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Abstract: Rainfall-induced landslides pose a significant threat to the lives and property of residents
in the southeast mountainous area. From 5 to 10 May 2016, Sanming City in Fujian Province, China,
experienced a heavy rainfall event that caused massive landslides, leading to significant loss of life
and property. Using high-resolution satellite imagery, we created a detailed inventory of landslides
triggered by this event, which totaled 2665 across an area of 3700 km2. The majority of landslides were
small-scale, shallow and elongated, with a dominant distribution in Xiaqu town. We analyzed the
correlations between the landslide abundance and topographic, geological and hydro-meteorological
factors. Our results indicated that the landslide abundance index is related to the gradient of the
hillslope, distance from a river and total rainfall. The landslide area density, i.e., LAD increases with
the increase in these influencing factors and is described by an exponential or linear relationship.
Among all lithological types, Sinian mica schist and quartz schist (Sn-s) were found to be the most
prone to landslides, with over 35% of landslides occurring in just 10% of the area. Overall, the
lithology and rainfall characteristics primarily control the abundance of landslides, followed by
topography. To gain a better understanding of the triggering conditions for shallow landslides, we
conducted a physically based spatio-temporal susceptibility assessment in the landslide abundance
area. Our numerical simulations, using the MAT.TRIGRS tool, show that it can accurately reproduce
the temporal evolution of the instability process of landslides triggered by this event. Although
rainfall before 8 May may have contributed to decreased slope stability in the study area, the short
duration of heavy rainfall on 8 May is believed to be the primary triggering factor for the occurrence
of massive landslides.

Keywords: landslides; heavy rainfall; distribution pattern; spatiotemporal assessment; Sanming area;
Fujian province

1. Introduction

Rainfall-induced landslides are a type of slope instability that may occur in densely
distributed soil and/or debris under heavy rainfall, producing a significant amount of
sediments in river networks [1,2]. These landslides often result in catastrophic debris flows,
which cause severe damage to agricultural crops, infrastructure and human lives [3,4].
Therefore, effective risk mitigation measures and early warning systems are urgently
needed to minimize the detrimental impacts of these slope instabilities on both local and
regional scales [5–7].

The southeast coastal area of China falls within the subtropical monsoon climate zone
and is frequently affected by typhoons and rainstorms. The coastal areas are characterized
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by mountainous and hilly terrains, which cover approximately 75% of the total area. The
climate in this region is warm and humid with abundant rainfall, leading to strong physical
weathering of rocks [8]. The slope surfaces in this area are predominantly covered by
residual soil and heavily weathered rocks. As a result, approximately 90% of landslides
occur during the rainy seasons, which typically span from May to September. During these
months, landslides triggered by heavy rainfall events are the primary cause of building
damage and human casualties. In August 2005, a landslide triggered by Typhoon “Sudilo”
caused direct economic losses amounting to USD 4.0 million in Zhejiang Province and posed
a threat to 4616 local residents. On 10 June 2019, Longchuan County, Guangdong Province,
China, was subjected to incessant heavy rainfall, which subsequently led to widespread
landslides, collapses and debris flows. Among the 352 affected villages, Mibei village
in Longchuan County was hit the hardest, with 1571 individuals affected, 120 buildings
completely destroyed and over 100 houses sustaining damage of varying degrees. The
direct economic loss of this event reached USD 15.4 million [9]. In June 2019, due to the
influence of southwest airflow on the south side of low-level shear, heavy rainfall occurred
in the western region of Fujian Province. Since 6 June, 75,900 people have been affected in
19 counties of Sanming, Nanping and Longyan cities, resulting in a direct economic loss
of USD 37.9 million. Rainfall-induced landslides have seriously affected the life safety as
well as economic development in the southeastern coastal areas. Therefore, the study of
distribution characteristics and spatiotemporal prediction of such landslides has become a
major demand for ensuring national security and social development.

For the analysis of regional landslides induced by a single extreme event (e.g., earth-
quake or heavy rainfall), a comprehensive landslide inventory is essential and often in-
dispensable. Such data provide a crucial foundation for the distribution characteristics of
landslides [10], susceptibility and risk assessment [11,12], landslide formation mechanism
and geomorphological evolution [13,14]. In contrast to earthquake events, the database
of landslides triggered by heavy rainfall events is still limited [15–17]. At present, only
16 public rainfall-event-based landslide databases are available worldwide, but most of
these event-based databases are small in scale. There are only four landslide databases
with more than 2000 landslides, including the Morakot Typhoon event in southern Taiwan
on August 6–9, 2008 [18], the heavy rainfall event in the Teres ó polis region of Brazil on
11–13 January [17], as well as the long-term heavy rainfall event in Japan’s Hiroshima
region from 28 June to 9 July 2018 [19] and the Hurricane Maria event in Dominica region
from 18–22 September 2017 [20,21]. Therefore, compared to earthquake-event-based land-
slide inventories, the landslide inventories associated with heavy rainfalls still need more
in-depth investigations.

Assessing the spatial susceptibility of rainfall-induced landslides plays an important
role in effective landslide prevention and control [22–25]. Currently, three primary methods
are pervasively used for rainfall-induced landslide prediction: empirical models [26–28],
data-driven models [24,29] and physically based models [30,31]. The empirical model
is primarily based on the analysis of rainfall characteristics, such as rainfall intensity,
duration and total amount. This type of model is utilized to determine the likelihood of
landslides. Although this method is simple and easy to implement, it only considers rainfall
as a single factor and ignores other important topographical, geological and hydrological
factors. In addition, empirical models require abundant landslide and rainfall data to
determine the empirical rainfall threshold. Due to the lack of landslide and rainfall data, it
is difficult to develop an efficient rainfall threshold model in mountainous areas with severe
landslide disasters [5,28]. The statistical model analyzes the relationship between various
factors, such as elevation, hillslope gradient, slope aspect, average rainfall and vegetation
coverage. Then, based on data-driven models and actual landslides, a rainfall-induced
landslide assessment model is created [15,32]. However, this method cannot explain the
physical mechanism of landslide occurrence and requires a large amount of landslide
data; otherwise, because it requires sufficient landslide data to establish the susceptibility
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assessment model, this results in assessment results that frequently lag behind practical
application and cannot serve the emergency assessment in a short time [33].

The physically based method does not use actual landslide data but rather simulates
the physical process of rainfall-induced landslide occurrence by combining hydrological
and infinite slope models. Physical models can reproduce the physical process of landslide
occurrence, which is considered to be an effective method for landslide susceptibility
analysis [34]. Furthermore, the GIS technology has facilitated the widespread use of
physically based models in large regions. As a result, physically based models have been
widely used in the prediction and early warning of rainfall-induced landslides [35,36].
Currently, commonly used physical models for landslide susceptibility assessment include
the SHALSTAB [37] and SINMAP models [38] based on steady-state hydrological modeling,
as well as the SLIP [2,39], CRESTSLIDE [40], HIRESSS [41,42] and TRIGRS models [43]
based on transient physical modeling. At present, the TRIGRS model has been widely
used worldwide including in Italy, the United States, China, South Korea and Southeast
Asia [9,43–46], and is currently one of the most popular models for the spatiotemporal
prediction of rainfall-induced landslides. However, the application of the TRIGRS model in
China’s southeast area is limited, so it is necessary to investigate the applicability of the
model in the southeast mountainous area.

From 5 to 10 May 2016, Sanming City in Fujian Province, China, experienced an
unprecedented heavy rainfall event with a maximum hourly rainfall of 56.6 mm and a
maximum daily rainfall of 259.6 mm, breaking the local daily rainfall record of 178.2 mm
set in 1961. This rainfall event triggered extensive landslides, resulting in significant loss of
people’s lives and property. During this rainfall event, a landslide occurred in the Chitan
Village of Kaishan Township, leading to the burial of the office building and construction
site dormitory of the expansion project of the Chitan hydropower plant, which belongs
to the China Huadian Corporation. As of 1:00 pm on 10 May, the landslide had caused
35 deaths and one person was missing. To better understand the characteristics of the
landslides induced by this fatal event, a comprehensive landslide inventory is needed.
Therefore, the objectives of this study are twofold: (1) to establish a rainfall-induced
landslide inventory through visual interpretation and to analyze the distribution pattern
of landslides with relevant factors; and (2) to achieve physically based spatiotemporal
susceptibility assessments using an open-source tool of MAT.TRIGRS (V1.0) and to back-
analyze the rainfall process’ response to changes in landslide stability. This study can
provide a significant scientific basis for the formation mechanism and spatiotemporal
prediction of rainfall-induced landslides in the southeast coastal area.

2. Study Area

The study area is located in the western part of Fujian Province, between 25◦30′N–27◦07′N
latitude and 116◦22′E–118◦39′E longitude. It neighbors Fuzhou to the east, connects Jiangxi
Province to the west and borders Nanping to the north. The landform of the study area is
mainly hilly terrain, with medium- and low-elevation mountains. Geologically, the area
is an erosion-dominated mountainous region with strong tectonic activity. The terrain
is generally higher in the southeast and lower in the northwest, with elevations ranging
from 130 m to 1847 m (Figure 1). In addition, the area features a subtropical monsoon
climate with a typical mountain climate. The rainfall is abundant, with an annual average
precipitation reaching up to 1700 mm. The rainfalls are mainly concentrated from March to
August and the annual average temperature is about 19.9 ◦C.

Figure 2 illustrates the distribution of the main lithology exposed in the study area,
which ranges from Quaternary loose deposits (Q) to Proterozoic granite (Pt-g). The main
lithology is protozoic plagioclase hornblende and granulite (Pt-p), which are mainly dis-
tributed in the north of the study area. In addition, Jurassic variegated sandstone and
glutenite and K-feldspar granite (Jg and Js-g) are distributed in the west and east of the
study area. Cretaceous rhyolite porphyry and glutenite (Kr-g) are mainly exposed in the
southwestern area. Sinian mica schist and quartz schist (Sn-s) and Cambrian quartz sand-
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stone (∈) are observed in the middle part of the study area. The slope surface is mostly
covered by residual soil and strongly weathered rock. Under the condition of rainfall,
shallow landslides are mainly formed by loose deposits.
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3. Data and Methods
3.1. Landslide Mapping

A comprehensive rainfall-induced landslide inventory is of significance for studying
the distribution pattern of landslides, landslide susceptibility and their impact on geomor-
phological evolution. In this study, we were able to conduct a detailed visual interpretation
of landslides due to the availability of high-resolution satellite photographs on the Google
Earth (GE) platform [47,48]. The satellite images used for landslide interpretation were all
based on the GE platform, which provided a 100% coverage of high-resolution satellite
images. Due to the high vegetation coverage in the study area, optical images can be used
to better identify the landslide locations before and after the events. By comparing the
pre- and post-rainfall images combined with field investigations, the landslide inventory
associated with this rainfall event was ultimately established. Figure 3 shows the field
photos of landslides triggered by this event.
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3.2. Rainfall Data

We collected precipitation data in the Sanming area for the last two decades (from
2000 to 2020). According to these data, the average annual rainfall in the Sanming area has
remained between 1200–2400 mm, with prominent fluctuation. In 2016, the annual rainfall
exceeded 2200 mm, while in 2003 the annual rainfall was relatively low, less than 1200 mm
(Figure 4a). After comparison, we found that the rainfall in May 2016 was more than the
monthly average rainfall over the past 20 years. The precipitation in May was 300 mm,
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which is more than the average monthly rainfall in previous years (approximately 200 mm)
(Figure 4b).
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Figure 4. Monthly precipitation data of Sanming city over the past 20 years (2000–2020); (a) monthly
and annual average precipitation data over the last 20 years; (b) comparison of the monthly rainfall
in 2016 with the average precipitation over the last two decades.

We collected rainfall data from 19 rainfall stations of the China Meteorological Ad-
ministration within a radius of 100 km in the study area. These stations recorded rainfall
data every 12 h. Figure 5 shows the rainfall data from two stations located in the northern
and western parts of the study area from 1 April to 30 May. Based on the rainfall data, we
can observe that the rainfall event mainly occurred from 5 May to 10 May. The highest
precipitation occurred on 8 and 9 May, reaching about 100–120 mm, which accounted
for more than half of the total rainfall amount. The precipitation on the other four days
was relatively low, averaging about 15–40 mm. Based on the above 19 rain gauges, the
commonly used Kriging interpolation method was applied to obtain the distribution of the
rainfall during different times of this event (Figure 6). The result indicates that the daily
rainfall in the study area varies greatly, with a difference of around 160 mm on 8 May. In
contrast, the spatial distribution of daily rainfall during other time periods shows relatively
small variation, ranging from 10 mm to 40 mm.
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3.3. Data of Other Influencing Factors

Based on the distribution characteristics of landslides and influencing factors in the
study area, as well as previous studies [9], we selected six factors, mainly including
topography, geology, hydrology, land cover and rainfall. The ALOS PALSAR DEM data
with a resolution of 12.5 m was used to calculate the hillslope gradient and slope aspect.
We calculated the topographic relief based on the elevation range within a 1.0 km radius.
TWI was calculated using GRASS GIS software and elevation data and drainages were
derived from the DEM using ArcGIS software. The land use type data was derived from
the 10 m resolution global land cover results [49]. Finally, all influencing factor layers were
divided into 12.5 × 12.5 m grids and subjected to statistical analysis (Figure 7).
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tion of this event.

3.4. TRIGRS Modelling

The TRIGRS model (transient rainfall infiltration and grid-based regional slope-
stability model) is programmed by the USGS (United States Geological Survey) [50,51]
and is widely used for evaluating shallow-rainfall-induced landslide susceptibility [52,53].
Specific input data are required such as rainfall, soil mechanics and hydrological character-
istics of the study area [50]. After determining these parameters, using a GIS platform, the
model calculates grid stability as a result of the change in transient pore water pressure of
each grid during the rainfall period. Iverson [54] linearized the Richards equation solution,
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which serves as the foundation for infiltration models for moist beginning circumstances
with steady and transient seepage components. The former is governed by the water table’s
initial depth and constant infiltration rate, which maintains slope stability. The latter refers
to the increase in pore water pressure caused by rainfall, which can cause instability. The
generalized solution in TRIGRS is

ψ(Z, t) = (Z− d)β + 2∑N
n=1

Inz
Ks

H(t− tn)[D1(t−

tn)]
1
2 ∑∞

m=1

{
ier f c

[
(2m−1)dLZ−(dLZ−Z)

2[D1(t−tn)]
1
2

]
+ ier f c

[
(2m−1)dLZ+(dLZ−Z)

2[D1(t−tn)]
1
2

]}
−

2∑N
n=1

Inz
Ks

H(t− tn+1)[D1(t− tn+1)]
1
2 ∑∞

m=1

{
ier f c

[
(2m−1)dLZ−(dLZ−Z)

2[D1(t−tn+1)]
1
2

]
+

ier f c
[
(2m−1)dLZ+(dLZ−Z)

2[D1(t−tn+1)]
1
2

]}
(1)

where ψ denotes pressure head; t is rainfall time; N is the number of rainfall time intervals;
Z is the depth below the surface; d is the depth of water table;dLZ indicates the impervious
basement border depth; β = cos2δ − (IZLT/Ks), δ is the hillslope gradient; IZLT is the
constant surface flux; Ks is the saturated hydraulic conductivity; InZ is the nth time period,
surface flux; D1 = D0/cos2δ, D0 is the saturated hydraulic diffusivity and H(t− tn) is
the Heaviside step function in which tn is the time at the nth time interval in the rainfall
sequence.

ier f c(η) =
1√
π

exp
(
−η2

)
− ηer f c(η) (2)

where er f c(η) denotes the complementary error function.
The TRIGRS model computes infiltration (I) for each cell by adding precipitation (P)

and any runoff from upslope cells (Ru). However, it is important to note that the saturated
hydraulic conductivity (Ks) cannot be exceeded by infiltration. This ensures that the model
accounts for the limitations of soil permeability.

I = P + Ru, i f P + Ru ≤ Ks (3)

I = Ks, i f P + Ru > Ks (4)

when P + Ru surpasses Ks in a cell, the surplus is referred to as runoff (Rd) and it is directed
to neighboring downslope cells.

Rd = P + Ru − Ks, i f P + Ru − Ks ≥ 0 (5)

Rd = 0, i f P + Ru − Ks < 0 (6)

The TRIGRS model computes slope stability using an infinite-slope stability analysis
(Equation (7)), as explained in Iverson [54]. In this analysis, it is the percentage of resistive
basal Coulomb friction in the presence of gravitationally produced downslope. The insta-
bility of an infinite slope is characterized by basal driving stress [55]. The TRIGRS model
calculates this ratio, known as the FoS, at depth Z by

FoS(Z, t) =
tanϕ′

tanδ
+

c′ − ψ(Z, t)γwtanϕ′

γsZsinδcosδ
(7)

where c′ is the soil cohesion; ϕ′ is the friction angle of the soil; γs is the unit weight of soil
and γw is the unit weight of groundwater.

To overcome the difficulties associated with manually updating several model pa-
rameters and sophisticated data processing in the standard TRIGRS model, Ma et al. [56]



Remote Sens. 2023, 15, 2738 10 of 24

posed a new TRIGRS model using Matlab® programming. This model can directly read
grid data in TIF format as input and output prediction results, greatly simplifying data
preparation and parameter configuration. It includes two script files, INPUT DATA.m and
TRIGRS.m. The TIF input files are read by the INPUT DATA.m file, whereas TRIGRS.m
is the executable program that calculates the pressure head and FoS. By computing the
pressure head and FoS at various soil depths, the model provides the minimum FoS and
accompanying pressure head in TIF format. More information may be found in [56]. The
flow chart of this study is shown in Figure 8.
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4. Results
4.1. Basic Characteristics of Rainfall-Induced Landslides

Based on the detailed landslide database of this rainfall event, it is clear that approxi-
mately 2665 landslides were triggered by this event (Figure 9a). The landslides were mostly
small-scale shallow landslides with an elongated type. Among them, the largest landslide
has an area about 50,000 m2, while the smallest one is only 36 m2, with an average area
of 1070 m2. The number of landslides with an area greater than 10,000 m2 is 6. Approx-
imately 21 landslides have an area between 5000–10,000 m2 and 927 landslides have an
area between 1000–5000 m2. However, the majority of landslides (1711) possess an area
of less than 1000 m2. We used a moving window with a radius of 2.5 km and a Gaussian
density kernel function to calculate the landslide number density (LND) in the study area
(Figure 9b). The results show that the maximum LND reaches over 80/km2. Spatially, the
landslides are mainly concentrated in the northern part of Xiaqu town and the southern
part of Yufang town.
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Figure 9. Spatial distribution of landslides and landslide number density (LND). (a) Inventory of the
rainfall-induced landslides (b) landslide number density (LND); the red line delineates the landslide
abundance area.

4.2. Correlation between Landslides and Influencing Factors

To analyze the relationship between the influencing factors and landslide occurrence,
we conducted a statistical analysis of the frequency distribution of landslides and land-
scape (non-landslide) areas under different intervals, as well as landslide area density
(LAD) under different intervals. Figure 10 shows the frequency density distribution of
landslides and landscape areas under different influencing factors. Figure 11 shows the
LAD distribution of six influencing factors under different intervals. Higher LAD values
indicate the areas that are more prone to landslides. The results show that for elevation,
most landslides are concentrated between 300–500 m. The landslide frequency density
reaches a maximum of 0.22 in the elevation interval of 370–430 m. As for the hillslope
gradient, most landslides are concentrated in the interval of 15–25◦, with an average slope
of 21.7◦. Both landslide and non-landslide areas have the highest frequency density in the
slope interval of 14–18◦ and the values are 0.15 and 0.16, respectively. The same distribution
pattern can also be observed in TWI. Specifically, the landslide frequency density reaches
its maximum near 4.5, with a value of 0.36. As for topographic relief, non-landslide areas
are mainly concentrated between 300–500 m, while landslide areas are mainly concentrated
between 150–200 m. For distance to a river, most landslides are concentrated within 800 m,
which is the area most affected by river erosion. In the aspect of total rainfall, landslides
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are predominantly concentrated in the region with annual rainfall intervals of 320–330 mm
and 380–400 mm, with landslide frequency densities of 0.1 and 0.36, respectively.
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Based on the statistical relationship between LAD and different influencing factors
(Figure 11), it is observed that there is no significant correlation between elevation, relief,
TWI and landslide abundance index. For elevation, the highest LAD (0.17%) is observed
in the elevation range of 400–450 m, while the maximum LAD (0.13%) is observed in
the relief range of 100–200 m and 550–650 m. By comparison, a tight correlation is seen
between LAD and the other three influencing factors (i.e., hillslope gradients, distance
to river and total rainfall). For hillslope gradient, the LAD increases with an increase in
hillslope gradient and is described by an exponential relationship: y = 0.0557e(0.0244x),
where x is the hillslope gradient and y is the LAD (Figure 11b). The equation indicates that
with the increase in hillslope gradient, the possibility of landslide occurrence also raises. In
terms of distance to a river, there is a negative linear relationship between the LAD and
distance to a river: y = −6× 105x + 0.124, where x represents the distance to a river and y
is the LAD (Figure 11d), indicating that the LAD decreases with the increase in distance
to rivers. For total rainfall, the LAD and total rainfall show an exponential relationship:
y = e0.023x, where x is the total rainfall and y is the LAD. Such a relationship demonstrates
that landslides are more likely to occur in areas with high precipitation (Figure 11f).
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Figure 12 shows the areal coverage (%) of various lithological types for landslide
and landscape area, overlaid by the average landslide area and LAD estimated per unit.
The result shows that the predominant lithology is protozoic plagioclase hornblende and
granulite (Pt-p), which account for 25% of the study area, followed by Cretaceous rhyolite
porphyry and glutenite (Kr-g), which account for more than 15% of the study area. Among
all lithological types, Sinian mica schist and quartz schist (Sn-s) are the most prone to
landslides, with over 35% of landslides occurring in 10% area. Furthermore, statistics on
the average landslide area of different lithological units show that Kr-g and Pt-p have the
largest average landslide area (>1400 m2), followed by Cambrian quartz sandstone (∈),
which has an average landslide area of 1200 m2. Quaternary loose deposits (Q) have a
small average landslide area, only 600 m2.
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average landslide area and LAD estimated per unit.

Based on the frequency density distribution and statistical analysis of landslide area
density (LAD) across various aspects in both landslide and non-landslide areas, we found
that the landslides on E-SE oriented slopes are highly developed, particularly within a
slope aspect of 60–100◦. The statistical results further revealed that landslide area density
(LAD) was highest within the 50–110◦ range, reaching 0.17%. Overall, the eastern aspect of
the area displayed a greater concentration of landslides, while the western slope exhibited
lower levels of landslide development (Figure 13).
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4.3. Spatio-Temporal Susceptibility Assessment

To achieve accurate landslide spatiotemporal susceptibility results using physically
based models, obtaining sufficient and correct input parameter data is the foremost require-
ment [30,52,57,58]. The Z-model of Saulnier et al. [59] was used to evaluate the thickness
of weathered soil mass. We assumed that the weathered soil mass covered by the upper
layer of bedrock has a maximum thickness of 5 m and a minimum thickness of 0.5 m, as
determined by previous studies [60,61]. Therefore, the estimation of soil thickness based
on altitude can be calculated using Equation (8).

For landslide abundance areas, the lithology in the study area mainly includes Protero-
zoic granite (Pt-g), Sinian mica schist and quartz schist (Sn-s), Cambrian quartz sandstone
(∈) and Quaternary loose deposits (Q). Based on previous studies [9,23,62] and rock engi-
neering standards used in China [63], we assigned the corresponding values to hydrological
and mechanical parameters, including soil cohesion (c′), internal friction angle (ϕ′), unit
weight (γs) and saturated hydraulic conductivity (Ks) for different lithological types. Spe-
cific mechanical and hydrological parameter assignments for different lithologies can
be found in Supplementary Materials Table S1. Otherwise, based on previous experi-
ence [44,64], saturated hydraulic diffusivity D0 was set to 200Ks and the initial surface flux
(IZLT) is generally less than Ks to one power or more and was often set to IZLT = 0.01Ks.

hi = hmax −
(

Zi − Zmin
Zmax − Zmin

)
(hmax − hmin) (8)

where Zmax and Zmin refer to the maximum and minimum thicknesses of weathered soil
mass, respectively. hmax and hmin are the maximum and minimum altitudes, respectively.

Figure 14 shows the predicted pictures of the FoS based on rainfall data over different
time periods. From the results, it can be observed that prior to the rainfall, most of the study
area had an FoS greater than 1.2. As the rainfall event began, unstable areas with an FoS less
than 1.2 (shown in the red area) mainly appeared on both sides of the gullies and, by 8 am
on 7 May, the unstable area within the study area rapidly increased. After 12 h of rainfall
(reaching a rainfall amount of 102 mm) on 8 May at 8 am, the unstable area (shown in the
red area) reached its critical value. Although several subsequent intermittent rainfall events
occurred, the impact of rainfall on the change in the FoS was tiny and ignorable and the
unstable area remained unchanged. We compared the prediction accuracy of the simulation
results over different time periods based on the ROC curve. As shown in Supplementary
Materials Figure S1, the prediction ability of the assessment results in different time periods
varied between 0.68 and 0.72. Among them, the evaluation results on the 7 and 8 June had
the highest prediction accuracy, around 0.72.

We conducted a statistical analysis on the temporal variations of the FoS results for
different hillslope gradients during different time periods. Figure 15a shows the variations
in the FoS of the grids with gradients less than 30◦, where the majority of the FoS ranged
from 1.8 to 2.4 with an average of approximately 2.1 before the onset of rainfall. As heavy
rainfall occurred, the FoS gradually decreased and the average FoS reached around 1.95 at
8:00 on 7 May. Subsequently, the occurrence of intense rainfall on 8 May resulted in a
significant decrease in the FoS for the grids with gradients less than 30◦, with the average
FoS maintained at around 1.85. Despite the persistent rainfall in the later period, the overall
variation in the FoS for most grids was small, with an average of approximately 1.8. Similar
phenomena were observed for the grids with gradients greater than 30◦ (Figure 15b). Prior
to the rainfall, the FoS for these grids were basically distributed between 1.4 and 1.7, with
an average of approximately 1.6. As rainfall increased, the FoS continued to decrease and
after the intense rainfall event on 8 May, most of the shallow weathered soil layers became
saturated. As a result, the FoS reached critical values and maintained between 1.1 and 1.4,
with an average of approximately 1.3. Although the rainfall continued to occur, the impact
of rainfall on the FoS was small due to the saturated state of the soil layers and the FoS for
the grids remained stable.
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Figure 14. Conditions for slope stability, as measured by the factor of safety (FoS) at different times
during the 2016 rainfall event; (a) 20:00 on 4 May (UTC + 8, before rainfall event); (b) 8:00 on 5 May
(UTC + 8); (c) 8:00 on 6 May (UTC + 8); (d) 8:00 on 7 May (UTC + 8); (e) 8:00 on 8 May (UTC + 8);
(f) 20:00 on 8 May (UTC + 8); (g) 8:00 on 9 May (UTC + 8); (h) 8:00 on 10 May (UTC + 8).
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5. Discussion

Topography, geological features and rainfall characteristics are considered to be essen-
tial factors influencing the occurrence of rainfall-induced landslides [65–67]. It is generally
accepted that steeper terrain, weaker rock strength and higher rainfall amounts increase the
occurrence likelihood of landslides [17,68,69]. To better understand the spatial distribution
of the rainfall-induced landslides with different elevations, hillslope gradients, topographic
relief, lithological types and rainfall characteristics, the swath profiles (EEN-WWS) with a
width of 10 km are presented (Figure 16). The spatial distribution of landslides shows that
the majority of the landslides are concentrated in Xiaqu town, which has the maximum
landslide number density (100/km2). In terms of topography, the Xiaqu area belongs to the
transitional zone from high to low altitude, with an elevation generally ranging from 400 to
600 m. The hillslope gradients in this area are small, with a range from 10 to 30◦ and an
average gradient of 20◦. Regarding the rainfall distribution, the Xaiqu area is located in the
region with the highest precipitation of nearly 400 mm. Thus, the spatial distribution of
landslides is strongly controlled by the rainfall characteristics (Figures 16 and 10f). Other-
wise, the primary rock type in the Xaiqu area is Sinian mica schist and quartz schist (Sn-s)
and the statistical results show that over 35% of landslides are distributed in the area with
this lithological type (Figure 12). We suggest that the schist belongs to metamorphic rock,
which is influenced by geological structure, tectonics and mineral composition. When schist
is in contact with water, characteristics such as creep, mechanical anisotropy, softening
and deterioration may be observed. Due to these unique properties, schist in mountainous
areas often experiences frequent landslides [70,71]. For the study area, mica schist and
quartz schist have well-developed cleavage and high mica content. Meanwhile, due to the
long-term physical weathering, the rock mass on the surface of the bedrock is fragmented,
with highly developed fissures and locally filled mud. Therefore, this lithological type is
prone to the development of weak structural layers after long-term immersion of rainfall,
thereby providing a natural sliding surface for landslides [72]. Additionally, due to the
development of cracks in the weathered rock and soil, long-term rainfall can penetrate
through the cracks and increase pore water pressure in the rock mass and the decreased
shear resistance caused by increased self-weight of the rock mass is also one of the main
reasons for the occurrence of landslides.

In the southeast coastal area, orographic amplification of rainfall and the projection
of rainfall-vector on hillslopes might result in greater rainfall in the windward hillslopes,
resulting in a higher incidence of landslides on the hillslope scale [73]. During the summer
months (June and July), the Sanming area is dominated by the southeast monsoon, which is
influenced by the monsoon depression and tropical cyclone. The distribution of landslides
during this rainfall event indicates that hillslopes facing southeast and east are more
susceptible to collapse than those facing northwest-north (Figure 13). This phenomenon
can be mainly attributed to the fact that the south-oriented slopes are predominantly
windward, leading to greater rainfall and splash erosion.
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In addition, we collected the landslide data and the corresponding population statistics
from different towns (Figure 17). According to the statistical results, we found that the
landslide size in each town was similar, with most landslides ranging from 600 to 1000 m2.
Hangtan, Guangming and Yunkou towns had relatively larger average landslide areas,
reaching 1000 m2 (Figure 17). In terms of the relationship between landslide numbers
and population distribution in each town, we can observe that the towns with the most
concentrated landslides were areas with the lowest populations (Figure 17). For example,
more than 1000 landslides occurred in Xiaqu town but the local population is only 7000.
Yufang town had nearly 600 landslides, but the population is only around 2700. On the
other hand, areas with fewer landslides corresponded to regions with more concentrated
populations, such as Guyong and Shancheng towns, which had populations of 50,000 and
45,000, respectively, but only around 50 landslides occurred in each town. By comparing
the topography, geomorphology and rainfall characteristics of these towns, we found that
Yufang and Xiaqu towns were located in an area with the highest rainfall intensity and
the most susceptible strata for landsliding. In contrast, Guyong and Shancheng towns
had gentler terrain, with most hillslope gradients being less than 15◦, making them low-
susceptibility areas for landsliding. Although these areas are considered low-susceptibility
areas, the loss of people’s lives and property is still possible due to the landslides triggered
by typhoons and heavy rainfall events. Conversely, although Yufang and Xiaqu towns
are considered high-susceptibility areas for landsliding, their low population density may
result in a lower impact on residents and public facilities.
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Figure 17. Landslide scale, number of landslides and the corresponding population distribution in
different towns of the study area.

We calculated the antecedent precipitation index (API) of the study area with different
statistical steps (5, 10, 15 days) based on the daily precipitation data (Figure 18). The relevant
information about the API is detailed in the Supplementary Materials. From 1 April to
16 May, three API curves were all in the high-value range, with peaks occurring around
10 April, 20 April and 10 May, respectively. The first two peaks had relatively smaller API
values (90 mm and 80 mm), while the largest peak appeared around 10 May. The Sanming
area witnessed a strong rainstorm from 5 May to 10 May, with a total precipitation of
250 mm within 24 h and a maximum rainfall intensity of 56.6 mm/h. During this time, the
API curves increased significantly and reached their pinnacle (250–280 mm). Subsequently,
as the rainfall events ceased, the API rapidly decreased. In summary, the preceding rainfall
events with low intensity (before 5 May) increased the soil water content and the short
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duration of heavy rainfall on 8 May caused the rapid saturation of soil water content, thus
leading to the occurrence of massive landslides in the Sanming area.
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In physically based models, accurate input information is essential to obtain accurate
simulation results [58,74]. However, obtaining accurate input parameters for rock and soil is
a challenging task in actual situations, so input data differ from the actual situation to some
extent. For example, there is spatial heterogeneity in the mechanical parameters of different
positions on slope body and the mechanical and hydrological parameters may be different
at various depths [75]. In addition, the evaluation scale based on physically based models
is a large area, which is limited by sampling manpower and material resources, resulting
in a certain degree of uncertainty in the input parameters of the modelling [76,77]. The
evaluation results based on MAT.TRIGRS (V1.0) show that the overall prediction accuracy
is around 0.7 (Figure S1), which indicate that the prediction accuracy is reliable. However,
due to the subjectivity of the input parameters, there are still some errors between the
overall evaluation results and the actual landslides (Figure 14) and some areas with less
landsliding are predicted as high-susceptibility areas. Therefore, how to obtain accurate
input parameters on a regional scale remains an important constraint for rainfall-induced
landslide susceptibility assessment based on physically based models.

6. Conclusions

The objective of this study was to examine the landslides that occurred during the
heavy rainfall event from 5 to 10 May 2016 in the Sanming area and to identify the geo-
logical, geomorphological and hydrometeorological factors that contributed to landslide
hazards. The rainfall event resulted in around 2700 landslides covering a total area of
2.8 km2, predominantly in Xiaqu town. We analyzed the landslide distribution pattern
and its relationship with various factors. Our findings suggest that elevation, relief and
topographic wetness index (TWI) were not significantly correlated with the landslide
abundance index, while hillslope gradient, distance to a river and total rainfall played a
significant role in the occurrence of landslides. The Sinian mica schist and quartz schist
(Sn-s) lithological types were found to be the most susceptible to landslides, with more
than 35% of landslides occurring in only 10% of the area. This indicates that landslides are
more likely to occur in Sn-s strata during rainfall events. Additionally, the study showed
that southeast- and east-facing hillslopes are more susceptible to collapse than northwest-
north-oriented hillslopes due to the influence of the summer southeast monsoon. To further
examine the susceptibility of the area to landslides, we used the MAT.TRIGRS (V1.0) tool for
spatio-temporal susceptibility assessment. The results showed that unstable areas mainly
appeared on both sides of the gullies as the rainfall event began. By 8 am on 7 May, the
unstable area within the study area rapidly increased. Our numerical simulations indicate
that the preceding rainfall events with low intensity (before 5 May) increased the soil water
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content and the short duration of heavy rainfall on 8 May caused the rapid saturation of
soil water content, thus leading to the occurrence of massive landslides in the Sanming
area. Based on the findings, we recommend that more attention should be given to Sn-s
lithological types in the region during the planning and implementation of landslide hazard
mitigation measures. Additionally, our study highlights the importance of considering the
influence of monsoons on landslide susceptibility in the area. Future studies could consider
using high-resolution satellite images and other remote sensing techniques to monitor and
map the landslide distribution in the study area, as well as to assess the effectiveness of the
mitigation measures implemented.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15112738/s1. Figure S1. Prediction curves of simulation results
over different time periods; Table S1. Mechanical and hydrological parameters for different lithologi-
cal types in landslide abundance areas. References [78–83] are cited in the Supplementary Materials.
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