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Abstract: Accurate and reliable information on the spatiotemporal characteristics of agricultural
drought is important in understanding complicated drought processes and their potential impacts.
We proposed an integrated approach for detecting agricultural droughts and their cropland exposure
using remote sensing data over the Greater Mekong Subregion (GMS) collected from 2001 to 2020.
The soil moisture (SM) dataset (0.05°) was first reconstructed based on an ESACCI SM dataset using
a random forest (RF) model. Subsequently, the standardized soil moisture index (SSMI) was used
to identify the agricultural droughts by a three-dimensional (latitude-longitude-time) identification
method. In addition, the cropland’s exposure to agricultural droughts was evaluated. Results showed
that: (1) the reconstructed SM data achieved spatial continuity and improved spatial resolution. The
verified consequences showed that the reconstructed SM data agreed well with the in situ SM data.
Additionally, the SSMI based on reconstructed SM had good correlations with the standardized
precipitation evapotranspiration index (SPEI) calculated from station observations. (2) Twenty
agricultural drought events lasting at least 3 months were identified over the GMS region. The
averaged durations, areas, and severity were 7 months, 9 x 10° km?2, and 45.6 x 10° month-km?,
respectively. The four worst drought events ranked by severity were the 2019-2020 event, the
2015-2016 event, the 2009-2010 event, and the 2004-2005 event. (3) Based on the 20 identified
agricultural drought events, cropland exposure was high in Myanmar, Thailand, and Cambodia. On
average, the cropland exposure over the GMS was 1.71 x 10° km?, which accounts for 34% of the
total cropland. Notably, the four severest drought events swept over 80% of the total cropland area.
This study enriched our understanding of the development process of agricultural droughts from a
space-time perspective, which was pivotal for assessing drought impacts and managing agricultural
water resources.

Keywords: agricultural drought; soil moisture data reconstruction; three-dimensional identification;
cropland exposure; the Greater Mekong Subregion

1. Introduction

Drought is a natural hydroclimatic hazard that negatively impacts agricultural pro-
duction, ecosystems, and the social economy [1,2]. Drought is divided into meteorological,
agricultural, hydrological, socioeconomic, and environmental droughts [3,4]. Among them,
agricultural drought is a period of soil water deficit due to one or more factors of low
precipitation, high evaporation, and transpiration, leading to crop failure [4]. Agricultural
drought may occur at any stage of the crop-growing season and reduce crop yields [5].
Given the consequences and pervasiveness of agricultural drought, the accurate identifica-
tion and monitoring of agricultural drought is critical for agricultural production and food

safety [6].
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Many drought indices have been proposed to represent agricultural drought based on
ground observations and remote sensing [7], for example, those based on meteorological
variables: the standardized precipitation index (SPI) and the standardized precipitation
evapotranspiration index (SPEI) [4]; those based on soil moisture (SM): the standardized
SM index (SSMI) [8] and SM deficit index (SMDI) [9] and those based on vegetation:
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) [10].
SM affects the changes in water and energy fluxes between land and atmosphere, which is
an important limiting factor for crop production and has closer correlations to crop yield
reduction. In addition, SM affects vegetation growth more directly than the influence of
precipitation [5]. Therefore, SM is considered a key indicator for representing agricultural
drought [11].

SM is traditionally obtained from in situ observations, which provide reliable SM
estimation. However, it is challenging to express SM in a wide area by a single-point ground
observation [12]. Remote sensing could provide spatiotemporally continuous global SM es-
timation [13]. Currently, satellite sensors such as the Advanced Scatterometer (ASCAT) [14],
Soil Moisture Active Passive (SMAP) [15], Soil Moisture Ocean Salinity (SMOS) [16], and
Sentinel missions [17] can retrieve global SM. However, most of these sensors commenced
their operations after 2005, which cannot be applied to long-term drought research. The Eu-
ropean Space Agency Climate Change Initiative (ESACCI) exploited multi-source data with
the complete global SM data over 40 years. The dataset combines several SM products from
a variety of satellite sensors, making up for the shortcoming of existing SM estimates [18].
The ESACCI SM dataset has been verified in many regions worldwide and has been proven
to have similar temporal trends as in the in situ SM [19-21]. Therefore, it is an invaluable
data source for agricultural drought monitoring on a global scale or regionally [11,22].

Nevertheless, the ESACCI SM dataset has several limitations in agricultural drought
monitoring applications. There are many missing or poor-quality SM values due to factors
such as cloud contamination, failure of satellite operation, satellite orbit changes, and
uncertainty on the coast and in the mountains [23-25]. Moreover, the ESACCI SM dataset
has a spatial resolution of 0.25°, which is coarse to support the applicable conditions in
some regional areas. To solve this problem, ESACCI SM filling and reconstructing methods
were proposed to increase data integrity and improve spatial resolution [25,26]. The core
idea of SM data filling and reconstructing is to institute a statistical or physical relationship
between SM and environmental variables. Machine learning (ML) techniques have been
recently widely used in SM data reconstruction applications [27,28]. For instance, random
forest (RF) has been proven effective because of its excellent capability to reconstruct remote
sensing products [29-31].

The identification and feature extraction of droughts is crucial to explore the spatiotem-
poral variations of drought events. Traditional methods determined the temporal character-
istics of drought in specific regions or detected the areal extent affected by droughts over a
specific period. However, a drought event is a three-dimensional (3D) phenomenon—it
involves both time and space dimensions [32]. Therefore, drought events identified from
time-only or spatial-only dimensions usually neglect and discard much of the continuous
spatiotemporal property of the actual droughts [33]. Some reports have considered the
spatiotemporal synchronous identification and feature extraction of droughts [34]. The
representative study of Andreadis, et al. [35] introduced a clustering algorithm that can
be used to identify a single drought event through space and time. Lloyd-Hughes [33]
extended this method to analyze the resemblance between the structures of individual
droughts. Later, a study implemented a technique by gathering contiguous drought re-
gions into clusters worldwide [36]. After that, this spatiotemporal technique was applied
to characterizing droughts by several researchers [37-39]. In addition, the 3D approach
was used to explore the population exposed to drought events [40]. However, less attention
was given to the influence of agricultural droughts on cropland exposure [41,42].

The Greater Mekong Subregion (GMS) includes Cambodia, Laos, Myanmar, Thai-
land, Vietnam, and the Yunnan Province of China. The population of the region was
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approximately 295 million in 2021. Approximately 70% of the population in the Lower
Mekong Basin is active in agriculture [43]. Under the context of global warming, droughts
are becoming frequent and severe in the region. For example, droughts in 1997-1998,
2003-2005, 20092010, 2015-2016, and 2019-2020 caused severe impacts on agricultural
production [1,44-46]. Former studies of droughts over the GMS mainly involved meteo-
rological and hydrological droughts [1,47-49]. To the best of our knowledge, few studies
have used long-term and high-resolution SM data to monitor agricultural drought and
cropland exposure in the drought-vulnerable GMS. Overall, the primary goals of this study
can be summarized as follows: (1) to reconstruct a high spatial resolution (0.05°) SM dataset
based on the ESACCI data; (2) to identify the agricultural drought characteristics from 3D
identification method and (3) to explore the cropland’s exposure to agricultural drought
in the last two decades. The contribution of our research is to use high spatial resolution
SM data to identify agricultural drought events from a perspective of a three-dimensional
(latitude-longitude-time) and reveal the exposure of the cropland to drought events, which
is pivotal for assessing drought impacts and managing agricultural water resources.

2. Materials and Methods
2.1. Study Area

The GMS geographically consists of Yunnan in China and five countries in Indochina
Peninsula (Figure 1a). Four large transboundary rivers pass through the region, namely
the Irrawaddy River, the Salween River, the Mekong River, and the Red River. The GMS
is dominated by monsoon climates, with the rainy season of approximately half a year
(from May to October) and the dry season of another half year (from November to April
of the next year) in most areas. The precipitation in the wet season accounts for more
than 80% of the total annual precipitation. It is affected by the East Asian and Indian
summer monsoon [50]. The GMS is vulnerable to hydrological extremes such as floods or
droughts [51]. Due to a large area of arable land (Figure 1c), grain yield is high in the GMS,
which plays a critical role in food safety and human livelihoods; furthermore, agriculture is
the major contributor to the local economy.
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Figure 1. Study area (a), location of stations (b), and spatial distribution of croplands (c).

2.2. Materials
2.2.1. ESACCI SM

The ESACCI SM dataset merges multiple SM products derived from 10 microwave
remote sensing sensors. It comprises three products: the ACTIVE, the PASSIVE, and the
COMBINED, combining the advantages of these sensors. All three products are repre-
sentative of the first few centimeters of soil (0-5 cm) [18,24]. In this study, the ESACCI
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COMBINED product of version 6.1, which covers 20 years of SM data from January 2001 to
December 2020, was used (Table 1).

Table 1. List of data used in this study.

Index Datasets Resolution Source
o . https:/ /www.esa-soilmoisture-cci.org/,
Surface SM ESACCI 0.25°, daily accessed on 9 October 2021
Surface SM In situ Point, hourly Yunnan Meteorological Service
https:/ /search.earthdata.nasa.gov/,
Surface albedo MODO09A1 500 m, 8-day

accessed on 9 October 2021
https:/ /search.earthdata.nasa.gov/,

LST MOD11A2 1km, 8-day accessed on 9 October 2021
NDVI MODI13A3 1km, monthly http . C/ C{E Z‘;Zf;f;rg‘izg’e';“;%aﬁov/ ’
Land cover type MCD12Q1 500 m, yearly httpz({c/ezeszlggﬁagrgiz?e'?zzzlgov/’
Precipitation CHIRPS 0.05°, monthly https;/c é :s'ast:acg;';;s]zﬁj;/y pzrgzdl‘lm/ '
Elevation SRTM 90 m, - hitps:/ /srtm ';Z;ifﬁﬁg:%{)’zi‘ccessed on
Percent of clay, sand, and silt HWSD 307, - http;;/cé;;l:é‘/\gff\ggrcgt(/);:il;}(t;gital/,

Precipitation, temperature,
relative humidity, wind speed, Meteorological data Point, daily Yunnan Meteorological Service
and sunshine duration

2.2.2. Auxiliary Data

The auxiliary data used in SM data reconstruction include precipitation, surface albedo,
land surface temperature (LST), normalized difference vegetation index (NDVI), soil texture,
and elevation (Table 1). Monthly precipitation data were collected from the Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS) [52]. The surface albedo, LST, and
NDVI were from Moderate-Resolution Imaging Spectroradiometer (MODIS) products:
MOD09A1, MOD11A1, and MOD13A2. The surface albedo was calculated using different
bands of MOD09A1 product [53]. Before using MODIS products, their outliers were
first eliminated according to the quality control file. Then, the eliminated values were
supplemented using the Savitzky—Golay (S-G) filter [54] and the Inverse Distance Weight
(IDW) method [55]. The elevation and soil texture data were collected from Shuttle Radar
Topography Mission (SRTM) [56] and Harmonized World Soil Database (HWSD) [57],
respectively. In addition, the yearly land cover product (MCD12Q1) [58] was also applied
to explore the influence of agricultural drought on cropland in the GMS.

2.2.3. Ground-Based Observation Data

In situ, SM data from 37 automatic measurement stations during 2016-2020 were
collected, with a topsoil depth of 0-10 cm and a temporal resolution of an hour over Yunnan
Province in China. To unify all products, the temporal resolution of ground-observation SM
data was resampled into a monthly average. In addition, daily precipitation, temperature,
relative humidity, wind speed, and sunshine duration during 2001-2020 were obtained
from 122 meteorological stations in Yunnan Province. The in situ SM and meteorological
data were acquired from the Yunnan Meteorological Service, which had been quality
controlled. The locations of automatic measurement stations and meteorological stations
are shown in Figure 1b.

2.3. Methods

As shown in Figure 2, the framework of this study includes four parts—part 1: data
preparation; part 2: calculation of SSMI using high spatial resolution SM data; part 3:
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identification of agricultural droughts based on a 3D method and part 4: calculation of
cropland’s exposure to agricultural drought events.
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Figure 2. Methodological framework of this study.

2.3.1. Data Processing

Because of the different spatial and temporal resolutions of the data used in this study,
we established a uniform data preprocessing standard. All grid data used in SM data
reconstruction were reprojected to GCS-WGS-1984 coordinates, and the spatial resolution
was resampled to 0.25° and 0.05°. Time series data, including SM, precipitation, NDVI, LST,
and surface albedo, were converted to monthly averages. For comparison purposes, these
datasets used a common recording period (January 2001-December 2020). In addition, the

units of in situ SM data were converted to volume water content (m3/m?), consistent with
the ESACCI SM units.

2.3.2. Calculation of SSMI and SPEI

The ESACCI SM dataset has many missing or poor-quality pixels and relatively coarse
spatial resolution. Therefore, we implemented an SM data reconstruction framework using
an ML method to obtain high spatial resolution (0.05°) SM data in the GMS. As a classic
ML method, the RF model proposed in 2001 uses multiple decision trees to formulate an
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ensemble learning algorithm [59]. It has been widely used in various data predictions
and reconstructions because of its excellent learning and predicting ability [60,61]. The
specific structure of the model is described in previous studies [59,60,62]. In this study,
the precipitation, LST, NDVI, surface albedo, elevation, and soil texture were chosen as
input environmental variables in the reconstruction process because they can explain the
SM variation. First, we set the RF model to establish a nonlinear relationship between the
input environmental variables and the available ESACCI SM dataset at the coarser spatial
resolution (0.25°). In this process, 70% of the total number of samples were randomly
selected as a training set, and the remaining 30% were selected as a validation set for
the training process [63,64]. The settings of the parameters in the RF model are shown
in Table S1. Second, environmental variables with a fine spatial resolution (0.05°) were
introduced to the trained RF model to obtain high-resolution reconstructed SM data. Finally,
the reconstructed SM data were validated with the in situ SM data.

The SSMI was applied to identify agricultural drought events using the reconstructed
SM data for 2001-2020. The calculation method of the SSMI used the following formula:

SMZ',]' —SM j
SSMI;j = ——= (1)
7j
where i represents the ith year from 2001 to 2020, j represents the jth month, and SM; and
0; are the mean and standard deviation values, respectively, in the jth month. Moreover,
SSM1I; j and SM; j express SSMI and SM of the ith year and jth month, respectively [65].

In this research, we chose the 3-month scale SSMI (S5SMI-3) to identify agricultural
drought events for its effective application in various long-term regional or global drought
assessments [66,67]. According to the agricultural drought classifications based on SSMI,
SSMI-3 less than —0.8 was identified as drought [8].

The SPEI has been used in an increasing number of drought studies. It combines the
variability of precipitation and temperature and has the characteristics of dimensionless,
standardized, and multi-time scales [68]. Generally, a 3-month-timescale SPEI (SPEI-3) is
suitable for describing agricultural drought. Therefore, in this study, SPEI-3 was calculated
based on precipitation, temperature, relative humidity, wind speed and sunshine duration
data collected from 122 meteorological stations during 2001-2020 to validate the SSMI-
3. The specific description of the SPEI calculation method is shown in Text S1 in the
Supplementary. There were four evaluation indicators for the validation assessment,
namely the Pearson correlation coefficient (R), root mean square error (RMSE), unbiased
root mean square error (ubRMSE), and Bias, the details of which were presented in the
earlier publications [64].

2.3.3. Drought Events Identification Based on a 3D Method

A 3D method was used to extract spatiotemporal continuous drought events based on
the SSMI. The drought event identification included two steps: (1) Identification of drought
patches: The grids with SSMI-3 less than —0.8 were determined as drought patches and
were spatially adjacent. In this process, the area of the drought patch (A) smaller than
a threshold (A, 1.5% of the study area) was ignored [69]. (2) Temporal connections of
drought patches: After identifying the drought patches of each month, it was necessary to
judge whether they were continuous in time. The overlapping area of drought patches for
two neighboring months was used to determine whether the patches were continuous in
time. Only the overlapping area that exceeded the threshold (A() was defined as the same
drought event. In this study, drought events lasting at least three consecutive months were
retained for further study.

The drought features extracted based on the 3D identification method could compre-
hensively reflect the spatiotemporal continuous evolution characteristics of drought. In
this study, four drought characteristics were considered: (1) Drought duration (months): It
represented the duration of a drought event, which could also be considered the height of a



Remote Sens. 2023, 15, 2737

7 of 20

spatiotemporal continuum of drought events. (2) Drought area (km?): Tt expressed the area
swept by a drought event. In 3D drought identification, it was also considered a vertical
projected area of the spatiotemporal continuum of drought events on the two-dimensional
(2D) geographic coordinate plane. (3) Drought severity (month-km?): It represents the
degree of water shortage in arid areas and is calculated by a cumulative value of the SSMI-3
over total grid pixels within the 3-D space-time domain. (4) Drought center: The location
of the centroid of a 2D layer or 3D volume represented the event’s center.

2.3.4. Cropland’s Exposure to Agricultural Droughts

Exposures are defined as social, economic, or cultural assets that might be adversely
affected by location and environmental impacts [70]. Therefore, to reflect the spatial
differences of cropland exposed to drought and the comprehensive impact of drought on
the cropland, we need to evaluate cropland exposure during the research period. In this
study, the spatial location of drought characteristics over the years—the area, duration, and
drought severity—was superimposed on the spatial distribution of cropland from land
cover data to explore the effects of drought on cropland and the spatiotemporal distribution
of drought-affected cropland.

3. Results
3.1. SM Data Reconstruction and Validation

Figure 3 shows the performance of the RF model at coarse resolution. As shown,
the validation subsets had satisfactory results in terms of R, RMSE, and Bias metrics.
These results suggest that the RF model could generalize data beyond the training sets.
Specifically, the validation subset achieved high R (approximately 0.82) and small RMSE
(approximately 0.04 m?®/m?3) and Bias values (close to 0 m?/m3). Most of the reconstructed
values were around the 1:1 fitted line, indicating that the RF model could fit the relationships
between the environmental variables and the ESACCI SM dataset well at the coarser
resolution. Subsequently, high-resolution environmental variable data (0.05°) were input
to the trained model to obtain high-resolution SM data from January 2001 to December
2020. Figures 4 and 5 show the spatial pattern of the original ESACCI and reconstructed
SM data from January 2004 to December 2006, respectively. The original ESACCI SM
dataset had large areas with invalid values because of radio frequency interference, dense
vegetation, and satellite operation gaps [71]. The wide distribution of invalid values and the
coarse spatial resolution limited their ability to estimate SM. In contrast, the reconstructed
SM data not only improved the ability to express details but also achieved spatial full
coverage. Moreover, the variations between dry and wet seasons could be well reflected
by the reconstructed SM data, indicating that the reconstructed SM data could reveal
SM dynamics.

Counts
0.5 100
0.4 80
:E, 0.3 60
=
w
B
3 021 40
=
2 .
A~ y=0.6429x+0.1024
0.1 : R=0.8189 20
il RMSE=0.0405m*/m?
3 2 0. 4m?/m?
0.0 4 , . ’BIHS OOQ m’/m 0
0.0 0.1 0.2 0.3 0.4 0.5

Original SM(m*/m?®)

Figure 3. Scatter plot of the predicted values based on RF of the validation set.
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Figure 5. Spatial distribution of reconstructed monthly SM from January 2004 to December 2006.

The reconstructed SM data with 0.05° resolution were validated using the in situ
SM from 37 site observations over the Yunnan Province from January 2016 to December
2020. Figure 6 displays the spatial distributions of the R, ubRMSE, and Bias values at
every site. The consequences revealed that approximately 65% of the observations had
R values higher than 0.60, approximately 50% of the observations had ubRMSE values
below 0.04 m3/m3, and over 80% of the observations had absolute Bias values below
0.1 m3/m?3. Generally, the reconstructed SM data had relatively good accuracy at most sites
except for some sporadic sites in mountainous areas or valleys. Usually, the reliability of
microwave SM data is relatively low in areas with complex terrain. Moreover, a satellite-
based environmental variable usually marked as low quality would be discarded, which
may reduce the accuracy of the RF algorithm to estimate SM in these areas during the
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training process [13]. In addition, it should be noted that the verification consequences
would be affected by the limited number of observations, the difference in the spatial
scale of observation networks and the reconstructed SM data, and the different surface
soil depths of different SM products [64,72]. Nevertheless, the validation results of the
reconstructed SM data had the median values for ubRMSE, Bias, and R of 0.0406 m®/m?3,
—0.0294 m®/m?3, and 0.7197, respectively, indicating that the reconstructed SM data were
agreed well with the in situ SM data.
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Figure 6. Validation results of the reconstructed SM data using in situ observations: (a) R, (b) ubRMSE,
and (c) Bias.

3.2. Agricultural Drought Identification Based on 3D Method

Based on the reconstructed SM data, the SSMI-3 was calculated in the GMS over the
2001-2020 period. Usually, drought indices according to remote sensing need to be verified
by indices according to in situ observations to prove their reliability [7]. In agricultural
drought monitoring, the SPEI can be used as a benchmark to verify the reliability of SSMI [8].
In addition, good agreement was found between SSMI and SPEI over the GMS [73]. Thus,
to verify the SSMI reliability, the accordance between the two indices was analyzed by
evaluation of the linear correlation. Figure 7 illustrates the spatial distribution of R between
SSMI-3 and SPEI-3 during 2001-2020. It was found that the SSMI-3 significantly correlates
with the SPEI-3, varying between 0.12 and 0.77, with a median R-value of 0.5851. At more
than 95% of the sites, the correlation between SSMI-3 and SPEI-3 was significant (p < 0.05),
which proved that the reliability of the SSMI based on the reconstructed SM data could
identify agricultural drought.
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Figure 7. R between SSMI-3 and SPEI-3 during 2001-2020.

Based on the SSMI-3, a total of 20 drought events were identified during 2001-2020 over
the GMS by the 3D identification method. Table 2 demonstrates the drought characteristics
of each agricultural drought event. It could be seen that the drought durations varied from
3 months to 23 months, with an average value of 7 months. The drought areas ranged from
1.95 x 10° km? to 23.24 x 10° km? with an average value of 9 x 10° km?. Drought severity
ranged from —4.62 x 10°-month-km? to —207.44 x 10°-month-km?, with an average value
of approximately —45.6 x 10° month-km?. Within the two decadal categories (2001-2010
and 2011-2020), the number of droughts, duration, and absolute values of drought events’
severity for the periods of 2011-2020 increased by 22.22%, 65.38%, and 32.75%, respectively,
compared with the periods of 2001-2010. Concerning the drought timing, most of the
drought events started in autumn (45% of the total droughts), followed by spring, winter,
and summer. Additionally, most drought events ended in summer or spring (70% of
total droughts).

Table 2. Drought characteristics of agricultural drought events from 2001 to 2020.

Drought . Beginning Endin, Drought Center Drought Drought
Eveﬁt Duration Time Timeg Are§ Severgity
Number (Months) (Year/Month)  (Year/Month) (Ye:i'?lt/ionth) Lon(g:zt)u de Lit:;l)de (105 km?) (105-Month-km?)
1 3 2001/03 2001/05 2001/04 97.69 23.68 5.87 —10.05
2 3 2002/04 2002/06 2002/05 99.79 19.10 2.67 —4.62
3 3 2002/09 2002/11 2002/10 98.60 23.28 1.95 —5.01
4 10 2003/07 2004/04 2003/11 100.14 19.61 15.95 —66.74
5 9 2004/10 2005/06 2005/02 102.09 16.57 19.40 —118.60
6 3 2005/05 2005/07 2005/06 99.15 23.63 6.95 —16.22
7 5 2006/11 2007/03 2007/01 102.22 18.02 9.28 —24.51
8 4 2009/01 2009/04 2009/02 100.19 2225 8.87 —19.35
9 12 2009/09 2010/08 2010/02 101.25 19.79 21.16 —126.42
10 5 2011/06 2011/10 2011/08 103.41 25.16 2.67 —13.02
11 6 2011/10 2012/03 2011/12 97.92 25.34 432 —11.45
12 4 2012/03 2012/06 2012/04 101.61 23.97 5.02 —10.34
13 10 2012/10 2013/07 2013/02 99.88 21.44 15.54 —57.32
14 3 2012/11 2013/01 2012/12 105.59 14.74 2.60 —5.17
15 3 2014/02 2014/04 2014/03 100.62 12.46 2.10 —4.74
16 6 2014/02 2014/07 2014/04 100.19 22.82 10.16 —30.83
17 6 2014/09 2015/02 2014/11 96.58 2294 5.40 —20.64
18 17 2015/04 2016/08 2015/12 102.62 16.40 20.97 —150.72
19 3 2018/10 2018/12 2018/11 105.76 15.04 2.74 —8.08
20 23 2019/01 2020/11 2019/12 100.64 18.54 23.24 —207.44
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Severity denotes the accumulated water shortfall over the entire drought duration
and areal extent during a drought event, which is a composite parameter affected by
both drought area and drought duration. Thus, we selected the severest drought event
during 2019-2020 as an exemplary drought event and illustrated its evolution process. The
evolution process of the drought event and its characteristics are shown in Figure 8. In the
first month of the event, which started in January 2019 in northern Cambodia, the total
area of the drought patch was approximately 0. 48 x 10° km?, accounting for 1.88% of the
total area (Figure 8a,b). The expansion of arid space developed slowly in the first 3 months.
From March 2019, the drought area expansion developed rapidly and reached its first peak
by May 2019, with the drought area approximately 13.31 x 10° km?, accounting for 51.93%
of the total area. The total area had been shrinking over the next 3 months. In the following
11 months, the overall trend of the drought area showed a slow expansion until July 2020,
when the dry area reached its second peak of 11.93 x 10° km?. After that, the drought area
began to shrink again until the event ended in November 2020. The patterns of variation in
severity were analogous to that in the area: two peaks of drought severity were reached at
approximately —22.19 x 10°> month-km? and —19.55 x 10° month-km? in May 2019 and
July 2020, respectively (Figure 8b).
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Figure 8. Three-dimensional identification results of the most severe drought from January 2019:
(a) three-dimensional drought event; (b) temporal evolution of area and severity; (c) centers routine
of the drought event; (d) spatial distribution of duration.

The drought event had a long centroid movement from the southeast to the northwest
of the GMS (Figure 8c). The drought first occurred concentratedly in northern Cambodia in
January 2019, and then the drought center gradually moved to the northwest. The center of
the drought patch extended to eastern Myanmar with an average speed of 287.27 km per
month when the drought reached its severest month (May 2019)—its first drought peak.
Afterward, drought severity began to moderate until, in August 2019, it reached a local
minimum. However, after that, the drought severity gradually increased with the drought
centroids moving northeastward and gathering in Thailand. When it reached its second
peak (July 2020), the center was still located in Thailand. After that, the drought slowed; its
centroids moved northwest again and finally ended in north-central Myanmar in November
2020. This 23-month drought event affected approximately 90% of the study area. The
centroid’s movement had a total length of 4030 km. Central and western Myanmar, the
border between Laos and Myanmar, central and western Thailand, and central and northern
Cambodia experienced a long drought, with a duration of more than 8 months (Figure 8d).

Figure 9 shows the spatial patterns of drought frequency, duration, and accumulated
severity of the agricultural drought of each grid over the GMS during 2001-2020. Approx-
imately 16% of the total area experienced more than 10 events during the two decades.
These areas were mainly located in the western Yunnan Province and northeastern Myan-
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mar (Figure 9a). Approximately 5% of the total area experienced more than 35 months
of drought during the 20 years, meaning these regions had experienced drought at least
15% of the time in the past 20 years (Figure 9b). These regions were mainly located in the
southern Yunnan Province, middle and eastern Myanmar, and northern Thailand and Laos.
The drought severity presented a similar spatial pattern to the duration (Figure 9c). The
area with a larger duration and severity indicated a relatively high level of agricultural
drought risk.

Number of Events Duration(month) Accumulated Severity

30° N+ 30° N 30° N
25° N- 25° N 25° N+
20° N- 20° N 20° N+
15° N- 15° N 15° N-
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Figure 9. Spatial patterns of different drought characteristics: (a) number of events, (b) duration, and
(c) accumulated severity.

3.3. Cropland’s Exposure to Drought Events

To analyze the cropland’s exposure to agricultural drought events, the cropland in the
MODIS land cover data was extracted from 2001 to 2020, as shown in Figure 10. During
2001-2020, the average cropland was 4.97 x 10° km? over the GMS. Spatially, large areas
of continuous cropland were distributed in central and southern Myanmar, central and
southern Thailand, and the Tonle Sap Lake floodplain in Cambodia. In contrast, Yunnan
Province, Vietnam, and Laos had a sporadic cropland distribution with a relatively small
area. Since the cropland area had remained stable over the past two decades, the cropland
area exposed to drought mainly depended on droughts rather than cropland expansion.
Table 3 presents the characteristics of cropland exposed to the identified agricultural
droughts. The data illustrate that the cropland area affected by agricultural droughts
ranged from 0.07 to 4.72 x 10° km?, with an average value of 1.71 x 10° km?, accounting
for 34% of the total cropland over the GMS. As expected, the four severest drought events
(Nos. 5,9, 18, and 20) affected more than 80% of the total cropland area.

Figure 11 shows the spatial distribution of cropland exposed to agricultural drought
in different periods. During 2001-2020, cropland exposure was generally high in Myanmar,
Thailand, and Cambodia, which had large cropland areas. On the contrary, cropland
exposure was low in Laos, Vietnam, and Yunnan Province due to the limited cropland areas
(Figure 11a). Spatially, cropland exposed to more, longer, and more severe agricultural
drought events was observed in central and southern Myanmar. In Thailand and Cambodia,
cropland suffered from less but severer droughts. Compared with 2001-2010, cropland was
exposed to agricultural drought with fewer events but higher severity in central Myanmar
during 2011-2020 (Figure 11b,c). In addition, the cropland in Yunnan Province and Thailand
experienced more and severer agricultural droughts from 2011 to 2020.
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2018

- Cropland

Figure 10. Spatial distribution of cropland from 2001 to 2020.

Table 3. Characteristics of crops exposed to drought.

Drought Total Croplan(;l Drought Total Croplan;l
Event Cropland Expose Percentage Event Cropland Expose Percentage
Number (10° km?) to Drought Number (10° km?) to Drought
(105 km?) (10° km?)
1 4.85 0.83 17.18 11 497 0.25 4.96
2 4.90 0.60 12.29 12 497 0.25 5.08
3 4.90 0.07 1.40 13 5.01 3.22 64.19
4 4.96 3.34 67.21 14 497 0.94 18.84
5 5.02 441 87.95 15 5.04 0.11 2.19
6 5.02 1.05 20.87 16 5.04 0.82 16.21
7 5.00 1.65 33.02 17 5.04 1.13 22.35
8 4.99 1.09 21.91 18 5.06 4.59 90.66
9 5.01 4.43 88.52 19 4.85 0.58 11.89
10 497 0.19 3.80 20 4.85 472 97.30
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Figure 11. Spatial distribution of cropland exposed to agricultural drought in different periods.
(a) 2001-2020, (b) 2001-2010, and (c) 2011-2020.

4. Discussion

SM is considered a key indicator for representing agricultural drought. However,
obtaining the in situ SM data over the GMS is difficult due to the scarcity of monitoring
networks [74]. Although the ESACCI SM dataset has broad application prospects in
agricultural drought monitoring, the applications are co-limited by missing data and
coarse spatial resolution. In this study, we proposed an SM data reconstruction approach
combining the ESACCI SM dataset, environmental variables, and the RF model to obtain
high spatial resolution SM data over the GMS. The results showed that the reconstructed
SM data achieved spatial continuity and improved spatial resolution. The validation based
on 37 in situ SM data points indicated that the reconstructed SM data agreed well with the
in situ data, with median values for ubRMSE, Bias, and R of 0.0406 m®/m?3, —0.0294 m3/m?5,
and 0.7197, respectively. Compared with the verification results of the original ESACCI SM
dataset in China [21] and Yunnan Province [75], the reconstructed SM data in this study
achieved even better comparable performance. Although the verified sites are limited
and distributed in Yunnan Province, we are confident that the reconstructed SM data will
perform better in other regions. This is because Yunnan is a region with complex terrain
and low-quality remotely sensed SM and environmental variables data, inevitably affecting
the SM data reconstruction process. However, the correlations between remotely sensed
SM and environmental variables are expected to be higher in flat areas [13].

ML was widely used in many SM reconstruction studies because it could well fit
and establish the nonlinear relationship between various environmental variables and SM
data [71,76]. In this study, the SM data reconstruction achieved satisfactory results using
the RF model due to its outstanding performance in fitting data. However, the RF algorithm
is unable to consider the spatiotemporal neighborhood relationships. Deep learning can
extract the temporal and spatial features of continuous spatiotemporal data [77,78]. Thus,
the use of deep learning may provide better results [31,79]. In the process of SM data
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reconstruction, analyzing the importance of these environmental variables would help
to understand the mechanism of their impact on SM [30]. Figure S1 shows the averaged
variable importance scores for environmental variables. It was proven that precipitation
played the most important role because it was a key variable that directly caused changes
in surface SM [30]. Local topography had a greater impact on SM changes in areas with
large elevation fluctuations, and LST controlled the energy exchange at the land surface.
Therefore, elevation and LST also had high importance in the reconstruction process,
consistent with the other studies [64,80]. In addition, NDVI and surface albedo were
also relatively important in SM data reconstruction because they could reflect vegetation
conditions and surface energy exchange, respectively [64].

Traditional drought event identification only describes drought from a time or space
perspective and cannot describe drought’s change process from the perspective of tem-
poral and spatial continuity [32,69]. In this study, we presented a 3D method to identify
agricultural drought events using reconstructed high spatial resolution SM data. There
were 20 droughts identified lasting at least 3 months, which meant the GMS suffered from
drought on average once per year. As expected, notoriously severe droughts were ranked
high in the consequences, such as the 2019-2020 event [81], the 2015-2016 event [82], the
2009-2010 event [48], and the 2004-2005 event [45], which indicated that the 3D method
was to be reliable for drought events detection. Furthermore, the relationship among the
severity, area, and duration of drought events was explored, as shown in Figure S2. The
drought severity showed exponential and linear changes with drought area and duration.
The fitted exponential and linear functions had R? of 0.99 and 0.92, respectively. Meanwhile,
the log function was used to fit the area and duration, with an R? of 0.84. Similarly, another
drought analysis using a 3D algorithm also indicated that the drought severity significantly
correlated with drought area and duration [37,83], which would help to analyze drought
frequency and assess drought impacts.

There are noticeable disparities in the spatiotemporal changes of agricultural droughts
because of the diversity in climate, topographical reliefs, and geography of the GMS.
For example, the Rakhine Yoma mountain range cast a rain shadow over a large portion
of central Myanmar, which as a result receives less precipitation and is more likely to
experience droughts [84]. Thailand regularly experiences yearly droughts because of an
increase in average annual temperature and a decrease in mean annual rainfall [85]. It
is found that cropland exposure is high in Myanmar, Thailand, and Cambodia, where
there is a large area of cropland. On average, the cropland exposure over the GMS was
1.71 x 10° km?, which accounted for 34% of the total cropland. Notably, the four severest
drought events affected more than 80% of the total cropland area. Irrigation is an effective
measure to resist drought. However, the majority of the agriculture in the GMS is rain-fed.
Figure S3 shows different irrigation levels over cropland in the GMS. The irrigation data
were collected from global irrigation data during 2001-2015 [86]. Approximately 18% of the
total cropland achieved high irrigation, mainly distributed in Vietham’s Mekong and Red
Delta, Chao Phraya River basin in Thailand, and Irrawaddy Delta in Myanmar. However,
approximately 82% of the total cropland had low or no irrigation, which is common in
whole regions. This situation made the cropland vulnerable to agricultural drought. The
rice production and export volume of GMS regions rank among the top in the world [87],
and rain-fed rice cultivation means food security [88]. To deal with the increasing drought
events in the future [89], some successful experiences to learn from include: (1) effective
risk management measures by governments and cross-regional cooperation, such as the
Lancang-Mekong Cooperation mechanism; (2) strengthening infrastructure investment
and (3) improving drought early warning and real-time monitoring means [90].

5. Conclusions

In this research, we proposed an integrated approach for detecting agricultural
droughts and their cropland exposure using remote sensing data over the GMS. The
SM dataset (0.05°) was first reconstructed using an RF model based on the ESACCI SM



Remote Sens. 2023, 15, 2737

16 of 20

References

dataset. The validation results indicated that the reconstructed SM data achieved satis-
factory results and could be confidently applied in agricultural drought monitoring. The
SM data reconstruction filled the gap in using satellite SM data for drought monitoring,
co-limited by missing data and coarse spatial resolution. Furthermore, 3D drought identifi-
cation results provided more comprehensive insights into the spatiotemporal continuous
evolution process of agricultural droughts. In essence, the GMS has faced severe agricul-
tural droughts in the last two decades, highlighting the worth of comprehensive impact
assessments of agricultural droughts. It was found that cropland exposure was high in
Myanmar, Thailand, and Cambodia. Severe droughts coupled with insufficient irrigation in
the Mekong countries require timely preparation and adaptation to strengthen agricultural
resilience to climate change. The integrated approach proposed in this research can be
extended to other vegetated regions with limited in situ data available to provide detailed
spatiotemporal characteristics of agricultural droughts. Moving forward, the capability of
this approach in drought monitoring can be further improved by using more advanced
deep-learning models and finer remote sensing data.
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SPEI index.
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