hands. Therefore, it
combines epipolar geometry constraints and semantic segmentation to accurately detect
dynamic objects and remove dynamic feature points. At the same time, a weighted opti-
mization algorithm is proposed to assign different weights to static and dynamic feature
points and jointly optimize the pose and weights. Although WF-SLAM obtains great
localization precision and robustness in dynamic scenarios, it cannot run in real time.

Some frameworks jointly consider depth, pose and uncertainty. SFMLearner [51]
directly generates a depth and pose through neural networks, but it fails for occlusion and
non-Lambertian surfaces. Godard et al. [53] introduce a left–right consistency check to im-
prove the reliability of the predicted depth. Inspired by the above two methods, GeoNet [54]
can deal with occlusion and non-Lambertian surfaces through combining the a scene’s
rigid flow and object motion and introducing a forward–backward consistency check and
left–right consistency check. D3VO [55] takes photometric uncertainty into account, im-
proving the predicted depth of images with inhomogeneous brightness. Additionally,
there are several novel methods for improving motion estimation. CubeSLAM [58] and
MonoRec [59] build a universal representation and evaluate it to remove incorrect move-
ment relationships. The OEC module integrates the IMU data and corrects the absolute
trajectory estimation based on hypothesis trajectories. It has good generalizability under
motion, image perturbations and domain shifts. GANVO [56] employs GAN to produce
accurate depth and camera motion estimates which demonstrates improved performance
in terms of accuracy and robustness in challenging environments such as low-texture, fast-
motion environments, and occlusions. The stacked GAN has demonstrated that within a
certain range, deeper networks have stronger performance [57]. For dynamic scenes, many
efforts utilize various segmentation networks to segment dynamic objects. DDL-SLAM [61]
employs a lightweight segmentation network but it cannot run in real time because of the
complex subsequent multi-view geometric algorithm. WF-SLAM [64] integrates epipolar
geometry constraints and semantic segmentation, allowing it to detect potential dynamic
objects. In contrast to the two methods which simply delete dynamic elements, DynaSLAM
II [63] tracks multiple dynamic objects to improve the trajectory.

Depth information is always crucial for motion estimation. Although depth infor-
mation provided by RGB-D cameras simplifies the subsequent process, it is not always
accurate and reliable owing to noise, occlusion, and non-Lambertian surfaces. It is nec-
essary to utilize deep learning to correct or generate the depth information and achieve
pose estimation and motion estimation. Table 3 summarizes and analyzes the above deep
learning methods for motion estimation.

In Table 3, motion estimation mainly consists of depth, pose and uncertainty esti-
mation. Some methods integrate various constraint to deal with challenging scenarios,
such as left-right consistency, forward–backward consistency and photometric consistency.
The semantic information reduces the impact of dynamic objects and also brings huge
computation. It should be noted that most methods of motion estimation are unable to
generalize to more datasets. There are many restrictions and prerequisites to employing
these methods.
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Table 3. A summary of motion estimation.

Method Supervision Scenario Contributions Weakness

[51]

Unsupervised
Indoor,
Urban

image reconstruction for supervising easy to fail for dynamic scenes;
occluded; non-Lambert surface

[53] single image depth estimation with
left–right consistency

artifacts on the boundary of the
occluded area
single-view datasets are not supported

[54] forward–backward, left–right consistency;
learns a scene’s rigid flow and object motion poor performance across datasets

[56] GAN for pose and depth estimation
without strict parameter adjustment

the performance on multiple datasets
is not as good as that of other
supervised methods

[57]
stacked GANs
a recurrent representation which can capture
the temporal dynamic features.

is without loop closure detection
with a certain drift

[60] Indoor,
Room

online error correction (OEC) modules
unsupervised learning

only a single source and target image
are accepted
cannot perform any type of BA
adjustment

[58]

Supervised

Urban,
Indoor

single-image 3D cuboid detection
multi-view bundle adjustment

poor performance in some
specific scenarios

[63] Outdoor, Indoor
cost-efficient bundle adjustment
motion estimation and multi-object tracking are
mutually beneficial

fewer comparison algorithms

[61] Indoor DUNet semantic segmentation
multi-view geometry cannot run in real time

[64] Indoor
weighted dynamic and static feature points
Mask-RCNN for a semantic mask
epipolar geometry constraint

it is too time-consuming

[55] Self-supervised Indoor integrates depth, pose and uncertainty
temporal information is integrated into training

the generalization ability is not good,
and there is a significant difference in
performance across different datasets

[59] Semi-supervised Indoor, Road structural similarity index measure (SSIM)
maskmodule and a depthmodule

may fail when there are too many
dynamic objects

3.3. Selection of Keyframes

A video is composed of a series of image frames that appear at fixed intervals, and
the adjacent frames are usually similar. When the camera moves slowly, there is too
much unnecessary redundant information for the task in the image frames in a sequence,
increasing a lot of unnecessary computation for the VSLAM task. Therefore, it is necessary
to select one frame from a series of original image frames to represent a local frame, reducing
the number of frames to be optimized. The common practice is to select keyframes based on
the relative displacement and the number of tracked feature points, leading to the problem
of a large amount of computation, poor real-time performance, and proneness to error
selection. The key is how to efficiently select the valuable key frames while maintaining
low computation and ensuring real-time performance.

Sheng et al. [66] proposed a deep neural network exclusively designed for keyframe
selection and further proposed an end-to-end unsupervised framework to achieve keyframe
selection and VO tasks at the same time, which is the first time two complementary tasks
in a single framework were optimized. The keyframe selector has a two-stream structure
which consists of a visual stream and a geometric stream. Both two streams share the same
network architecture which originates from that of ResNet-18, but not network parameters.
The visual feature and geometric feature which are extracted from two streams are fused
through cross-modal attention, and the final similarity score is generated by combining the
visual and geometric similarities. If the similarity score between the nearest keyframes and
current frame is above a threshold, it will be inserted into the keyframe pool.

Inspired by the success of applying long short term memory (LSTM) to a structured
prediction, Zhang et al. [67] proposed a LSTM-based supervised method, namely vsLSTM,
which transformed keyframe selection into a structured prediction problem. LSTM is a
recurrent neural network which does well in modeling long-range dependencies. vsLSTM
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adopts bidirectional LSTM to model long-range dependencies in the forward and backward
directions. The determinantal point processes (DPP) are used to enhance vsLSTM by
modeling pairwise repulsiveness which aims to eliminate redundant frames in the selected
frames. To sum up, vsLSTM predicts the important score of frames to select keyframes and
DPP outputs the probability that different subsets of candidate keyframes are the keyframe
sets. This work obtains great performance with sufficient annotated samples and also
shows how to confront the challenge of a lack of annotated samples.

With regard to image quality and semantic information, Alonso et al. [68] proposed
a keyframe selection algorithm that computes the image quality criterion and semantic
score to evaluate original frames. The image quality criterion combines the blurriness
score which is based on the Laplacian energy [69] and the brightness score which is based
on the luminance of pixels. Additionally, semantic score is obtained based on semantic
segmentation and achieved by MiniNet. Inspired by low-computation CNN frameworks,
such as ERFNet [70], ENet [71], Deeplab-v3 [72], MiniNet is designed to run on CPU and
consists of a down-sampling module, an up-sampling module and two convolutional
branches which are concatenated between the down-sampling block and the up-sampling
block, with a skip connection which is similar to that of Unet [73]. The ratio of image pixels
that belong to the target class is taken as the semantic score, which is computed on the
image of the MiniNet output with the same resolution as original image. The image quality
criterion and semantic scores are combined to determine the best image as a keyframe.

For some time-consuming semantic segmentation networks, if each keyframe is seg-
mented sequentially, new semantic information may not be available for the current frame
during the tracking process, resulting in tracking failure. Considering this problem, Liu
et al. [74] proposed a real-time visual dynamic SLAM algorithm based on ORB-SLAM3,
namely RDS-SLAM. Based on semantic segmentation, it adopts a keyframe selection strat-
egy with a bidirectional model instead of a sequential model, reducing the semantic delay
to obtain the latest semantic information as much as possible and adapting to segmentation
methods with different processing speeds.

The need for keyframes to be completely achieved by the deep neural network
is unreasonable, and the integration of traditional geometric knowledge is necessary.
Sheng et al. [66] combinate visual and geometric similarities to select keyframes, which
makes full use of the image information. In cases where geometric methods are insufficient,
neural networks can be utilized to assess images and vice versa. Rather than increasing the
number of types of image information, Zhang et al. [67] focus on the time of different frames.
Bidirectional LSTM can model long-range dependencies in the forward and backward
directions, leading to better keyframe candidates. The introduction of high-level semantic
information contributes to the evaluation of the images. Alonso et al. [68] employ the
lightweight MiniNet to calculate the semantic scores, so it can run in real-time. The architec-
ture, complexity, and inference time of different segmentation networks vary. To adapt to
semantic segmentation networks with different processing speeds, the bidirectional model
greatly shortens semantic delay [74].

Selection of keyframes and loop closure detection share some similarities, as both
require the extraction of image features and measurement of differences between images
to identify images. In the feature extraction in Section 3.1, various types of algorithms are
proposed to extract various features such as semantic, static and dynamic features. For
the selection of keyframes, the crucial aspect is how to measure the degree of difference
between image pairs, and loop closure detection puts more emphasis on the similarity.
Table 4 summarizes and analyzes the above deep learning methods in terms of the selection
of keyframes.

It can be seen at Table 4 that combining different types of features contribute to
the selection of keyframes, such as semantic information, geometric features and deep
features. Inspired by Section 3.1, employing YOLO to deal with the dynamic objects is a
feasible solution. Taking into account the dynamic information may facilitate the similarity
computation of keyframes.



Remote Sens. 2023, 15, 2740 15 of 34

Table 4. A summary of the selection of keyframes.

Method Supervision Scenario Contributions Weakness

[66] Unsupervised Urban,
Indoor,

a keyframe selection network framework
keyframe selection and VO are jointly optimized

the prediction of dynamic objects
is challenging

[67]
Supervised

Urban,
Outdoor

combines LSTM with the determinantal
point process poor performance in rapid-change scenarios

[68]
Indoor

MiniNet for semantic segmentation
image quality and semantic information

the segmented objects are individuals
and it does not establish a connection
between each individual

[74] can process semantic segmentation methods with
different speeds

it has not been deployed in a real
robot system

4. Loop Closure Detection with Deep Learning

Loop closure detection is vital for the relocation and elimination of accumulated errors.
The general idea is to extract the feature information of the image frame and calculate
the similarity between the current frame and the previous keyframes. The loop closure is
considered detected when the similarity score reaches a certain threshold.

Gao et al. [30,75] adopted the stacked denoise autoencoder (SDA) to solve loop closure
detection problem. SDA is an unsupervised multi-layer neural network, which consists of
multiple denoise autoencoders (DA). Each DA layer is composed of an input layer, hidden
layer and recovery layer, and the output of the current layer is the input of next layer. The
final output feature response of SDA is used to calculate the similarity score. The similarity
score of each pair of keyframes forms a similarity matrix to check the possible loops. Based
on the denoise autoencoder, Merril et al. [76] rebuild HoG [77] descriptors to maintain
illumination invariance. However, this work can only detect if the current position has
been visited and cannot display keyframes matching the current frame.

There are always objects with different sizes in scenes, and features with multiple
scales can contribute to detecting loop closure. Chen et al. [78] proposed a loop closure
detection algorithm based on multi-scale deep feature fusion, which consists of a feature
extraction layer, feature fusion layer and decision layer. The feature extraction layer adopts
the pre-trained AlexNet [79] to extract deep features. However, if the size of an input image
is unmatched by AlexNet, the input image needs to be cropped or compressed, resulting
in information loss. Therefore, the feature fusion layer adopts spatial pyramid pooling
(SPP) [80] to divide the feature map into blocks of different sizes at different scales. The
features extracted from these blocks are combined to generate a fixed-size output and
achieve multi-scale deep feature fusion. The decision layer performs a similarity calculation
based on the output feature vectors of the images collected at the current time and the
earlier time to detect loop closure. In addition, Chen adds weights to each feature node
based on the distinguishability of the scene’s feature nodes, improving the robustness
under lighting changes and the accuracy of loop closure detection.

Memon et al. [81] combined deep learning with the super dictionary and proposed a
novel loop closure detection method, which consists of deep CNN classifier, autoencoder,
super dictionary and similarity detector. Based on the VGG16 [82] framework, the deep
CNN classifier classifies objects as static or dynamic objects and extracts deep features from
dynamic objects. The super dictionary and BoW [28] dictionary work together to ensure
the speed of feature matching and reduce the risk of missing actual loop closures. The
output feature vectors of CNN input the autoencoder and calculate the reconstruction error
based on the mean squared error to detect if the current scene has already been visited or
not. However, the current scene being visited does not mean that a loop closure is detected
because many scenes are similar. The similarity detector will further check the visited
scenes using the super dictionary and BoW dictionary to determine the final results.

An et al. [83] leveraged ResNet50 as the backbone of FCN and proposed an appearance-
based loop closure detection method, which was named fast and incremental loop closure
detection (FILD++). The global and local features are extracted via two passes of the
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proposed FCN for filtering and reranking, respectively. An attention module is adopted
to generate corresponding scores. Owing to the simplified network and sufficient strate-
gies, FILD++ demonstrated good performance across different datasets and exhibited a
speed advantage when applied on large datasets. To learn feature correlations effectively,
Xu et al. [84] proposed ESA-VLAD, a novel network that employed EfficientNetB0 as its
backbone and integrated a second-order attention module. The global features extracted
from the network are used to retrieve the candidate images via hierarchical navigable small
world (HNSW). Furthermore, an efficient geometrical consistency check based on local
difference binary (LDB) descriptors is designed to verify matches. Zhang et al. [85] pro-
posed a loop closure detection framework named AttentionNetVLAD which employed the
R50-DELG network to simultaneously extract global and local features. The global features
are used to select candidate frames via HNSW, while the local features are exploited for
geometric verification between candidate pairs.

Differently from most works that directly use features extracted from CNN, Zhang et al. [86]
preprocessed the CNN features which are extracted from the overfeat [87] network, including L2
normalization, PCA dimensionality reduction and whitening, to improve the representational
capacity before carrying out the subsequent operations. Based on the idea of post-processing
the features, after whitening, Wang et al. [88] compress feature information with selectable
compression ratios to eliminate the redundant information of the dynamic environment. The
temporal similarity constraint is added to reduce the similarity between adjacent images which
are not loop closures.

Similarly to the selection of keyframes, Chen et al. [78] fuse the multi-scale deep
features to calculate the similarity, which increases the number of feature types. Weighting
each feature node when calculating similarity scores based on the illumination changes
in the images also enhances robustness. In contrast to computing similarity scores based
on image features, Gao et al. [30] model the problem as a stacked auto-encoder formula-
tion. The scores are calculated by the output similarity matrix of the auto-encoder, which
exhibits a stronger global perception ability for the entire images. However, as the image
size increases, large computation is inevitable. FILD++ [83], ESA-VLAD [84] and Atten-
tionNetVLAD [85] integrate the global and local features extracted by various networks
to further filter image frames. Compared to methods that only consider global features,
these methods have powerful generalization ability. Additionally, Memon et al. [81] in-
tegrate the autoencoder and super dictionary and detect loop closure based on dynamic
objects features. Other efforts concentrate on the post-processing of CNN features [86] and
information compression [88], which is dor reducing the processing time of each frame.

The integration of deep learning and loop closure detection primarily concentrates on
feature extraction. Based on the similarity function and varying-scale feature information
obtained via deep learning, these works calculate the similarity score between two frames
and set a threshold to determine whether or not a loop closure is detected. Additionally,
the illumination sensitivity and dynamic variation both affect the robustness of the VSLAM
system. Thus, it is crucial to consider these factors when designing the network structure
or similarity function. In Table 5, we analyze the deep learning methods for loop closure
detection in this section. To compare the models and validation datasets utilized by different
algorithms more intuitively, we summarize the models and validation datasets utilized in
the integration of deep learning with VO and loop closure detection in Table 6.

It can be seen from Table 5 that most methods are supervised, and the research of
loop closure detection has gradually moved towards outdoor scenes. Although various
high-performance networks combined with other technologies can achieve better results,
they also lead to slow inference speeds and long train times. Feature post-processing is a
feasible solution, and designing a simplified similarity function may also be a good idea.
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Table 5. A summary of the loop closure detection methods.

Method Supervision Scenario Contributions Weakness

[75]
Unsupervised

Indoor stacked autoencoder
combine denoising, sparsity, and continuity network training is time-consuming

[30] Campus,
Indoor,

stacked denoise autoencoder
discuss the effect of hyper-parameters without any constraints

[76] Indoor,
Outdoor

lightweight network
multi-view and illumination invariance
easy to deploy

unable to display keyframes that match
the current frame

[78]

Supervised

Indoor multi-scale feature fusion
weighted feature node fewer comparison algorithms

[88] Urban,
Campus

compress redundant feature information
temporal similarity constraint

it is not clear how to choose the
compression ratio

[81] Outdoor combines super dictionary, Bow dictionary and
deep learning only compare with traditional BoW

[83] Urban,
Campus

ResNet50 FCN
two forward passes of a single network to extract
global and local features

has not been tested in a complete system

[84] Urban
EfficientNetB0
geometrical consistency check based on
LDB descriptors

poor performance with few landmarks

[85] Outdoor
Urban

R50-DELG
local motion and structure consensus (LMSC) without a comparison of time consumption

In Table 6, most methods are focused on monocular and RGB-D sensors; the KITTI and
TUM RGB-D are the most commonly used datasets. The fewer the training datasets, the
worse the generalization ability. This also explains the poor performance across datasets in
some methods. The lightweight network architectures are more popular for ensuring real-
time performance. Many methods prefer lightweight networks, such as MiniNet, DUNet
and SegNet. In summary, various deep neural models have successfully employed different
modules of a VSLAM system. Most existing methods are limited to specific datasets, and
it is still necessary to add different types of datasets to improve the generalization ability
of the models. Network parameters should be minimized as much as possible while
maintaining precision to accelerate the inference speed.

Table 6. The models utilized in the combination of deep learning with VO and loop closure detection.

Type Method Year Sensor Model Dataset

feature
extraction

[37]
2018

Monocular MagicPoint + SuperPoint HPatches
[43] Monocular, RGB-D dual-branch recurrent network KITTI + ICL_NULM

[40]
2019 RGB-D

geometric correspondence network
(GCN) v2 TUM RGB-D

[45] YOLOV1 + Mask-RCNN
[44] Monocular, RGB-D Tfeat + hard negative mining strategy TUM + HPatches

[42]
2021

Monocular learned invariant feature
transform (LIFT) KITTI + Euror

[46] Monocular RGB-D YOLOV3 Stevens dataset
[47]

2022 RGB-D
Darknet19-YOLOv3

TUM RGB-D[48] YOLOV4
[49] YOLOv5n
[50] 2021 Monocular, RGB-D SalNavNet saliency dataset + EuRoc

motion
estimation

[51]
2017

Monocular, RGB-D dispnet

KITTI
[53] Monocular,

Binocular, Stereo dispnet

[54] 2018 Monocular DepthNet, PoseNet, ResFlowNet
[56]

2019 Monocular
GAN, convLSTM

[57] stacked GANs, LSTM
[58] Monocular, RGB-D YOLOV2, MS-CNN TUM + KITTI
[55]

2020
Monocular DepthNet, PoseNet KITTI + EuRoc

[61]
RGB-D

DUNet TUM RGB-D
[60] VIOLearner KITTI
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Table 6. Cont.

Type Method Year Sensor Model Dataset

[59]
2021

Monocular Mask-RCNN KITTI

[63] Monocular, RGB-D,
Stereo Mask-RCNN KITTI + TUM RGB-D

[64] 2022 RGB-D Mask-RCNN TUM RGB-D

selection of
keyframes

[67] 2016 Monocular vsLSTM, DPP SumMe + TVSum

[66] 2019 Monocular depth predictor, keyframe selector,
camera motion estimator KITTI

[68] 2019 Monocular MiniNet KITTI
[74] 2021 RGB-D Mask-RCNN, SegNet TUM RGB-D

loop
closure

detection

[75] 2015 RGB-D stacked autoencoder TUM RGB-D

[30] 2017 Monocular, RGB-D stacked denoise autoencoder New College +
City Center + TUM

[76] 2018

Monocular

denoising autoencoder network KITTI
[78] 2019 AlexNet Matterport3D
[88]

2020
ResNet18 ConvNet Gardens Point + Nordland + KITTI

[81] CNN, autoencoder KITTI + City Center +
Garden Point Walk

[83] 2021 EfficientNetB0 KITTI
[84]

2022
Monocular, RGB-D ResNet50-FCN KITTI + Malaga + Oxford

[85] Monocular R50-DELG KITTI + New College

5. Mapping with Deep Learning

Mapping is not a separate thread and requires VO, loop closure detection, and other
methods to generate the environmental information needed for the map. Based on the
acquired positional information, pixel depth, and semantic information, they are mapped
to a 2D image or 3D point cloud to construct a map corresponding to the real environment.
We divide the different map representations into geometric mapping, semantic mapping,
and general mapping according to the different ways of scene expression.

5.1. Geometric Mapping

Geometric mapping mainly detects the shape and structure description of the scenes,
and scene representation mainly includes the depth, voxel and mesh.

5.1.1. Depth

Depth is the most common representation of understanding a scene’s geometric and
structural information. Accurate depth estimation contributes to the absolute scale recovery
of VSLAM. The common practice is to formulate the depth estimate as a mapping function
for the input image and train the deep neural network to predict the depth of each pixel in
the source image through a large amount of data with depth labels.

However, this method requires a large amount of data and seriously reduces robust-
ness and generalization in the absence of labeled data. In unsupervised research, research
scholars have redefined depth prediction as a problem of view synthesis. Godard et al. [53]
adopted photometric consistency as self-supervised signals and utilized disparity images
to reconstruct the depth of each pixel. Zhou et al. [51] adopted temporal consistency as
self-supervised signals and recovered the ego-motion while achieving depth estimation.
Based on this framework, many efforts [54,55,66,89–94] have extended the network struc-
ture to various degrees and all obtained good results. With regard to loss functions, various
constraints [90,92,93,95] are added to improve performance.

5.1.2. Voxel

Voxel representation is the most common in 3D geometry and is similar to the pixel
in the 2D image. SurfaceNet [96] is an end-to-end framework for multiview stereopsis,
which can learn photo-consistency and geometric relations of the surface structure. To
efficiently encode the camera parameters, a novel 3D voxel representation is proposed,
namely the colored voxel cube (CVC). It takes two CVCs from different viewpoints as input
and predicts the surface confidence of each voxel. The traditional depth fusion pipelines
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may worsen the photo-consistency for a sparse environment with a large baseline angle.
Ji et al. [97] proposed a fully convolutional network, SurfNet+, and introduced a novel
occlusion-aware view selection approach and a multi-scale strategy for the incompleteness
and inaccuracy problems introduced by sparse multi-view stereopsis. RayNet [98] combines
CNN with Markov random fields (MRF) to reconstruct scenario geometry. CNN is used
to extract view-invariant features and MRF can explicitly model perspective geometry,
occlusion and other physical processes. Xie et al. [99] adopt ResNet18 and ResNet50 to
design an encoder–decoder network framework, Pix2Vox++, which reconstructs 3D voxel
grid representations from multiple RGB images. Additionally, a multi-scale context-aware
fusion module is proposed to adaptively select high-quality reconstructions from rough 3D
volumes in parallel.

The limitation of voxel representation is the huge computation which makes it hard
to guarantee real-time performance in a high-resolution map. Tatarchenko et al. [100]
proposed an efficient convolutional decoder architecture which can generate high resolution
3D outputs in an octree representation. Compared with standard decoders which perform
on regular voxel grids, this method does not have cubic complexity and allows higher-
resolution outputs with limited memory. Based on the encoder–decoder architecture,
Henzler et al. [101] utilized CNN to predict volumetric representations in the voxel, learning
3D textures from 2D exemplars.

5.1.3. Mesh

The mesh representation encodes the 3D object geometry according to the underlying
structure, including edges, vertices and faces. Pixel2Mesh [102] is an end-to-end deep
learning framework that consists of an image feature network and a cascaded mesh de-
formation network. The cascaded mesh deformation network leverages the perceptual
features extracted from input images to progressively deform an ellipsoid mesh into the 3D
model. Scan2Mesh [103] takes scan point cloud data of 3D objects as input and combines
the CNN and graph-based neural network to achieve one-to-one discrete mapping between
the predicted and ground truth points and generate a compact mesh. However, both of
these methods can only reconstruct single objects. Bloesch et al. [104] utilize 2.5D triangular
meshes as the compact geometry representation of the scene geometry and predict the
vertex coordinates of the planes directly from the source image, and the remaining vertex
depth is optimized as a free variable.

The map constructed via geometric mapping is always sparse; geometric feature
information, such as depth, edge and point, extracted by a deep neural network is easier
to obtain. However, the single depth generally cannot be used for practical applications.
Although the voxel incorporates many types of geometric information, it requires a large
amount of computation and memory for a high-resolution map. Similarly, the mesh is
limited to a few applications. Hence, it seems that the geometric map is not a good choice.
Incorporating semantic information into maps, such as in semantic maps, may provide
a more advantageous alternative for leveraging the capabilities of deep learning while
enabling more user-friendly visualization.

5.2. Semantic Mapping

Semantic mapping not only contains scene geometric information but also incorporates
higher-level semantic information. According to the different types of scene segmentation,
the discussion is divided into three parts: semantic segmentation, instance segmentation
and panoramic segmentation.

5.2.1. Semantic Segmentation

Semantic segmentation classifies image pixel points by associating a semantic label
to each pixel point in the image. SemanticFusion [105] takes RGB-D images as input and
obtains pixel-level semantic information from a deconvolutional semantic segmentation
network; the dense 3D map is reconstructed by the ElasticFusion SLAM [106] system. Based
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on SemanticFusion, Li et al. [107] proposed a 3D semantic map reconstruction method
for road scenes. Inspired by the MobileNet [108], the pyramid scene parsing network is
adopted to predict the pixel-level classification of keyframes and generate the optimal
depth estimation for each keyframe. The depthwise separable convolution decreases the
model size and computation, and the pyramid pooling [109] combines multi-scale feature
maps as global contextual priors. The semantic information of keyframes can be fused into
a globally consistent 3D semantic map which is reconstructed based on the correspondence
between labeled pixels and voxels in the 3D point cloud. L. Ma et al. [110] proposed
a self-supervised deep neural network to predict multi-view consistent semantics from
RGB-D images and generate the consistent semantic labels of a map by adding different
constraints. DA-RNN [111] proposed a novel recurrent neural network architecture for
semantic labeling in RGB-D videos in which a novel data association recurrent unit is
introduced to capture dependencies between frames, and DA-RNN is combined with
KinectFusion [112] to accomplish 3D semantic scene reconstruction.

For stereo images, STDyn-SLAM [113] utilizes a stereo camera to capture stereo image
pairs as well as depth images and employs a SegNet [114] network architecture similar
to that of VGG16 to perform the semantic segmentation of dynamic objects on the left
image. The local point cloud which is constructed via the combination of the depth map,
the semantic result of the left image and VO information is updated into the global point
cloud to construct an octomap eventually. This work can run in the indoor or outdoor
environment in real-time at a fast speed, but it is still challenging for large-scale scenarios.

5.2.2. Instance Segmentation

While semantic segmentation can assign a category to each pixel, the objects with the
same label cannot distinguish different individuals. When we need information about indi-
viduals, then instance segmentation is required, which can separate out specific individuals
in a category. Compared to semantic segmentation, instance segmentation does not need to
label each pixel, but only needs to find the edges or contours of the object.

Fusion++ [115] adopts Mask-RCNN to provide instance masks that are fused into the
TSDF reconstruction. It generates a long-term map that concentrates on the most significant
objects with variable, object size-dependent resolution, remaining good performance even
in realistic cluttered scenes. MaskFusion [116] also adopts Mask-RCNN, but it is able
to achieve non-rigid and dynamic scene reconstructions which are not considered by
Fusion++. Sünderhauf et al. [117] maintain individual objects as the key entities in the map
and combine bounding box-based object detection with unsupervised 3D segmentation
to generate an object-level semantic map. Grinvald et al. [118] proposed a novel method
that can incrementally generate object-level volumetric maps and discover novel objects
that have not been seen in the scene. The 3D shape, location and semantic information are
incrementally fused into the global map using a map integration strategy.

5.2.3. Panoptic Segmentation

Unlike instance segmentation which is only concerned with objects, panorama seg-
mentation needs to detect all the objects in the scene, including the background. On the
level of stuff and things, PanopticFusion [119] proposed a volumetric semantic mapping
system that combines pixel-wise panoptic label prediction with volumetric integration and
is able to achieve dense semantic labeling, large-scale 3D reconstruction and labeled mesh
extraction while distinguishing individual objects. AVP-SLAM [120] leverages powerful
semantic features to construct 3D maps and locate vehicles in parking lots. Four surround
view cameras are employed to increase the perception range, and semantic features are
extracted using a modified Unet, including guide signs, stop lines, speed bumps, etc. These
features are projected as global coordinates to construct a global semantic map that can
be used to achieve localization at the centimeter level with good robustness and precision
even in dark underground parking lots. Panoptic MOPE [121] introduced a fast semantic
segmentation and registration weight prediction convolutional neural network (Fast-RGBD-
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SSWP) to achieve panoptic segmentation, combining geometric, appearance, and semantic
information in the registration cost function with adaptive weights. This system can not
only generate high-quality panoptic reconstructions but also output the 6D pose of objects
in the scene.

The advantages of semantic map are that they can better utilize deep learning tech-
nology and provide more user-friendly visualization. They can include more semantic
information and achieve more accurate object detection and recognition. In addition, se-
mantic maps can use less memory and computing resources, making them more efficient in
practical applications. One of the disadvantages is that their creation requires high-quality
semantic annotations to ensure map accuracy and usability. Additionally, they may overly
focus on semantic information of objects or scenes, while neglecting their geometric fea-
tures, which may lead to suboptimal results for some applications. There are still some
challenges to be solved, such as how to integrate multi-source and multi-modal data and
improve the map updating speed and real-time performance.

5.3. General Mapping

Geometric and semantic mapping can be considered forms of explicit map represen-
tation, and encoding the whole scene as an implicit representation using deep learning
models is called general representation, which cannot be intuitively understood by humans
but contains important scene information required for the task. A map can be represented
as an implicit representation through deep autoencoders, neural rendering models, neural
radiance fields, etc.

5.3.1. Deep Autoencoder

The deep autoencoders compress the map and encode the high-dimensional data as a
high-level compact representation. CodeSLAM [122] generates a compact and optimizable
representation of dense scene geometry by training a variational autoencoder network
on the intensity map. Because of its limited size, both camera poses and depth maps can
be jointly estimated for overlapping keyframes to obtain global consistency. Based on
CodeSLAM, CodeMapping [123] extends the variational autoencoder by introducing factor-
graph-based optimization of DeepFactors [124] to further improve global consistency and
accuracy. This variational autoencoder is easy to be integrated into a keyframe-based SLAM
system without delaying the main system thread. Park et al. [125] introduced a continuous
signed distance function (SDF) representation, DeepSDF. It utilized a continuous volumetric
field to represent continuous implicit surfaces of shape and the 3D shapes are learned by
probabilistic autoencoders.

5.3.2. Neural Rendering Model

Neural rendering can improve rendering quality and efficiency by learning 3D scene
information from training data. Specifically, neural rendering uses neural network models
to convert 3D scenes into 2D pixel values to achieve more realistic visual effects. Neural
rendering has a wide range of applications in virtual reality, game development, and film
production. GQN [126] encodes scene images acquired from different viewpoints into
a scene representation, and utilizes this representation to predict the appearance of the
current scene from a new viewpoint. The introduction of a geometric-aware attention
mechanism extends the system to accomplish more complex environment modeling. Sitz-
mann et al. [127] proposed a continuous, 3D structure-aware scene representation, the
scene representation network (SRN), which implicitly represents the scene as a continuous
differentiable function that maps global coordinates to a feature representation of local
scene attributes. It has greater potential for joint shape and appearance interpolation,
view synthesis, etc. Lombardi et al. [128] learned the 3D volume latent representation of
dynamic scenes using the coding–decoding network architecture and incorporated the
implicit surface-based representation into its framework.
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5.3.3. Neural Radiance Field

Neural radiance fields emerged in recent years, and is the first continuous neural
scene representation. It utilizes deep neural networks to model the volumetric density
and color of a 3D scene. NeRF [129] utilizes the multi-layer perceptron (MLP) to represent
a continuous scene as a 5D vector-valued function that adopts a 3D location and 2D
viewing direction as input and outputs volume density and directional emitted radiance
at any point in space. To further improve performance and speed, positional encoding
and the hierarchical sampling procedure are leveraged to map the input location to a
higher dimensional space and to sample the high frequency information more efficiently
during training process, respectively, which helps MLP learn high-frequency information
better and obtain more detailed scene representations. Although this continuous compact
representation shows great advantages over discrete representations such as grids and
voxels, it requires more memory space as the scene complexity increases and takes longer
to optimize for each new scene.

Based on NeRF, generative radiance fields (GRAF) [130] introduce generative adver-
sarial networks to generate a variant scene representation with 3D consistency. However,
this work is limited to simple single-object scenarios. For it to be applied in more complex
scenarios with multiple objects, GIRAFFE [131] improves GRAF. Unlike NeRF and GRAF,
it outputs the 3D color of points in space; what GIRAFFE outputs are abstract features,
which is why its scene representation is called generative neural feature fields. An affine
transformation is introduced for each object and background in the scene to control the
pose, shape and appearance of individual objects. The existing problems are disentangle-
ment failure and dataset bias. Many subsequent efforts [132–138] have improved the NeRF,
for example, Pi-GAN [132] proposed a variant NeRF with the SIREN periodic activation
function. ShapeGAN [133] not only considers different views, but also takes into account
different illumination conditions.

One of the limitations of autoencoder-generated compact representations is their lack
of visibility. In contrast, neural rendering can generate high-quality images with high
levels of photorealism and accurately simulate complex lighting and material properties.
However, it does not always generalize well to new scenarios, and the quality of output
images is directly dependent on the quality and quantity of training data available. NeRF
is a recent development in the field of neural rendering; it similarly requires substantial
computational resources and careful training to produce accurate results. A classification
of existing approaches on deep learning-based mapping can be found in Table 7.

Table 7. A classification of mapping methods.

Mapping Type Map Representation Method

Geometric Mapping
Depth [51,53–55,66,89–95]
Voxel [96–101]
Mesh [102–104]

Semantic Mapping
Semantic Segmentation [105,107,111,113]
Instance Segmentation [115–118]
Panoptic Segmentation [119–121]

General Mapping
Deep Autoencoder [122,123,125]

Neural Rendering Model [126–128]
Neural Radiance Field [129–138]

6. Datasets and Evaluation Metric
6.1. Datasets

In the early stages, many SLAM datasets are generated by the LiDAR. However, the
image information is more significant to VSLAM, and the different types of images are
processed in different ways because of their properties, including monocular, binocular, stereo.

The KITTI was created jointly by the Karlsruhe Institute of Technology (KIT) in
Germany and Toyota Technological University Chicago (TTIC), mainly contains downtown,
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highway, countryside and other scenes. It not only consists of monocular, binocular, and
stereo 1240 × 370 image sequences, but also an inertial measurement unit (IMU) and GPS
data. It is very popular in visual odometry, 3D object detection and 3D tracking.

EuRoC is collected by a micro air vehicle (MAV) and published at the European
Robotics Challenge. It contains mainly binocular data and IMU data from two scenarios: a
large industrial environment and a room in ETH Zurich.

The TUM RGB-D dataset was released by the Technical University of Munich and
captured data through RGB-D sensors. It consists of two different indoor scenes with a
total of 39 sequences, providing 6D pose ground truth labels. At the same time, it proposes
a kind of evaluation criteria and indicators.

Oxford RobotCar contains over 20 million images taken by six vehicle-mounted
cameras, as well as information collected by laser ranging, GPS, and inertial navigation;
it is commonly used in the positioning and mapping of autonomous vehicles in dynamic
outdoor environments. It almost covers all periods, weather and scene changes, including
various scenes (such as pedestrians, vehicles, and road construction), different weather
conditions (such as heavy rain, light rain, and snow) and different periods (such as direct
sunlight, night and dusk). Table 8 summarizes some popular datasets for VSLAM. We also
arrange the link of each dataset for readers’ convenience.

Table 8. Overview of VSLAM datasets.

Dataset Year Type Link

KITTI [139] 2012 Monocular, Binocular, Stereo http://www.cvlibs.net/datasets/kitti/index.php
accessed on on 23 May 2023

Oxford RobotCar [140] 2016 Monocular, Stereo https://robotcar-dataset.robots.ox.ac.uk/
accessed on on 23 May 2023

EuRoC [141] 2016 Monocular, Stereo
https://projects.asl.ethz.ch/datasets/doku.php?id=
kmavvisualinertialdatasets
accessed on on 23 May 2023

TartanAir [142] 2020 Monocular, Stereo http://theairlab.org/tartanair-dataset/
accessed on on 23 May 2023

MVSEC [143] 2018 Binocular, Stereo https://daniilidis-group.github.io/mvsec/
accessed on on 23 May 2023

Complex Urban [144] 2019 Binocular, Stereo https://www.complexurban.com/
accessed on on 23 May 2023

Málaga Urban [145] 2014 Stereo https://www.mrpt.org/MalagaUrbanDataset
accessed on on 23 May 2023

Cityscapes [146] 2016 Stereo https://www.cityscapes-dataset.com/
accessed on on 23 May 2023

Apollo 2018 Stereo https://apollo.auto/synthetic.html
accessed on on 23 May 2023

Rosario [147] 2019 Stereo https://www.cifasis-conicet.gov.ar/robot/doku.php
accessed on on 23 May 2023

FinnForest [148] 2020 Stereo
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-
aa3e7d84ab49
accessed on on 23 May 2023

DSEC [149] 2021 Stereo https://dsec.ifi.uzh.ch/
accessed on on 23 May 2023

InteriorNet [150] 2018 Stereo, RGB-D https://interiornet.org/
accessed on on 23 May 2023

RGB-D Object [151] 2011 RGB-D http://rgbd-dataset.cs.washington.edu/
accessed on on 23 May 2023

TUM RGB-D [152] 2012 RGB-D https://vision.in.tum.de/data/datasets/rgbd-dataset/download
accessed on on 23 May 2023

NYUV2 [153] 2012 RGB-D https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
accessed on on 23 May 2023

http://www.cvlibs.net/datasets/kitti/index.php
https://robotcar-dataset.robots.ox.ac.uk/
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://theairlab.org/tartanair-dataset/
https://daniilidis-group.github.io/mvsec/
https://www.complexurban.com/
https://www.mrpt.org/MalagaUrbanDataset
https://www.cityscapes-dataset.com/
https://apollo.auto/synthetic.html
https://www.cifasis-conicet.gov.ar/robot/doku.php
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-aa3e7d84ab49
https://etsin.fairdata.fi/dataset/06926f4b-b36a-4d6e-873c-aa3e7d84ab49
https://dsec.ifi.uzh.ch/
https://interiornet.org/
http://rgbd-dataset.cs.washington.edu/
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Table 8. Cont.

Dataset Year Type Link

ScanNet [154] 2017 RGB-D http://www.scan-net.org/
accessed on on 23 May 2023

ETH3D-SLAM [155] 2019 RGB-D https://www.eth3d.net/slam_datasets
accessed on on 23 May 2023

Newer College [156] 2020 Binocular, RGB-D https://ori-drs.github.io/newer-college-dataset/
accessed on on 23 May 2023

OpenLoris-Scene [157] 2020 Binocular, RGB-D https://lifelong-robotic-vision.github.io/dataset/scene
accessed on on 23 May 2023

6.2. Evaluation Metric

We can approach the evaluation of VSLAM system performances from different
perspectives, such as time consumption, complexity, precision, robustness and so on. The
popular evaluation metrics used to evaluate trajectory precision are absolute trajectory
error (ATE) and relative pose error (RPE). Additionally, a lightweight evaluation tool, EVO,
can help researchers conveniently evaluate system performance. Additionally, precision
and recall are usually used to evaluate loop closure detection. The relationship between
true positive (TP), false negative (FN), false positive (FP) and true negative (TN) is shown
in Table 9’s confusion matrix. The details of evaluation metrics can be found in Table 10.

Table 9. Confusion matrix.

Truth
Prediction Loop Detected Not Detected

Loop detected TP FN
not detected FP TN

Table 10. Evaluation metric.

Metric Alias Definition Description

Trajectory
Precision

ATE

√
1
N

N
∑

i=1

∥∥∥∥loge

(
T−1

g,i ∗ Testi,i

)V
∥∥∥∥2

2

N represents the number of points taken; Tg,i
represents the Euclidean transformation of the i-th

point of the truth trajectory
Test,i represents the Euclidean transformation of the

i-th point of the estimation trajectory

ATE
(trans)

√
1
N

N
∑

i=1

∥∥∥trans
(

T−1
g,i ∗ Testi,i

)∥∥∥2

2
ATE consists of a translation part and rotation part

trans means the translation part of the error

RPE

√√√√ 1
N−∆

N−∆
∑

i=1

∥∥∥∥∥loge

(
T−1

g,i ∗ Tg,i+∆

)−1(
T−1

esti,i ∗ Testi,i+∆

)V
∥∥∥∥∥

2

2

∆ indicates the time period between the points taken
RPE consists of a translation part and rotation part

Loop Closure
Metric

P
TP

TP+FP Precision and recall are paradoxical. In the VSLAM
system, we put more emphasis on precision and

compromise the recall a little.R
TP

TP+FN

Alias: ATE represents absolute trajectory error; RPE represents relative pose error; P represents precision;
R represents recall.

7. Open Problems and Future Directions

The deep learning-based VSLAM methods have undergone great progress in recent
decades, but there are still many unresolved issues, and researchers still face various challenges.

7.1. Open Problems

1. Data Association

RGB-D cameras provide depth information and IMU provides motion measurement
information. The integration of these data provided by different sensors can facilitate the

http://www.scan-net.org/
https://www.eth3d.net/slam_datasets
https://ori-drs.github.io/newer-college-dataset/
https://lifelong-robotic-vision.github.io/dataset/scene


Remote Sens. 2023, 15, 2740 25 of 34

performance of VSLAM systems. Almost all existing VSLAM systems are jointly opti-
mized using multiple sensors, which can better handle complex scenes and environments.
However, the perceptual data of different sensors, with different data types, value ranges,
coordinate systems and time stamps, need to be processed uniformly before using these
data. Otherwise, it is easy to increase the amount of system operations and affect the
efficiency and real-time performance. The more sensors, the more data to be processed.
How to process different sensor data is also a problem worth discussing.

2. Uncertainty

Differently from human-labeled datasets, there are various unexpected situations and
uncertain factors in the real world. For instance, these include serious motion blur in camera
images caused by the robot shaking violently because of the uneven road; the alternating light
and dark environment affects the camera exposure during imaging. These uncertainties may
affect the robustness of the system and make the whole VLSAM system fail.

3. Application Scenarios

The evaluation of the existing systems is limited to some specific scenarios, such as
underground parking, city roads, and so on. For instance, the neural rendering models
and NeRF heavily rely on the quality of the dataset. This also means that a whole new
network needs to be trained for a new scenario that has been never met before, which is
very resource-intensive in practical applications. How to improve the generalization of the
network models to perform VSLAM tasks in different scenarios remains an open problem.

4. Interpretability

Despite the fact that the deep learning boom has promoted the development of dif-
ferent fields, deep learning has been long-criticized as a “black box”, and the greatest
limitation is its poor interpretability, which makes some scholars reluctant to use deep
learning methods and prefer traditional methods with rigorous mathematical formula
reasoning and clear correspondence. Some research on interpretability has emerged in
recent years. Zhang et al. [158] focus on visual interpretability, such as feature visualization,
and heat mapping. Adadi et al. [159] explain the interpretability of whole AI methods,
including neural networks and other AI models [160]. Additionally, Fan et al. [161] cite
more than 200 articles to make a comprehensive and detailed summary. Interpretability is
crucial to the development of deep learning. Once a breakthrough is made, it will inevitably
have a huge impact on the field of AI.

5. Evaluation system

In Section 6.2 of this paper, it is revealed that ATE and RPE are widely used to evaluate
the trajectory precision of a VSLAM system. To a certain extent, this is also a reflection of
pose accuracy. Precision and recall are universally accepted to judge the quality of loop
closure detection. However, there are no any reliable evaluation metrics for mapping,
keyframes and features. For an extended period of time, subjective assessment has been
the primary method for evaluating map quality. This approach is not sustainable in the
long term, and more robust and objective evaluation methodologies are necessary to ensure
accuracy and reliability. Therefore, the assessment of the mapping effect and the accuracy
of selected keyframes and extracted features remains an unresolved challenge.

7.2. Future Directions

Although the VSLAM technologies still confront diverse issues, they pose both challenges
and opportunities. Inspired by the other reviews of VSLAM, we discuss the following
prospects and hope that our review will inspire new research efforts in these important fields.

1. New Sensors

The most common sensors include IMU, cameras, GPS and LiDAR. New sensors, such
as event cameras [162], millimeter-wave radar [163], thermo cameras [164] and magnetic
sensors [159], with more accurate and robust perceptual data, can increase precision and
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finish tasks better. The combination of multiple sensors allows complementary advantages.
However, the unusual sensors are still under-researched. Multi-sensor fusion is inevitable,
and it is believed that more new sensors will also emerge.

2. Map Representation

We have summarized many map representations in this paper, such as the geometric
map, semantic map and general map. Most of the existing map representations are designed
in advance, and a unified map representation for different tasks and environments may
cause a waste of resources and an increase in computation. To construct a VSLAM system,
one can autonomously choose the most appropriate map type and construct a map that can
meet task requirements is a research hotspot in the future.

3. Lifelong Learning

Most deep learning works obtain the pre-train models based on a closed-form dataset,
and the pre-train models are retrained or fine-tuned on the actual dataset. In the actual
open world, the changing external environment and various unpredictable factors need to
be confronted, which also requires deep learning models to continuously learn to adapt to
the complicated and changeable world.

4. Multi-robot Cooperation

With the research of VSLAM gradually turning to the outdoor large-scale environment,
multi-robot cooperation can act and perceive independently in a large-scale environment
at the same time, which can effectively improve the efficiency and stability of the VSLAM
system and increase the speed of tasks, such as search, rescue, planetary exploration and
military operations. However, the key problem that arises is how to combine the perceptual
data of each robot into a unified framework; for example, how to piece together the local
maps of each robot into a global map and accurately locate them. Although there have
been numerous research attempts with multi-robot cooperation [165–168], many problems
are still unresolved.

5. Semantic VSLAM

Semantic VSLAM combines the VSLAM system with semantic information through
deep learning to improve the scene understanding of robots and the intelligence of human–
robot interaction. In Section 5.2 of this paper, the integration of semantic information and
mapping is the most prominent one. Compared with the point cloud map in which the
points cannot be understood by humans, the semantic map can show various objects on the
map more intuitively and achieve a higher level of scene understanding, which is of great
significance for the intelligence of VSLAM. The combination of semantic and VSLAM can
achieve complementary advantages and make good progress in object recognition, target
detection, semantic segmentation, and semantic mapping.

6. Lightweight and Miniaturization

Limited by the hardware conditions of some platforms and the requirement of actual
tasks, the architecture of various deep learning neural networks increasingly demands
the property of being lightweight, and the equipment applications are becoming more
and more miniaturized. This paper has shown that many efforts focus on lightweight
network [44,47] and hardware deployment optimization [39]. In some practical application
scenarios, miniature search and rescue robots in natural disasters through the narrow
and hazardous region, and micro-UAVs reconnoiter the theater of operations in military
operations and other applications of VSLAM on a mobile phone and embedded system.
These small devices generally can neither carry huge sensors and computers with powerful
computing ability, nor can they afford too much computation, requiring the VSLAM system
to be lightweight and miniaturized.

In summary, the application of deep learning technology to VSLAM has yielded
promising results, and the incorporation of semantic information achieves a more advanced
understanding of a scene. However, the interpretability of deep learning and the limitation
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of datasets can be a significant obstacle to the development of VSLAM. To ensure real-
time performance and practicality, lightweight networks and miniature mobile devices
are required. On the other hand, the research of VSLAM develops towards large-scale
environments. Although multi-robot cooperation seems to be a feasible solution, the pro-
cessing of data from multiple robots, multi-target localization and global map construction
have become new challenges. Undoubtedly, multiple sensors’ fusion and multi-robot
cooperation will become research hotspots in future development.

8. Conclusions

Although the research of deep learning-based VSLAM has started late, its amazing
development rate shows its great potential. In this paper, we emphasize the combination of
deep learning and VSLAM from three aspects: VO, loop closure detection, and mapping.
One or more modules of VSLAM are replaced with deep learning-based methods, such
as feature extraction, depth estimation, and 3D reconstruction, which greatly improve
precision and efficiency. The introduction of semantic information not only allows the
system to obtain richer feature information, but also makes it easier to achieve high-level
human–robot interaction and scene understanding. The integration of VSLAM and deep
learning has effectively addressed certain limitations of traditional VSLAM approaches.
However, new issues have arisen, such as the explainability of deep learning, the huge
network architecture and the reliability of datasets. To help the researchers in this filed work
efficiently, we provide the links for each widely used dataset. The widely used evaluation
metrics are also summarized.

As VSLAM research transitions from the restricted indoors to the expansive outdoors,
relying on a single sensor to accomplish SLAM becomes increasingly challenging. The inte-
gration of multiple sensors is essential to achieve reliable and precise SLAM performance.
Researchers gradually tend to explore solutions to multi-sensor fusion and large-scale
environments. Deep learning-based VSLAM not only provides a data-driven alternative,
but also expands our thinking of next-generation AI spatial perception. We believe that the
interpretability of deep learning will be realized in the near future, and the whole VSLAM
system will be achieved in deep learning methods. We hope that this paper can contribute
to the development of VSLAM technology.
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