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Abstract: Traditional dehazing approaches that rely on prior knowledge exhibit limited efficacy when
confronted with the intricacies of real-world hazy environments. While learning-based dehazing
techniques necessitate large-scale datasets for effective model training, the acquisition of these
datasets is time-consuming and laborious, and the resulting models may encounter a domain shift
when processing real-world hazy images. To overcome the limitations of prior-based and learning-
based dehazing methods, we propose a self-supervised remote sensing (RS) image-dehazing network
based on zero-shot learning, where the self-supervised process avoids dense dataset requirements
and the learning-based structures refine the artifacts in extracted image priors caused by complex real-
world environments. The proposed method has three stages. The first stage involves pre-processing
the input hazy image by utilizing a prior-based dehazing module; in this study, we employed the
widely recognized dark channel prior (DCP) to obtain atmospheric light, a transmission map, and
the preliminary dehazed image. In the second stage, we devised two convolutional neural networks,
known as RefineNets, dedicated to enhancing the transmission map and the initial dehazed image.
In the final stage, we generated a hazy image using the atmospheric light, the refined transmission
map, and the refined dehazed image by following the haze imaging model. The meticulously crafted
loss function encourages cycle-consistency between the regenerated hazy image and the input hazy
image, thereby facilitating a self-supervised dehazing model. During the inference phase, the model
undergoes training in a zero-shot manner to yield the haze-free image. These thorough experiments
validate the substantial improvement of our method over the prior-based dehazing module and the
zero-shot training efficiency. Furthermore, assessments conducted on both uniform and non-uniform
RS hazy images demonstrate the superiority of our proposed dehazing technique.

Keywords: remote sensing image dehazing; zero-shot learning; dark channel prior

1. Introduction

Remote sensing images (RSIs) now have widespread uses in many computer vision
(CV) applications [1], including land cover classifications [2], road extractions [3], semantic
segmentation [4], target detection [5], and others. However, due to interferences from haze
or cloud, the acquired RSIs often suffer from blurring and haziness, which significantly
limits the potential of high-level CV applications. Therefore, image dehazing has become
an essential preprocessing operation for enhancing the visual quality of RSIs.

Traditionally, researchers have attempted to directly enhance the quality of hazy
images in either the spatial or frequency domain, using what are known as enhancement-
based methods. In the spatial domain, Liu et al. [6] improved the local visibility and global
contrast of hazy images using gamma correction and adaptive histogram equalization,
respectively. Their proposed dehazing method offers the advantages of good detail preser-
vation and less color distortion. Conversely, Khan et al. [7] addressed the dehazing problem
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in the frequency domain. They decomposed hazy images into high-frequency and low-
frequency bands using wavelet transformation, where the atmospheric light was estimated
in the high-frequency sub-bands and the low-frequency sub-band was selected for haze
removal. Although these enhancement-based methods significantly improve the contrast
and detail of hazy images, they are unable to remove haze effectively without considering
the underlying principles of haze generation. Additionally, the degree of enhancement is
not adaptive, which can lead to over-enhancement in some cases.

In contrast to simple image enhancement, some researchers have proposed hazy image
priors to reverse the haze imaging model for dehazing, known as prior-based dehazing
methods. Several hazy image priors have been proposed in the literature, including the
dark channel prior (DCP) [8], color attenuation prior (CAP) [9], and haze-lines [10], etc.
The DCP observes that the intensity of the minimum value of the color channels of a
hazy image tends to be very low in regions with low haze or fog, while haze-lines are
based on the assumption that the haze in an image is uniformly distributed along a line of
sight and that the attenuation of the haze is proportional to the distance from the camera.
As prior-based methods fully consider the hazy image degradation mechanism, they are
generally able to remove haze more thoroughly than enhancement-based methods in most
cases. However, since most hazy image priors are based on statistical observations or
assumptions, they are unable to handle complex real-world hazy scenarios, and may fail
under certain circumstances. For example, the DCP may produce undesired artifacts in the
sky region, and the resulting dehazed image may have a dark color.

In recent years, learning-based dehazing methods that use convolutional neural net-
works (CNNs) have become increasingly popular. These methods can be broadly cate-
gorized into two groups: end-to-end methods that directly recover the clean image from
the hazy image, and model-based methods that use CNNs to learn the parameters of the
haze imaging model. For end-to-end dehazing methods, Qin et al. [11] designed a feature
fusion attention network (FFA-Net) to achieve end-to-end dehazing. The FFA-Net incorpo-
rates a feature fusion module and an attention mechanism to capture both low-level and
high-level features of hazy images. For model-based methods, Chen et al. [12] proposed
a patch map-based hybrid learning DehazeNet (PMHLD), which combines the strengths
of learning-based and prior-based methods to estimate the transmission map of hazy im-
ages accurately. Although learning-based dehazing methods have demonstrated many
advantages over traditional dehazing methods, they require large-scale datasets for model
training, in either a supervised or an unsupervised manner, making data collection a time-
consuming task. Additionally, some dehazing models trained on synthetic hazy datasets
fail to produce satisfactory results on real-world hazy images, resulting in domain-shift
issues. To address these challenges, zero-shot dehazing methods [13–16] that use a single
hazy image for model training have been proposed to improve model generalizability. For
instance, Wei et al. [15] proposed a re-degradation haze imaging model for remote sensing
(RS) image dehazing without any pre-training or fine-tuning on specific datasets.

In this study, we introduce a zero-shot dehazing approach for RSI that leverages the
strengths of both the zero-shot learning strategy and an embedded prior-based dehazing
module. The former enhances the network’s generalizability without requiring a huge
quantity of training data, while the latter bolsters the haze removal capability by correcting
hazy image priors. Given a hazy image, we first process it using a prior-based module to
obtain the initial transmission map, atmospheric light, and dehazed outcome. We opt for
DCP as the chosen prior-based dehazing module as it yields superior preliminary results
for subsequent refinement than the other dehazing priors [17]. We proceed to propose
two shallow UNet-based CNNs to refine the initial transmission map and dehazed result,
addressing the failure cases of the prior-based module. To facilitate zero-shot training, we
regenerate a hazy image employing atmospheric light, a refined transmission map, and re-
fined dehazed result in accordance with the haze imaging model. Our tailored loss function
encourages the regenerated hazy image to be close to the input hazy image, resulting in a
cycle-consistent network. The main contributions of this paper are summarized as follows:
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(1) This paper presents a novel zero-shot dehazing framework embedded with hazy
image priors as pre-dehazing. The proposed method generates a cycle-consistent hazy
image from the input, enabling zero-shot training with a single image, eliminating
laborious data collection, and improving generalizability. Importantly, the prior-based
pre-dehazing contributes to an accelerated convergence rate within the zero-shot
learning paradigm of the network;

(2) The DCP is embedded into the proposed framework to improve the dehazing capa-
bility and convergence efficacy, while two CNN-based RefineNets are implemented
to refine the outputs of the DCP module. Consequently, the proposed method can
produce pleasing results, even in scenarios where the DCP fails, embracing the advan-
tages of both prior-based and learning-based methods;

(3) Comprehensive experiments were conducted to evaluate the effectiveness of the pro-
posed method. Both the quantitative and visual results demonstrate that our method
is superior to other dehazing methods in processing both uniform and non-uniform
RS hazy images. Moreover, the proposed method yields a substantial enhancement
over the chosen prior-based method (DCP) in this study.

2. Related Work
2.1. Traditional Dehazing Methods

Due to atmospheric haze, RS images often suffer from low contrast and poor visibility,
and traditional image enhancement techniques have been applied to improve their quality.
In the spatial domain, Wang et al. [18] observed a linear correlation between the minimum
channels of hazy and clear images and proposed a fast linear transformation for haze
removal. Similarly, Ni et al. [19] proposed a pixel-level linear intensity transformation
to enhance the visibility of hazy satellite images. However, spatial enhancement cannot
effectively remove haze because it only increases the image’s contrast. In the frequency
domain, many dehazing methods perform dehazing and detail enhancement separately
in low-frequency and high-frequency bands, respectively. For instance, Khan et al. [7]
decomposed the input hazy image into multi-scale representations using wavelet transform
and applied a radiance transformation function to the wavelet coefficients of each scale to
remove haze. Likewise, Cho et al. [20] proposed a model-assisted hazy image enhance-
ment algorithm by extracting multi-band features using an image decomposition module.
Han et al. [21] separated details from RS hazy images using a multiscale guided filter, and
implemented a nonlinear mapping for detail enhancement. Although the majority of haze
exists in the low-frequency domain, dehazing in this domain alone is insufficient to remove
haze completely.

Prior-based methods have been investigated to solve the dehazing problem by exploit-
ing the statistics or characteristics of a large number of hazy and clear images. Many classic
hazy image priors, such as DCP [8], CAP [9], and haze-lines [10], have been shown to be
effective. However, these priors are incapable of handling complex real-world ambiguous
situations and may fail in certain circumstances. Therefore, new priors are constantly being
proposed. For example, Singh et al. [22] used the gradient profile prior (GPP) to estimate the
transmission map and enhance image details, but the GPP may result in noise amplification.
Han et al. [23] proposed a local patch-wise minimal and maximal values prior for RS image
dehazing. Although this algorithm is efficient and effective, the brightness of the dehazed
results is darker. Chen et al. [24] proposed a defogging algorithm that combines both the
traditional dark channel prior method and the fusion-based method. However, slight color
distortion can be found in some dehazed images. Dharejo et al. [25] proposed an RS image
enhancement approach by incorporating the DCP and linear transformation, combining
the advantages of image enhancement and prior dehazing. However, the empirically
predefined parameters may have significant impacts on dehazing performance.

As detailed in the above discussions, the enhancement-based methods can better
retain image details, while the prior-based methods are better at removing haze. However,
the enhancement-based methods simply enhance the hazy image’s contrast without consid-
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ering the haze imaging model, resulting in a poor dehazing effect. The hazy image priors
are not sufficient enough for the complicated real-world hazy conditions, which may bring
undesired artifacts in some scenarios.

2.2. Learning-Based Dehazing Methods with Training Datasets

Due to the rapid development of CNNs, learning-based dehazing methods have
been extensively investigated and can be categorized into three groups based on learning
strategy: supervised learning-based, unsupervised learning-based, and semi-supervised
learning-based. The supervised learning-based dehazing methods use paired hazy/clean
images for model training. For instance, Huang et al. [26] integrated the dense residual
network with the squeeze and excitation block as the basic module to design a dual-step
cascaded dense residual network, which can extract multi-scale local and global features
of the RS hazy image more effectively. Similarly, Shi et al. [27] also selected the dense
residual network to capture the RS image’s fine details and used the corresponding saliency
map generated from global contrast to guide network training. However, the proposed
dense networks by Huang et al. [26] and Shi et al. [27] are too bulky to be implemented
in real-time applications. Based on the encoder and decoder architecture, Jiang et al. [28]
proposed a deep dehazing network for RS images with non-uniform haze and used the
wavelet transform as an additional channel to retain image textures. Nevertheless, this
non-uniform dehazing model will suffer from domain shift issues in processing uniform
RS hazy images.

As paired hazy/clean RS images in the real world are scarcely acquirable, most
supervised learning-based dehazing methods use synthetic RS hazy datasets for training
and validation. However, the trained model may not perform well in real-world image
dehazing. Therefore, some unsupervised learning-based dehazing methods based on
generative adversarial networks (GANs) have been proposed to improve the model’s
generalizability. Engin et al. [29] proposed a novel Cycle-dehaze method for single-image
dehazing, which utilizes a cycle consistency loss to train the generator and the discriminator
in the CycleGAN architecture. The training procedure of Cycle-dehaze is time-consuming
and the model is difficult to converge. Zheng et al. [30] proposed an enhanced attention-
guided GAN, called Dehaze-AGGAN, for unpaired RS image dehazing. Although the
Dehaze-AGGAN achieves better results than many unpaired dehazing methods, there
is still space for performance improvement in comparison to paired dehazing models.
Chen et al. [31] presented a memory-oriented GAN (MO-GAN) that uses a memory module
to store and retrieve the features of previously processed hazy images. The stored features
are used to guide the generation of the haze-free image.

Although unsupervised-based dehazing methods can address the lack of hazy and
haze-free image pairs in RS applications, the training procedure of a GAN-based model is
complex, and the model is difficult to converge. Therefore, semi-supervised learning-based
methods are proposed, which use both synthetic paired data and real-world unpaired
data for training. The paired data help the convergence of model training, while the
unpaired data are used in the fine-tuning stage to improve the model’s generalizability.
Li et al. [32] propose a semi-supervised dehazing algorithm that uses both supervised loss
and unsupervised loss for model training. However, this approach is less effective in
extremely hazy conditions. Bie et al. [33] designed an encoder–decoder network with
a Gaussian process to better extract image features, and a physically guided process is
conducted in the fine-tuning stage. Bie et al.’s [33] method obtains good results in terms of
both uniform and non-uniform dehazing, but many hyperparameters must be appropriately
set for balance. Taking dehazing as an image translation task, Li et al. [34] design a weakly
supervised framework to achieve both haze synthesis and haze removal in one network.
However, the recovered haze-free image may have lost some detail.

In conclusion, there are three primary issues with learning-based dehazing methods:
(1) the need for large-scale training datasets, (2) the complexity of extensive training time,
and (3) poor generalizability.
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2.3. Zero-Shot Dehazing Methods

In learning-based dehazing methods, a large-scale hazy image dataset is required for
training, which is time-consuming and labor-intensive during the data collection. Therefore,
some researchers propose zero-shot dehazing methods that use a single hazy image to train
the network.

For example, Li et al. [14] propose a zero-shot dehazing (ZID) neural network that
regards the hazy image as an entanglement of different components in the haze imaging
model. They also propose another unsupervised and untrained dehazing network called
You Only Look Yourself (YOLY) [13]. However, the ZID and YOLY may suffer from
color distortion in the dehazed images. Gandelsman et al. [35] design a powerful image
restoration framework from the viewpoint of image decomposition, called the Double deep
image prior (Double-DIP), inspired by the deep image prior (DIP) [36]. The Double-DIP
approach is effective in various restoration tasks such as dehazing, watermark removal,
segmentation, and more. However, the Double-DIP produces unsatisfactory results when
processing dense hazy images. In another approach, Kar et al. [16] propose a zero-shot
single-image restoration method that uses controlled perturbation of Koschmieder’s model.
Kar et al.’s [16] method requires no training data and can restore images with various types
of degradation, such as haze, rain, and snow; however, the enormous training time is a
major issue. Wei et al. [15] propose a three-branch RS image-dehazing network regulated
by a re-degradation haze imaging model to achieve zero-shot learning; however, this model
is less effective in non-uniform hazy conditions.

Although zero-shot dehazing methods have excellent generalizability, they must
train the network on each degraded image in order to infer the haze-free image. Train-
ing time complexity is therefore significant. Existing zero-shot dehazing methods, how-
ever, train the model from the original hazy input, and the network architecture is com-
plex, resulting in low training efficiency. Therefore, we proposed the pre-dehazing DCP
module and lightweight refining network to decrease training time without sacrificing
dehazing performance.

3. Methodology
3.1. Overall Dehazing Framework

Figure 1 illustrates the overall framework of the proposed zero-shot dehazing network.
The hazy image, I, is initially fed into the DCP module to obtain the transmission map, t,
the atmospheric light, A, and the initial dehazed result, J. Subsequently, t and J are further
refined by two CNN-based refinement networks to obtain t′ and J′. Using the haze imaging
model [37], we regenerate a hazy image I′ using t′, A, and J′. We ensure that I and I′ are
consistent using the mean square error (MSE) loss function, allowing the entire network
to be trained in a zero-shot manner. Once t′ and A are obtained, the haze-free image can
be output by reversing the haze imaging model. Overall, the zero-shot learning strategy
guarantees the network’s generalizability without requiring dense training data, while the
CNN-based RefineNets compensate for the flaws of prior-based dehazing methods.

3.2. The DCP Module

The degradation of images under hazy conditions can be represented by the haze
imaging model [37], which is expressed as follows:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) and J(x) denote the observed hazy image and its corresponding clean image at
pixel location x, respectively. t(x) represents the atmospheric transmission, which is the
fraction of light that reaches the camera after passing through the atmosphere at the same
location. A represents the global atmospheric light, which refers to the color and intensity
of the light scattered by the atmosphere.
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Figure 1. The overall framework of the proposed zero-shot dehazing network. Initial outputs t and J
from the DCP module are deemed insufficient. Yet, after refining them using two RefineNets, a more
detailed version of t, i.e., t′, is generated, and the issue of over-enhancement in the sky region of J is
resolved, resulting in the enhanced output J′.

In accordance with Equation (1), the estimation of t and A is essential to derive J from
I. However, this is an ill-posed problem. To address this, the DCP has proven to be one of
the most effective image-dehazing priors, as it is observed from the statistics of a large
number of hazy and clean images. The dark channel of J can be formulated by calculating
the minimum intensity in each local region as follows:

Jdark(x) = min
y∈ω(x)

(
min

c∈{r,g,b}
(Jc(y))

)
(2)

where ω(x) is a local window of size w× w centered at pixel x, and Jc(y) denotes the c-th
color channel intensity at pixel y. The DCP implies that the dark channel value in a hazy
image is a reliable estimate of the haze intensity. Typically, the dark channel of a clean
image tends to be zero, i.e.:

Jdark → 0 (3)

Therefore, by applying the DCP to both sides of Equation (1), we can obtain:

min
y∈ω(x)

(
min

c∈{r,g,b}
(Ic(y))

)
= min

y∈ω(x)

(
min

c∈{r,g,b}
(Jc(y))

)
t(x) + A(1− t(x)) (4)

where min
y∈ω(x)

(
min

c∈{r,g,b}
(Ic(y))

)
denotes Idark, i.e., the dark channel of the hazy image I. Thus,

we can reformate Equation (4) by incorporating Equations (2) and (3) as follows:

t(x) = 1− Idark

A
(5)

Consequently, once A is obtained, t can be estimated. Typically, A is located in the
haziest and brightest region of a hazy image. Therefore, we select the top 0.1 percent of the
brightest pixels in the dark channel and calculate their average pixel value as A. Once t and
A are determined, the clean image J can be inferred by inverting Equation (1) as follows:

J(x) =
I(x)− A

t(x)
+ A (6)

While the DCP offers a simple and effective way for image dehazing, it may fail
in the sky region of an image. Therefore, we use the CNN to refine J and t for further
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improvement. Moreover, to compute the dark channel more efficiently and integrate
the DCP module into the entire network, we implement the DCP using the max pooling
operation [17] with a kernel size of 5× 5 as follows:

Idark(x) = −maxpool(− min
c∈R,G,B

(Ic(x))) (7)

By doing so, we separate the input hazy image I into three components, A, t, and J,
for subsequent refinement.

3.3. RefineNet

As illustrated in Figure 2, the proposed RefineNet model shown in Figure 1 is a shal-
low UNet with encoder and decoder architecture. Let Conv, ReLu, and DeConv denote a
convolution layer, a ReLu activation function, and a transposed convolution layer, respec-
tively. The encoder part consists of two layers of Conv + ReLu, while the decoder part has
two layers of DeConv + ReLu. To better preserve the feature information, the encoder and
decoder are connected by three Conv + ReLu layers. In Figure 2, the input channels, output
channels, convolution kernel size, strides, and zero-paddings are denoted in brackets below
the Conv and DeConv layers.
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To provide a clearer description of the RefineNet model, we denote the Conv + ReLu
and DeConv + ReLu layers as CR and DCR, respectively. Therefore, given an input image
I, the outputs of different layers in the encoder can be expressed as follows:

Ei = CR(Ei−1), i = {1, 2} (8)

where E0 = I. According to the parameters labelled in the Conv layer, the input image
is gradually downsampled using strided convolution, while the feature channels are
increased. Subsequently, each Ei, i = {0, 1, 2} is passed through a CR layer to connect with
the decoder, as follows:

Si = CR(Ei), i = {0, 1, 2} (9)
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In contrast to the encoder, the decoder restores the details of the image by adding
the feature maps from the encoder and the upsampled feature maps using transposed
convolutions, which can be expressed as:

Di = Si + DCR(Di+1), i = {0, 1} (10)

where D2 = S2. Therefore, in the decoder part, the feature maps are gradually upsampled
using transposed convolution, while the feature channels are decreased.

To be more specific, consider an input image I with a resolution of 256× 256× 3.
The image’s size is gradually downscaled from 256× 256 to 64× 64, while the feature
channels are expanded from 3 to 64. Following this, in the decoder part, the image’s size is
upsampled from 64× 64 to 256× 256, while the feature channels are reduced back to the
original 3. Finally, the output of the refine network, denoted by D0, has the same image
size as the input image I.

3.4. Loss Function Design

In this section, we provide a detailed description of the loss function. The elaborated
loss function, L, comprises four terms:

L = Lrec + LTV + αLDCP + βLmin (11)

where Lrec represents the reconstruction loss, LTV denotes the total variance (TV) loss,
LDCP is the DCP loss, and Lmin represents the minimum pixel intensity loss. α and β are
balancing factors that weigh the contributions of each term in the loss function.

Reconstruction loss. As shown in Figure 1, if the transmission map, atmospheric light,
and scene radiance are accurately estimated, the input hazy image, I, and the regenerated
hazy image, I′, should be identical. Therefore, we propose the reconstruction loss Lrec to
minimize the difference between I and I′, as follows:

Lrec =
∥∥I − I′

∥∥
2 (12)

where ‖·‖p indicate Lp loss. The Lrec ensures that I and I′ are cycle consistent, thereby
allowing the entire network to be optimized in a zero-shot learning strategy.

TV loss. The TV loss is incorporated to prevent the model from generating images with
high-frequency artifacts or noise and to produce visually pleasing results. It is computed
as the sum of the absolute differences between neighboring pixel values in the image.
Mathematically, the TV loss can be expressed as:

LTV =
∥∥∇h J′

∥∥
1 +

∥∥∇v J′
∥∥

1 (13)

where∇h and∇v represent the differential operations in the horizontal and vertical dimen-
sions, respectively. Accordingly, the TV loss encourages smoothness in the output images.

DCP loss. As discussed in Section 3.2, the dark channel of a clean image is typically
close to zero. Therefore, we use the L1 loss to minimize the dark channel of the recovered
J′, as follows:

LDCP =
∥∥∥J′dark

∥∥∥
1

(14)

where J′dark can be computed using Equation (7). By leveraging the DCP loss LDCP, the
model is optimized to remove haze more effectively.

Minimum pixel intensity loss. Although the DCP loss can effectively remove haze,
the dehazed result may have a dark color. Furthermore, if the model is overfitted, the
intensity of some image pixels may be clipped to zero, causing the loss of dark details.
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Therefore, we propose the minimum pixel intensity loss Lmin to prevent the image pixels
from being over-saturated due to the minimization of LDCP. The Lmin is defined as follows:

Lmin = − 1
N

N

∑
x=1

(min(J′(x), 0.1) + min(t′(x), 0.1)) (15)

where x represents the image pixel, and N denotes the total number of image pixels. The
Lmin ensures that the pixel intensity of J′ and t′ is not lower than 0.1, compensating for the
over-clipping of pixel intensity caused by LDCP.

3.5. Functionality of Modules in the Dehazing Framework

In this section, we describe the functionality of the proposed dehazing framework’s
various modules. The dehazing network consists primarily of two components: a DCP
module and two RefineNets. The RS hazy image is initially preprocessed by the DCP
module, and its outputs are then refined by the RefineNets module.

The DCP module is implemented with two advantages: (1) The DCP module separates
the hazy input into three components (dehazed image, transmission map, and atmospheric
light) based on the haze imaging model [37], which guarantees the design of the reconstruc-
tion loss function. (2) The initial dehazed image contributes to the design of the lightweight
RefineNet architecture and improves the efficiency of subsequent zero-shot training.

Although the DCP is effective at removing haze, it is inapplicable to white regions
and produces undesirable artifacts. To rectify the defects, the CNN-based RefineNets is
implemented. The well-designed loss function facilitates the network’s zero-shot learning.
Ultimately, the proposed dehazing framework offers three benefits: (1) effective haze
removal, (2) excellent generalizability, and (3) rapid zero-shot training speed.

4. Experiments and Discussions
4.1. Experimental Settings

In this section, we provide details about the experimental settings, including the
datasets, training procedures, and baselines.

Datasets. We evaluate our proposed method on both real-world and synthetic hazy
image datasets. For real-world hazy images, we use the aerial RS hazy images from
Zhang et al.’s work [38] and Flickr for qualitative analysis. For quantitative evaluation, we
synthesize uniform and non-uniform RS hazy images. We select 90 non-uniform RS hazy
images with different haze densities from the SateHaze1k dataset [39]. To generate the
uniform RS hazy dataset, we use images from the DeepGlobe road extraction dataset [40]
and apply the haze imaging model in Equation (1), with the atmospheric light, A, and
transmission map, t, uniformly defined between [0.6, 1] and [0.2, 0.7], respectively. Even-
tually, we have 90 images as the uniform RS hazy datasets, which are also chosen for the
high-level vision task analysis in Section 4.5.

Training details. We train the proposed model using the PyTorch toolbox on the
Ubuntu 20.04 LTS operating system. We use the Adam optimizer with a fixed learning rate
of 0.0001. As a zero-shot dehazing method, we train the model for each image for approxi-
mately 500 iterations to obtain the final result. We empirically set the balancing parameters
α and β in Equation (11) to 10−5 and 10−6, respectively. The training is performed on a PC
with an i7-9700F processor @3.00 GHz, 24 GB RAM, and a NVIDIA RTX 3080 GPU. We
present the training details of each iteration in Algorithm 1.

Baselines. In order to verify the performance of our proposed method, we compared it
to various state-of-the-art (SOTA) dehazing methods, including traditional, learning-based,
and zero-shot dehazing methods. Table 1 presents a classification of each method according
to its dehazing type and a brief explanation for better comprehension. The traditional
dehazing methods encompass a prior-based method (DCP [8]) and enhancement-based
methods (CEEF [6] and FADE [41]). The learning-based methods include supervised
learning-based methods (DehazeFlow [42], SRKTDN [43], and DWGAN [44]), a semi-
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supervised learning-based method (RefineDNet [17]), and an unsupervised learning-based
method (USIDNet [45]). The zero-shot dehazing methods evaluated are ZID [14], DDIP [35],
YOLY [13], ZIR [16], and our proposed method. As there is no ground truth image available
for a real-world RS hazy image, we use the result obtained from the dehazing tool of
Photoshop 2021 as a reference. To assure a fair comparison, all methods were tested using
MATLAB or PyCharm in the same software and hardware environment. For learning-
based methods, we chose the default configurations from the literature and used their
pre-trained models for a more accurate generalizability comparison. For zero-shot dehazing
techniques, the models were trained with their default parameters. For ZID [14], DDIP [35],
YOLY [13], and ZIR [16], the training iterations are 500, 4000, 500, and 10,000, respectively.
We quantitatively analyzed the dehazing performance using three metrics, namely, peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), and learned perceptual image
patch similarity (LPIPS) [46]. The PSNR and SSIM metrics are commonly used to evaluate
image quality, while LPIPS is a metric based on a deep neural network for assessing the
perceptual similarity between two images.

Algorithm 1: Zero-shot training details at each iteration, where DCP indicates the DCP module
for preliminary dehazing, RT and RJ refer to the RefineNets for transmission map t and initial
dehazed image J.

Input: Initialized RefineNet R =
{

RT , RJ
}

, hazy image I, max training iterations imax, balancing
parameters α and β.
Output: Dehazed image O.
1: while i < imax do
2: obtain initial dehazed image, J, transmission map, t, atmospheric light, A, by J, t, A = DCP(I)
3: obtain refined dehazed image, J′, by J′ = RJ(J)
4: obtain refined transmission map, t′, by t′ = RT(t)
5: obtain reconstructed hazy image, I′, by Equation (1), I′ = J′t′ + (1− t′)A
6: obtain reconstruction loss, Lrec, by Equation (12)
7: obtain TV loss, LTV , by Equation (13)
8: obtain DCP loss, LDCP, by Equation (14)
9: obtain minimum pixel intensity loss, Lmin, by Equation (15)
10: back propagate loss function, L, by Lrec + LTV + αLDCP + βLmin
11: i← i + 1
12: end while
13: obtain final dehazed output O by I−A

t′ + A

Table 1. A comparison of various dehazing methods.

Type Method Short Explanation

Traditional
DCP [8] Dark channel prior
CEEF [6] Joint contrast enhancement and exposure fusion
FADE [41] Fast region-adaptive defogging and enhancement

Learning-based

DehazeFlow [42] Multi-scale conditional flow dehazing network
SRKTDN [43] Dehazing network with super-resolution method and knowledge transfer method
DWGAN [44] Discrete wavelet-transform GAN
RefineDNet [17] Weakly supervised refinement dehazing framework
USIDNet [45] Unsupervised single-image dehazing network via disentangled representations

Zero-shot

ZID [14] Zero-shot dehazing
DDIP [35] Coupled deep image prior
YOLY [13] You only look yourself
ZIR [16] Zero-shot single-image restoration
Ours Our proposed dehazing method
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4.2. Results for Real-World RS Hazy Images

In this section, we present a qualitative comparison of the dehazing performance of
different methods using real-world RS hazy images. The results are depicted in Figure 3.
Figure 3a shows two aerial hazy images labeled as “image 1” and “image 2,”, respectively.
These images were selected from Zhang et al.’s work [38] and Flickr. Figure 3b–o show
the dehazed results obtained using various methods. The original hazy images appear
blurry and have low contrast. However, after applying the dehazing process, the image
quality improves significantly. Nonetheless, different methods remove haze to varying
extents. DehazeFlow, as a supervised learning-based method, fails to remove haze properly
in Figure 3e, suggesting poor generalizability to real-world RS image dehazing. The result
obtained by ZID in Figure 3j exhibits an apparent color shift on the roof of “image 1.” FADE
and USIDNet have over-enhancement issues, as can be seen in “image 1” of Figure 3d,i,
respectively. In Figure 3f,g, SRKTDN and DWGAN produce unnatural-looking dehazed
images with color saturation loss. DCP and RefineDNet show good dehazing performance,
but the results in Figure 3b,h display a slight dark color. CEEF delivers a well-dehazed
image with full detailed information in Figure 3c, although “image 1” suffers from slight
color distortion. All zero-shot dehazing methods, except for ZID, generate natural and
pleasing dehazed images. However, in Figure 3k,j,m, DDIP, YOLY, and ZIR exhibit un-
desired bright flares on the top right of “image 2.” Our proposed method, as shown in
Figure 3n, outperforms the other dehazing methods in terms of dehazing and color con-
sistency when compared to the reference result by Photoshop in Figure 3o. Therefore, the
embedded DCP module assures that our network has effective haze removal ability, while
the RefineNet corrects the DCP’s shortcomings. Moreover, the zero-shot learning manner
guarantees the good generalizability of our model while processing the complex real-world
RS hazy images.

4.3. Results on Synthetic Uniform RS Hazy Images

Figure 4 shows the dehazed results obtained on synthetic uniform RS hazy images.
Figure 4a presents the hazy image, Figure 4b–n show the dehazed results using different
methods, and Figure 4o displays the ground truth image. Among the evaluated methods,
ZID produces the worst results with severe color shift (Figure 4j), while FADE and USIDNet
exhibit obvious over-enhancement problems (Figure 4d,i). DehazeFlow, DDIP, and YOLY
fail to remove haze adequately, as shown in Figure 4e,k,l, respectively. Although DCP
and RefineDNet can thoroughly remove haze, the results in Figure 4b,h display a slightly
uneven dark color. SRKTDN, DWGAN, and ZIR show good haze removal ability, but
the recovered images in Figure 4f,g,m exhibit slight color distortion with saturation loss.
Using the ground truth image in Figure 4o as a reference, CEEF and our proposed method
produce better results. Therefore, our method is superior to most other methods when
processing RS images with uniform haze.

To evaluate the dehazing performance quantitatively, we calculated the PSNR, SSIM,
and LPIPS values using the dehazed image and the ground truth. Higher PSNR and SSIM
values indicate better results, while lower LPIPS values signify better perceptual similarity.
Table 2 presents the quantitative dehazing evaluation results for RS images with uniform
haze. The dehazing methods are categorized, and the best result for each category and
each metric is marked in bold. As shown in Table 2, for the traditional dehazing category,
DCP obtains the best score for SSIM and LPIPS metrics, while the CEEF obtains the best
value for the PSNR metric. DehazeFlow obtains the best results for all three metrics in the
learning-based category.

Our proposed method exhibits outstanding performance in the zero-shot dehazing
category, ranking first in both SSIM and the LPIPS metrics, and second in the PSNR.
Notably, our approach outperforms all dehazing methods in both traditional and learning-
based categories for all three evaluation metrics. Compared to the existing DCP approach,
our proposed method achieves an improvement of 2.04 dB and 0.11 for PSNR and SSIM,
respectively. Moreover, our method surpasses RefineDNet, which has a similar network
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architecture, by gaining an increase of 2.93 dB and 0.14 for PSNR and SSIM, respectively.
These results confirm that our approach represents a significant improvement over the
SOTA methods in uniform dehazing.
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(i) USIDNet [45]; (j) ZID [14]; (k) DDIP [35]; (l) YOLY [13]; (m) ZIR [16]; (n) Ours; (o) Photoshop.

4.4. Results for Synthetic Non-Uniform RS Hazy Images

We used the SateHaze1k [39] dataset, a synthetic non-uniform hazy dataset containing
1200 pairs of hazy/clean RS images with three haze densities—thin, moderate, and thick—
for non-uniform dehazing evaluation. We randomly selected 30 hazy images from each
haze density, resulting in a total of 90 hazy images as our test dataset. Figure 5 presents
the comparative dehazing results for SateHaze1k. Figure 5a displays the input hazy
images with different haze densities labeled by red fonts. Figure 5b–n show the dehazed
results using different methods, and Figure 5o provides the ground truth for reference. As
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shown in Figure 5, most dehazing methods can effectively remove thin haze, except for
DehazeFlow (Figure 5e) and ZIR (Figure 5m). However, ZID produces over-enhancement
and color distortion. Among traditional dehazing methods, DCP, CEEF, and FADE show
similar performance in processing images with different haze densities, but FADE exhibits
over-enhancement in Figure 5d. For thick hazy images, learning-based methods (except
DehazeFlow) provide visually better results than other dehazing methods. In the zero-shot
dehazing category, our proposed method outperforms other methods in terms of haze
removal and color preservation.
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Figure 4. Comparisons of synthetic RS hazy images with uniform haze. (a) Hazy image; (b) DCP [8];
(c) CEEF [6]; (d) FADE [41]; (e) DehazeFlow [42]; (f) SRKTDN [43]; (g) DWGAN [44]; (h) RefineDNet [17];
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Table 2. Quantitative dehazing evaluation results for RS images with uniform haze. The best value
for the specific metric in each category is marked in bold.

Category Methods PSNR SSIM LPIPS

Traditional
DCP 19.62 0.77 0.154
CEEF 20.26 0.75 0.163
FADE 18.24 0.73 0.193

Learning-based

DehazeFlow 19.41 0.78 0.151
SRKTDN 18.26 0.74 0.186
DWGAN 18.89 0.77 0.163

RefineD-Net 18.73 0.74 0.184
USIDNet 18.44 0.74 0.191

Zero-shot

ZID 18.16 0.74 0.189
DDIP 19.93 0.77 0.148
YOLY 18.45 0.75 0.185
ZIR 22.04 0.86 0.1

Ours 21.66 0.88 0.098
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Table 3 displays the results of the quantitative evaluation on the SateHaze1k [39]
dataset. We calculated the PSNR, SSIM, and LPIPS metrics for each haze density, and
the average value is provided. As shown in Table 3, DCP obtains the best results in the
traditional dehazing category, while the performance of different learning-based dehazing
methods varies significantly. In the zero-shot dehazing category, our proposed method
obtains the best results in all metrics and all haze densities, except for thin haze density,
for which it achieved the second-best PSNR value. Furthermore, the average performance
of our proposed method across the three evaluation metrics exceeds that of all dehazing
methods in the traditional category and outperforms most methods in the learning-based
category. These results highlight the competitive non-uniform haze removal ability of our
proposed dehazing approach.

Table 3. The quantitative dehazing evaluation results for the non-uniform RS hazy dataset (Sate-
Haze1k [39]). The best value for the specific metric in each category is marked in bold.

Category
Density Thin Moderate Thick Average

Methods PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Traditional
DCP 17.07 0.82 0.123 16.93 0.81 0.130 15.81 0.76 0.159 16.61 0.80 0.137
CEEF 15.20 0.75 0.154 15.27 0.74 0.164 15.00 0.74 0.175 15.16 0.74 0.164
FADE 15.97 0.76 0.149 14.92 0.72 0.179 14.28 0.72 0.185 15.05 0.73 0.171

Learning-based

DehazeFlow 14.09 0.77 0.136 14.44 0.79 0.132 12.73 0.68 0.216 13.75 0.75 0.162
SRKTDN 14.36 0.77 0.191 14.20 0.80 0.178 13.42 0.73 0.233 14.00 0.77 0.201
DWGAN 16.73 0.84 0.116 18.26 0.86 0.106 17.34 0.82 0.138 17.44 0.84 0.120
RefineDNet 16.68 0.83 0.091 17.00 0.84 0.092 16.98 0.82 0.109 16.89 0.83 0.097
USIDNet 18.99 0.78 0.170 18.51 0.76 0.185 17.39 0.73 0.207 18.30 0.76 0.187

Zero-shot

ZID 11.32 0.57 0.218 12.02 0.60 0.202 12.20 0.61 0.212 11.85 0.59 0.211
DDIP 15.56 0.79 0.108 16.41 0.81 0.099 15.91 0.79 0.122 15.96 0.80 0.110
YOLY 18.14 0.84 0.088 17.66 0.84 0.091 15.96 0.78 0.138 17.25 0.82 0.104
ZIR 14.79 0.80 0.118 15.31 0.83 0.113 13.64 0.74 0.179 14.58 0.79 0.137
Ours 17.54 0.84 0.084 17.91 0.86 0.086 16.85 0.81 0.120 17.43 0.84 0.098

4.5. Application to a High-Level Vision Task

Dehazing is a crucial image preprocessing step for high-level computer vision tasks.
In this regard, we compared the road extraction results of D-LinkNet [47] using dehazed
images generated by different dehazing methods, as presented in Figure 6. The first and
second rows of Figure 6 are the input and corresponding output images of the D-LinkNet
road extraction algorithm, respectively. Figure 6a shows the original hazy image, while
Figure 6b–n present the results obtained using different dehazing methods. Figure 6o is
provided as the ground truth for reference. As demonstrated in Figure 6a, the D-LinkNet
algorithm fails to work effectively due to the interference of haze in the original hazy
image. Although DehazeFlow and YOLY have removed some haze, the dehazed results are
not sufficient for D-LinkNet to extract any road information, as presented in Figure 6e,l,
respectively. The dehazed image generated by ZID has severe color distortion, resulting
in D-LinkNet extracting only a few roads. In comparison to other dehazing methods, our
proposed method generates more continuous road lines, and the extracted road masks
are closer to the reference ground truth. Therefore, our proposed method demonstrates
superior performance as an image preprocessing step for D-LinkNet.

To quantitatively evaluate road extraction accuracy, we calculated four commonly
used evaluation metrics in object detection and segmentation tasks: Precision, Recall, IoU,
and F1-score. The four metrics are defined as follows:

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

; IoU =
TP

TP + FN + FP
(16)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(17)

Here, TP, FP, and FN denote true positives, false positives, and false negatives,
respectively. The F1-score is a weighted harmonic mean of Precision and Recall, which
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accounts for both false positives and false negatives. To evaluate the road extraction
accuracy, we used a synthetic uniform hazy dataset consisting of 90 images as the input
for different dehazing methods. The dehazed images were processed using D-LinkNet to
extract roads, and the road extraction accuracy was calculated using the extracted results
and the ground truth road masks.
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Figure 6. The D-LinkNet [47] road extraction results using the dehazed images by different de-
hazing methods. (a) Hazy image; (b) DCP [8]; (c) CEEF [6]; (d) FADE [41]; (e) DehazeFlow [42];
(f) SRKTDN [43]; (g) DWGAN [44]; (h) RefineDNet [17]; (i) USIDNet [45]; (j) ZID [14]; (k) DDIP [35];
(l) YOLY [13]; (m) ZIR [16]; (n) Ours; (o) ground truth.
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Table 4 shows that the road extraction accuracy of D-LinkNet using clear images as
the input is significantly better than that using hazy images, indicating that haze has a
severe negative impact on D-LinkNet’s performance. Table 5 presents the road extraction
accuracy comparison for different dehazing methods. It is evident that the DCP, SRKTDN,
and our proposed method achieved the best results for the four metrics in the traditional,
learning-based, and zero-shot dehazing categories, respectively. Moreover, our proposed
method outperforms the other methods in traditional and learning-based categories for the
four metrics, demonstrating its superior performance.

Table 4. Quantitative comparisons of the D-LinkNet [46] road extraction accuracy using hazy images
and clear ground truth images.

Input Precision Recall F1-Score IoU

Hazy 0.367 0.379 0.373 0.229
Clear 0.949 0.931 0.940 0.887

Table 5. Quantitative comparisons of the D-LinkNet [47] road extraction accuracy using the dehazed
images and different dehazing methods. The best value for the specific metric in each category is
marked in bold.

Category Method Precision Recall F1-Score IoU

Traditional
DCP 0.854 0.853 0.854 0.745
CEEF 0.810 0.802 0.806 0.675
FADE 0.646 0.665 0.655 0.487

Learning-based

DehazeFlow 0.652 0.652 0.652 0.484
SRKTDN 0.860 0.862 0.861 0.756
DWGAN 0.847 0.852 0.850 0.738

RefineDNet 0.789 0.801 0.795 0.659
USIDNet 0.732 0.750 0.741 0.589

Zero-shot

ZID 0.614 0.636 0.625 0.455
DDIP 0.790 0.793 0.791 0.655
YOLY 0.711 0.720 0.715 0.557
ZIR 0.819 0.823 0.821 0.697

Ours 0.863 0.862 0.862 0.758

4.6. Discussion

In this section, we discuss the efficacy of the proposed dehazing framework through
an ablation study, a convergency test, network size comparison, and a training time
complexity analysis.

Ablation study. The effectiveness of our proposed loss function is demonstrated
through an ablation study, where we remove part of the loss function in Equation (11) and
compare the dehazed results. The results of the ablation study are illustrated in Figure 7.
As shown, the dehazed result using our proposed loss function (see Figure 7f) is superior to
that of removing any part of the loss function. Removing the reconstruction loss causes the
entire dehazing framework not to be cycle-inconsistent, resulting in over-enhancement. The
TV loss encourages the model to smooth out the details in an image. Therefore, removing
the TV loss leads to undesired noise in the sky region in Figure 7c. The DCP loss helps
the model remove haze properly, but may result in a dark color. The model without the
DCP loss has poor dehazing performance, as shown in Figure 7d. On the other hand, the
minimum pixel intensity loss prevents the image pixels from being oversaturated. Thus,
removing the minimum pixel intensity loss results in most of the dark details being lost, as
shown in Figure 7e. Therefore, the proposed loss function is effective in producing pleasing
results for the dehazing framework.
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Convergency test. During the training process of a zero-shot dehazing technique, an
optimally designed network generates output by minimizing the loss function. However,
distinct methods require varying numbers of training steps to produce satisfactory haze-free
images, leading to differences in training efficiency. For instance, YOLY [13] necessitates
500 steps, while ZIR [16] demands 10,000 steps to reach the final output. Consequently,
we compare the dehazed outcomes produced by various zero-shot approaches during
the different training steps to demonstrate the network’s convergency. The results are
illustrated in Figure 8. At the start of the training process (step 1 in Figure 8a), YOLY’s
output exhibits significant unwanted flares, which complicates the network convergence
for generating superior dehazed results in subsequent training phases. In the case of ZIR,
the network produces dehazed outcomes with substantial color shifts until step 100, and
the output quality improves at a slow rate, indicating suboptimal convergence efficiency.
In contrast, the proposed method benefits from the integrated DCP pre-dehazing module,
which eliminates most haze in the initial step 1, despite the image appearing darker due
to the DCP’s influence. By step 100, our model rectifies the dark color issues through the
RefineNet model, and the model converges with minimal enhancements to the dehazed
image’s quality. As a result, our zero-shot dehazing technique outperforms others in terms
of convergence efficiency.

Network size comparison. Since zero-shot dehazing methods train the model for
each degraded image, the training time complexity is important when evaluating the
performance of the algorithm. A complex network architecture is not suitable for zero-
shot image dehazing because it will significantly increase the training time complexity.
Therefore, we compared the network size of different zero-shot dehazing methods to show
the superiority of our method. As shown in Table 6, since the ZID and YOLY have similar
network architecture, they have comparable network sizes and are substantially larger
than those of the other methods. The DDIP, ZIR, and our method all possess a relatively
lightweight network, but our method is the lightest.

Training time complexity analysis. In order to further evaluate the training efficiency
of a zero-shot dehazing method, we compared the execution time of various methods for
processing a 512 × 512 pixel RS hazy image. According to Table 7, the ZIR has the lowest
training efficacy, requiring more than five minutes to infer a haze-free image. Due to their
similar network structures, the ZID and YOLY have a comparable training time complexity.
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As described in Section 3.5, thanks to the pre-dehazing DCP module and a lightweight
network design, our proposed method has the highest training efficiency and outperforms
all other methods by a significant margin.
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Table 6. Network size comparison of different zero-shot dehazing methods. The best result is marked
in bold.

Method ZID [14] DDIP [35] YOLY [13] ZIR [16] Ours

Params size (MB) 39.49 1.64 38.14 0.51 0.12

Table 7. Training time (seconds) comparison of different zero-shot dehazing methods. The best result
is marked in bold.

Image Size ZID [14] DDIP [35] YOLY [13] ZIR [16] Ours

512 × 512 19.38 74.43 19.59 311.95 6.35

5. Conclusions

This paper presents a zero-shot dehazing network that combines the strengths of
prior-based dehazing and CNN. Initially, the RS hazy image undergoes processing via the
DCP based module to obtain the transmission map, atmospheric light, and initial dehazed
image. Two shallow UNet-based CNNs are then proposed to refine the transmission map
and the initial dehazed image, compensating for the DCP’s failure cases. Another hazy
image is generated using the atmospheric light, refined transmission map, and the refined
dehazed image based on the haze imaging model. The proposed loss function ensures that
the network regenerates a hazy image that is similar to the input one, allowing the whole
dehazing network to be trained in a zero-shot manner. Overall, the proposed dehazing
network has two advantages: (1) the DCP is embedded within the CNN to enhance dehaz-
ing performance, mitigate the inherent limitations of DCP, and improve overall training
efficacy; and (2) the zero-shot learning process improves the network’s generalizability
without the need for large-scale training data collections. In the experiments, real-world
and synthetic RS hazy images were selected to verify the effectiveness of the proposed
method. The qualitative and quantitative evaluation results indicate that our method
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outperforms many other dehazing methods in processing both uniform and non-uniform
RS hazy images. Furthermore, the proposed method’s superiority is demonstrated in a
high-level vision task (road extraction).
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