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Abstract: In remote sensing images, small objects have too few discriminative features, are easily con-
fused with background information, and are difficult to locate, leading to a degradation in detection
accuracy when using general object detection networks for aerial images. To solve the above prob-
lems, we propose a remote sensing small object detection network based on the attention mechanism
and multi-scale feature fusion, and name it AMMEN. Firstly, a detection head enhancement module
(DHEM) was designed to strengthen the characterization of small object features through a combina-
tion of multi-scale feature fusion and attention mechanisms. Secondly, an attention mechanism based
channel cascade (AMCC) module was designed to reduce the redundant information in the feature
layer and protect small objects from information loss during feature fusion. Then, the Normalized
Wasserstein Distance (NWD) was introduced and combined with Generalized Intersection over
Union (GloU) as the location regression loss function to improve the optimization weight of the
model for small objects and the accuracy of the regression boxes. Finally, an object detection layer
was added to improve the object feature extraction ability at different scales. Experimental results
from the Unmanned Aerial Vehicles (UAV) dataset VisDrone2021 and the homemade dataset show
that the AMMEN improves the APs values by 2.4% and 3.2%, respectively, compared with YOLOv5s,
which represents an effective improvement in the detection accuracy of small objects.

Keywords: small object detection; attention mechanism; loss function; remote sensing

1. Introduction

With the continuous advancement of technology, images captured by drone are now
widely used in remote sensing imagery, agriculture, wildlife conservation [1,2], and disaster
surveillance. Although existing object detectors have made significant advancements in
the object detection for natural scenes, the following problems remain when applying such
general-purpose object detectors directly to remote sensing images: (i) The inconsistent
flight altitude of the UAVs leads to different scale sizes of the same class of objects in the
captured images. This is the case, for example, for the images in the dataset VisDrone2021.
(ii) Small objects have problems, such as few effective pixels, limited feature expression, and
a susceptibility to background effects. We also refer to them as spectral mixtures. (iii) The
loss function based on the Intersection over Union (IoU) variant is more sensitive to the
offset of small objects than that of larger objects. Therefore, small objects have the problem
of being difficult to locate.

In practical applications, the large differences in scale between the various objects
in remote sensing imagery present a greater challenge for object detectors. It is therefore
vital to obtain a detection network that can detect objects at different scales. A prevalent
approach to solve the varying scales of objects is to construct a multi-layer feature fusion,
such as the Feature Pyramid Networks (FPN) [3] and the feature fusion modules Path
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Aggregation Network (PANet) [4], Bi-directional Feature Pyramid Network (Bi-FPN) [5],
Adaptively Spatial Feature Fusion (ASFF) [6], and Neural Architecture Search Feature
Pyramid Networks (NAS-FPN) [7], which are all improved on the basis of FPN. However,
small objects have fewer effective pixels, and more feature information is lost after passing
through the backbone network, resulting in the model failing to correctly learn important
spatial and semantic feature information about small objects. Therefore, it is necessary
to increase the shallow branches as well as to improve the feature map resolution of the
detection head in order to mitigate the loss of small object information.

In object detection, the regression loss function characterizes the extent of agreement
between the model output box size and position and the true box size and position. The
regression loss function has gone through L1/L2 loss, and smooth L1 loss [§] to the loss
function, based on IoU [9-12] variants commonly used today. YOLOvS [13] uses GloU as its
position regression loss. The GloU is an improved version of IoU. Unlike IoU which focuses
only on overlapping regions, GloU focuses not only on overlapping regions but also on
other non-overlapping regions, which can better reflect the overlap of both. However, this
loss function is very sensitive to the positional bias of small objects, and a slight positional
bias of small objects will cause a significant increase or decrease in the IoU value, which
is thus unfriendly to small objects. Although other scholars have solved the regression
problem for small objects to some extent using a variant of IoU, there is still the problem that
this type of loss function is not friendly to small objects. Wang et al. [14] designed an NWD
based on a two-dimensional Gaussian distribution to effectively alleviate the problem of
low detection accuracy of commonly used object detection networks for small objects, but
they failed to consider the advantage of IoU-based loss function for the detection of large
and medium objects.

Regarding the problems above, this paper proposes a remote sensing small-object
network detection based on the attention mechanism and multi-scale feature fusion, which
can effectively improve the detection accuracy of the model for small objects in remote
sensing images with the addition of fewer model parameters. First of all, the detection head
contains information for the classification and regression of the final object. In order to
make effective use of the feature information in the individual detection head, we propose
a detection head enhancement module. Secondly, after multiple convolutions of the input
image, feature redundancy occurs in the feature layer. To prevent this type of redundant
information from interfering with small objects, we use an attention mechanism to design
a channel cascade module. Then, to address the difficulty of detecting small objects with
the three detection heads of the universal detector, we add a detection head with a higher-
feature map resolution. Finally, we introduce a NWD loss function to calculate the similarity
between two objects using a Gaussian distribution.

The main contributions of this paper can be summarized as follows:

1.  We propose a detection head enhancement module DHEM to further achieve more
accurate small-object detection by combining a multi-scale feature fusion module and
an attention mechanism module to enhance feature characterization, at the cost of
slightly increasing model parameters.

2. We design a channel cascade module based on an attention mechanism, AMCC,
to help the model remove redundant information in the feature layer, highlight
small-object feature information, and help the model learn more efficiently for
small-object features.

3. We introduce the NWD loss function and combine it with GIoU as the location
regression loss function to improve the optimization weight of the model for small
objects and the accuracy of the regression boxes. Additionally, an object detection
layer is added to improve the object feature extraction ability at different scales.

4. AMMEN is compared with YOLOv5s and other advanced models on the homemade
remote sensing dataset and publicly available dataset VisDrone2021, with significant
improvements in the AP; values and mAP values.
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The remaining sections are organized as follows: In Section 2, we summarize the
literature on small-object detection; in Section 3, we describe the improved modules and the
reasons for the improvements in detail, including a detection head enhancement module,
a channel cascade module based on attentional features, a regression loss function, and
the addition of a detection head; in Section 4, we describe the relevant steps involved
in this experiment and analyze the results; in Section 5, we discuss the advantages and
disadvantages of the proposed model; and in Section 6, we conclude this work and put
forward directions for optimizing the model.

2. Related Works

Object detection has tremendous practical value and application promise, and it
is the cornerstone of many vision algorithm tasks, such as face recognition and target
tracking [15]. The existing networks for the detection of objects can be broadly divided
into two categories. One class is the two-stage object detection networks based on the
Region-CNN (RCNN) [16], Fast Region-based Convolutional Network (Fast-RCNN), Faster-
RCNN [17], and the Region-based fully convolutional network (R-FCN) [18], which first
perform feature extraction and create a good number of candidate boxes for images through
a backbone network, and then perform classification tasks and regression tasks for objects.
The detection accuracy of this type of network is high, but its real-time performance is
very low. One class is the one-stage object detection networks represented by the Single
Shot Multi-Box Detector (SSD) [19], You Only Look Once (YOLO) series [20-23], Fully
Convolutional One-Stage Object Detector (FCOS) [24], and the RetinaNet [25], which
directly perform semantic and spatial feature extraction on objects and then complete the
classification and regression of objects. Although the overall performance of such networks
is poor, their real-time performance is high and they have been broadly used in various
scenarios. Academically, there are two ways to define a small object: relative size and
absolute size. The relative size approach is to consider an object to be small if its aspect
is 0.1 of the original image size [26], and the absolute size approach is to consider an
object smaller than 32 x 32 pixels to be small. This paper uses the definition of absolute
size. Remote sensing images suffer from complex backgrounds, few effective pixels of
objects, varying scales, and different morphologies, which make it difficult for existing
general-purpose object detectors to extract accurate and effective feature information to
classify and localize small objects. To address the challenge of the inaccurate detection of
small objects in the field of remote sensing, this paper focuses on the work of other scholars
from two aspects: multi-scale integration and attention mechanism.

Since the deep feature layer contains rich semantic object information and the large
perceptual domain, while the shallow features contain more fine-grained information, the
deep feature information and the shallow feature information can be reasonably used
to increase the accuracy of the model for small-object detection by multi-scale fusion.
Qu et al. [27] proposed a small-object detection model that is called the Dilated Convolution
and Feature Fusion Single Shot Multi-box Detector (DFSSD) which improved the detection
of remote sensing small objects to some extent by expanding the perceptual domain of
features, obtaining contextual information of features at different scales, and enhancing
the semantic information of shallow features. Deng et al. [28] designed an Extended
Feature Pyramid Network (EFPN) specifically for small-object detection, which contained
a Feature Texture Transfer (FIT) module that acted on the super-resolution feature map
by extracting semantic information and texture features from the feature map of the FPN
network, thus effectively improving the representation of small-object feature information
and being efficient in both computation and storage. Deng et al. [29] proposed a multi-scale
dynamic weighted feature fusion network, which adaptively assigns different weights to
feature layers at different scales through network training to increase the contribution of
shallow feature information in the whole network, which directs the model for small-object
detection tasks.
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Small objects have the problem of a low number of effective pixels and an easy back-
ground confusion, so highlighting the feature information of small objects is very necessary.
The attention module helps the network to pay close attention to task-relevant foreground
object feature information in a large amount of background information. Thus, the use of
attention mechanisms can effectively improve the representation of small-object features.
Zhu et al. designed a small-object detection model called the Transformer Prediction Heads-
YOLOVvV5 (TPH-YOLOV5) [30] that combines YOLOvV5 with the Transformer [31], which
integrates the Convolutional Block Attention Model (CBAM) [32] module and self-attention
mechanism [33] into the YOLOv5 model to help the network in extracting small-object
feature information, which effectively improves its ability to detect small objects and means
it can detect small objects under the perspective of UAV low-altitude flight. Shi [34] et al.
proposed a feature enhancement module using the location attention mechanism, which
improves the efficiency of the model at detecting small objects by highlighting the contri-
bution of important features and suppressing the influence of irrelevant features on the
overall feature information, by using the channel attention mechanism, after extracting
the feature information from different sensory fields. Zhao et al. [35] proposed a feature
fusion strategy based on the Efficient Channel Attention (ECA) module to enhance the
expression of semantic information of shallow features by fusing object information at
different scales, thus improving the performance of the model for small-object detection.
Zhang et al. [36] designed a multi-resolution attention detector that captured useful location
and contextual information through adaptive learning, which was used to obtain attention
weights by calculating the cosine similarity between other output layers and the template
layer, which were then weighted to fuse the first three layers of feature information of the
backbone network to generate an attention graph, to highlight the feature information of
small objects.

3. Our Work

In the paper, we improve on the YOLOv5s model by proposing the addition of
AMMEN. Firstly, the prediction layer is optimized by the detection head enhancement
module. Secondly, a channel cascade module based on an attention mechanism is designed
to replace the generic cascade operation in the neck. Then, the NWD and the GloU are
merged to improve the weight losses of the small objects and to increase the accuracy of
the regression boxes. Finally, the detection head of the shallow network is increased for
detecting small objects. These four improvements are effective in improving the ability
of the model to detect small objects. Figure 1 shows the overall structure of the proposed
network model.

3.1. Detection Head Enhancement Module

The detection head part of YOLOV5 contains the final object classification information
as well as the regression information of the object box; therefore, for small-object detection,
the detection head has a huge impact. During the model training process, the detection
head detects too few small objects due to their weak feature representation and fewer pixels,
resulting in interference with the optimized weights of small objects. For this reason, it is
very necessary to significantly enhance the feature-expression capability of the foreground.

Using multi-scale feature fusion, features of different sizes can be obtained and the
perceptual domain can be expanded to strengthen the description of small-object features,
thus improving the detection performance of the model for small objects. To this end,
this paper proposes a detection head enhancement module through this idea, as shown
in Figure 2.
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Figure 1. Network structure.
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Figure 2. Detection head enhancement module.

The DHEM structure uses a multi-branch structure, wherein each branch uses convo-
lution kernels of variable numbers and sizes of to obtain different scales of perceptual fields,
and also uses the idea of residual connectivity. This approach improves the range of percep-
tual fields without adding too much computation and enables the model to obtain features
with high discriminative power while being lightweight. However, there are semantic
differences in the feature maps at different scales, and the fused feature layers may have a
confounding effect which can cause the network to confuse localization and recognition
tasks. To mitigate this negative impact, a lightweight channel attention mechanism module
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is used in this paper. This module not only reduces the confusion between features but also
significantly enhances the feature information of small objects.

Specifically, firstly, 1 x 1 convolution is used to bring down the number of feature
channels and thus reduce the computational effort; secondly, the information of different
scales is extracted by three branches, respectively, and cascaded to obtain the feature map
with multi-scale information, then 1 x 1 convolution is used to organize the information in
the feature map and decrease the number of channels; and finally, the model will obtain
accurate and non-redundant feature information for final object detection. The formulae
are shown in (1) and (2).

C = Conv/([Branchy(stem(x)); Branch; (stem(x))]; Branch; (stem(x))) (1)

Output = o(Fc1(Avg(C)) + Fep(Max(C))) x C (2)

where [; | represents the splicing operation, Fc; and Fe; represent two convolution opera-
tions with 1 x 1 convolution kernels, Branch, Branch; and Branch, are the convolution
operations on the graph, and o represents the Sigmoid activation function.

3.2. Channel Cascade Module Based on Attention Mechanism

Feature fusion is the combination of information from different scales or branches
and is an essential part of the object detection network structure. A common method
of feature fusion is to merge features by connecting channels of the feature map or by
adding them element by element. Element-by-element addition can make the feature map
more informative with the same dimensionality but less computationally intensive than
the cascade approach. However, for the problem of semantic inconsistency or perceptual
field inconsistency among input feature maps, this method may not be the best one. To
prevent the imbalance problem caused by object scale variation and small-object feature
information to the detection model in remote sensing images, in this paper, a channel
cascade module AMCC based on the attention mechanism is designed according to the
literature [37], as seen in Figure 3.
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Figure 3. Channel cascade module.

The module consists mainly of a mechanism for paying attention to channels and a
mechanism for paying attention to space. The channel attention mechanism adaptively
learns and focuses on the channel weights that are more important for the task, thus
enabling adaptive object selection and directing the network to focus more on important



Remote Sens. 2023, 15, 2728

7 of 19

objects. The spatial location attention mechanism can guide the model to learn and highlight
task-relevant foreground objects on the feature map according to the spatial information of
the feature map. Thus, the advantages of both are used to direct the network’s attention to
more regions about small objects, as shown in (3)—(7).

Z=X+Y 3)
a = o(Fc1 (Avg(Z)) + Fey(Max(Z))) 4)
Zy=(axX;)+((1—a)xYy) 5)
b = o(Conv_all(Z;)) ©)

Zo = (bxXz) + ((1-Db) x Ya) @)

where Avg and Max represent the average and maximum pooling operations, respectively,
and Conv_all indicates all convolution operations in the spatial attention mechanism.

Specifically, given two feature maps X, Y € RW*H*C firstly, X and Y are selected for
initial feature fusion by element summation to obtain feature map Z. Secondly, feature map
Z is input into the channel attention mechanism module to obtain weights a that help the
network to focus on small-object information through pooling and convolution operations,
and then weights a and weights 1 — a are applied to feature maps X and Y to get X; and
Y, respectively. Then, X; and Y; are summed by elements for the second time to acquire
the feature map Z;, and the feature map Z; is input into the spatial attention mechanism
module to obtain the spatial weights associated with the object task b. The attention
mechanism uses expanded convolution to expand the perceptual field and aggregate the
contextual information. The weights b and 1 — b are then applied to the feature maps X;
and Y; to obtain X; and Y, respectively. finally, the channels of X, and Y; are stitched to
obtain effective feature information at different scales.

3.3. Optimization of the Loss Function

The position regression loss function of the YOLOv5s is GloULoss, as seen in Equation
(8). For small objects, a small positional offset will cause a sharp decrease in the IoU value,
but for large objects, only a small change in the IoU value occurs for the same positional
offset. Therefore, the IoU-based loss function is very sensitive to the positional shift of
small objects, which reduces the overall detection accuracy of the object detector, as seen
in Figure 4. To solve the problem, we introduce the position regression loss function
based on normalized Wasserstein distance (NWD), which has become a new method for
small-object detection and optimization in recent years. NWD uses a two-dimensional
Gaussian distribution to model the bounding box and calculate the similarity between the
predicted object box and the labelled object box by its corresponding Gaussian distribution,
i.e., the normalized Wasserstein distance between them based on Equation (10). The method
consistently reflects the distance between distributions for objects detected by the model,
regardless of whether they overlap or not. NWD is insensitive to the scale of objects; it
is therefore more appropriate to use it to measure the similarity between the predicted
object boxes and the labelled boxes in the remote sensing images. However, this paper does
not simply replace this GIoU with the NWD loss function, because the GloU is better at
detecting large- and medium-sized objects. Therefore, in the paper, NWD is fused with
GIOU by scaling so that the model can improve the optimization weights and the accuracy
of the regression boxes, according to Equation (11), as a loss function for the location
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regression of AMMEN, where the coefficients a and b of GIoU and NWD are chosen as
shown in the ablation experiment section.

A° — (APUAS
GloULoss =1 — <IOU — (ACU)> (8)
W3(Na, Np,
NWD(N,, Np) = exp —Z(Ca) )
2 wy hy B wy, by, aYa
W2 (Na/ Nb) = CXa, Cya/ 7/ 7 7 | Xp, Cyb/ 7/ 7 (10)
Loss = 2 — (a* GloU + b * NWD) (11)

where IoU represents the ratio of the intersecting areas of two rectangular boxes to the
sum of their areas, AP indicates the area enclosed by the prediction box, A% indicates the
area surrounded by the label box, A® represents the area of the smallest outer rectangle
of the prediction box and label box, and C denotes the constant associated with the data-
set. In this paper, the value of C is the number of categories in the dataset. W3(N,, N},)
denotes the distance measure, and N, and N}, denote the Gaussian distribution modeled
by A = (cXa, cy,, Wa, ha) and B = (cxp, cyy, Wi, hp).

|AnB| lAnC| |AnB| lAnc|
— K ou — = (0.03 10U — = 0.84 = [OU —
[AUB |~ 0= [AUC]| [AUB | [AUC |

Figure 4. Schematic diagram of the sensitivity analysis of IoU for small and large objects, where each
grid represents a pixel, the left diagram shows the small-object schematic, the right diagram shows
the large-object schematic, A indicates the label box, and B and C indicate the prediction box with
different degrees of program offset, respectively.

3.4. Optimization of the Prediction Feature Layer

In remote sensing images, small objects have the drawbacks of small size and insuffi-
cient effective information. In the YOLOvV5s object detector, the effective pixels of small
objects gradually decrease in the process of mapping the input image into feature maps of
different scales after repeated down-sampling operations, which makes the network unable
to learn the important spatial feature information of small objects well, thus influencing the
detection accuracy of the detectors for small objects.

As seen in Figure 1, compared with the original three detection layers of YOLOv5s,
detection layer P2 contains richer texture and more detailed information due to fewer
down-sampling operations, which can help the model to detect small objects in remote
sensing images more effectively, so we propose the addition of detection layer P2 to detect
small objects on feature maps.
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4. Experiments
4.1. Dataset

In the experimental work, we used two datasets. One was the open-source dataset
VisDrone2021 [38], which contains 10 categories and is shown schematically in Figure 5.
The number of each type of object in this dataset varied considerably, so we selected two
of these categories, car and pedestrian, to train, validate, and test. A total of 8629 images
were allocated according to the original proportion of the dataset, with 6471, 548, and
1610 images in the training, validation, and testing sets, respectively. One was a homemade
dataset with 1156 images containing two categories: airplane and car, of which the training
set, validation set, and test set had 739, 185, and 323 images, respectively, as shown in
Figure 6. We counted the object sizes in both datasets according to the criteria of the MS
COCO dataset [39]. Additionally, we also counted the number of tiny objects with less than
16 x 16 pixels, as shown in Table 1.

Google eart

Figure 6. Sample picture of the homemade dataset.
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Table 1. The number of objects of each different size in the two datasets.

Type VisDrone2021 Homemade Dataset
Tiny object (0, 16?] 94,424 294
Small object (167, 322] 93,655 4901
Medium object (322, 96°] 94,273 6507
Large objects (962, +c0) 13,840 442

4.2. Experimental Environment Configuration and Parameter Setting

This research work used the PyTorch framework to complete a series of tasks using
GPUs for accelerated training, and the specific relevant environment configurations are
seen in Table 2.

Table 2. Experimental environment configuration.

Types Environment
Operating System Ubuntul8.04
GPU (Video memory size, memory size) NVIDIA GeForce GTX 4090Ti (24 G, 128 G)
PyTorch Versions 1.8.0
CUDA 12.1

AMMEN was improved from YOLOv5s, with the learning rate set to 0.001 in the
training phase and the weight decay value set to 0.0005. To optimize the parameters
of the model, we used the stochastic gradient descent algorithm and the momentum
optimization algorithm, and the input image had a length and width of 640 and a batch
size of 16; the epoch of iteration was 300, and the momentum factor was 0.937. The
hyperparameters of the models in the comparison experiments were slightly different, but
the overall hyperparameters were similar.

4.3. Experimental Evaluation Metrics

In this experiment, mAP was used as an evaluation metric, where mAP refers to the
P — R curve based on the accuracy and recall of each class in a multi-class object detection
task, and the formulae for accuracy and recall are shown in (12) and (13). We also listed the
specific size of parameters, the size of floating-point operations for each model, and frames

per second.
TP

P=Tp (12)
TP
R=— 1
TP + FN (13)

where TP denotes the number of positive cases where the prediction is a correct prediction,
FP denotes the number of predicted results that are misclassified as positive cases, and FN
denotes the number of predicted results that are incorrectly classified as negative cases.

The area obtained by intersecting the P — R curve with the coordinate axis is the
average accuracy. mAP is calculated as shown in (15):

1
AP = /0 P(R)d(R) (14)
mAP = i Allil(i) (15)

i=1
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4.4. Results of Ablation Experiments
4.4.1. Proposed Modules

To demonstrate that the module designed in this paper is valid for the model, we
conducted ablation experiments on each improved module under the same conditions and
verified the effect of each module on the model as a whole. Table 3 shows that the proposed
module made a significant improvement compared to YOLOv5s. The best results regarding
the loss function and the addition of detection layers for boosting small objects show that
our optimization of the loss function was effective and that the shallow feature information
can indeed help the model detect small objects. Although the enhancement of the detection
head enhancement module and channel cascade module was less, the improvement in the
small-object detection accuracy had a considerable influence.

Table 3. Effect of each module on YOLOv5s.

DHEM AMCC NWD Head mAP APys APys AP AP, AP, Params
0.221 0.440 0.204 0.146 0.395 0.556 7.025M
Vv 0.224 0.442 0.204 0.153 0.408 0.547 7.405M
N4 0.225 0.442 0.206 0.151 0.397 0.543 7.088 M
Vv 0.232 0.453 0.213 0.156 0.412 0.554 7.025M
Vv 0.232 0.458 0.213 0.158 0.408 0.568 7169 M
Vv Vv 0.236 0.466 0.215 0.162 0.422 0.579 7.651 M
v Vv 0.235 0.464 0.216 0.160 0.415 0.572 7.236 M
Vv Vv 0.239 0.469 0.218 0.163 0.423 0.576 7169 M
Vv Vv Vv 0.241 0.474 0.224 0.165 0.427 0.591 7.236 M
Vv Vv Vv 0.243 0.478 0.223 0.167 0.433 0.594 7.651 M
Vv Vv Vv 0.239 0.475 0.217 0.163 0.429 0.588 7717 M
Vv Vv Vv Vv 0.247 0.481 0.229 0.170 0.436 0.601 7717 M
* \/ indicates the selected module.
4.4.2. Finding the Appropriate Scale Factor in the Loss Function
We performed the above by simply referencing NWD as the regression loss function
of the model, but it did not greatly improve the overall detection capability of YOLOv5s.
Although the ability of the model to detect small objects was improved, the detection
accuracy for medium and large objects had the opposite effect, which was not the original
intention behind the design of AMMEN. Therefore, we chose to retain the GloU-based
regression loss function and conduct experiments by continuously adjusting the scaling
relationship between GloU and NWD under the condition of four detection heads. The
experimental results show that the use of GIoU combined with NWD can indeed bring great
positive effects to the model, effectively improving the overall performance of the model
as well as the effectiveness of small-object detection. Considering the object-detection
capability of the detector for large, medium, and small objects, we finally choose the
coefficients of GloU and NWD as 1.2 and 0.8, respectively, and the results are listed
in Table 4.
Table 4. Effect of different ratios of GloU and NWD on YOLOv5s with four detection heads.
GIoU NWD mAP AP 5 AP 75 AP AP AP
0 1 0.234 0.468 0.210 0.161 0.401 0.556
1 0 0.232 0.458 0.213 0.157 0.408 0.558
1 1 0.237 0.468 0.214 0.161 0.414 0.568
0.8 1.2 0.236 0.469 0.212 0.160 0.415 0.569
1.2 0.8 0.239 0.469 0.218 0.163 0.423 0.576
1.6 0.4 0.237 0.466 0.216 0.150 0.420 0.581
0.4 1.6 0.237 0.470 0.214 0.164 0.413 0.575
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4.5. Comparison Experiments

To validate the detection capability of AMMEN, we compared it with some benchmark
networks. To ensure the fairness and reasonableness of the experiments, we retrained,
validated, and tested all the comparison models. The results are seen in Table 5, and it can
be seen that the overall evaluation index values of the AMMEN are higher than those of
the YOLOvb5s network. Compared with other networks, although AMMEN had slightly
lower AP values and slightly lower APy, values than the three models YOLOv8s, YOLOXs,
and FOCS, the AMMEN had a smaller number of parameters and smaller GFLOPS than
the three models YOLOv8s, YOLOXs, and FOCS. Additionally, the AP value, mAP value,
APy 5 value, and APy 75 values of the AMMFN were higher than those of other compared
model networks. This shows that the AMMEN can obviously improve the detection
performance of small objects with lower parameters and lower arithmetic power, and can
detect more small objects while the prediction boxes are more accurate.

Table 5. Experimental results of various detection models on VisDrone2021 dataset.

Model mAP APy5 APg 75 APq APpy, AP, Params GFLOPS FPS
YOLOv5s 0.221 0.440 0.204 0.146 0.395 0.556 7.025 M 15954 G 137.91
RetinaNet-50 0.102 0.168 0.114 0.008 0.258 0.505 36.351M 145652 G 82.54
Efficientnet-d2 0.126 0.207 0.140 0.017 0.325 0.526 8.007 M 14.281 G 39.44
Efficientnet-YOLOV3 0.120 0.297 0.076 0.072 0.189 0.347 6.999 M 9.039 G 102.47
YOLOv4-tiny 0.129 0.306 0.087 0.075 0.234 0.415 5.876 M 6.836 G 286.61
Mobilenetv2-YOLOv4 0.108 0.268 0.069 0.059 0.184 0.315 10.381 M 18.270 G 99.78
YOLOV7-tiny 0.220 0.432 0.212 0.143 0.417 0.613 6.017M 13.190 G 277.13
YOLOXs 0.246 0.478 0.227 0.157 0.445 0.646 8.938 M 26.759 G 85.12
YOLOvS8s 0.243 0.473 0.224 0.155 0.452 0.642 11.136 M 28.649 G 228.83
FCOS 0.231 0.434 0.221 0.138 0.444 0.610 32.113M  161.174 G 81.95
AMMEFN 0.247 0.481 0.229 0.170 0.436 0.601 7717 M 25.782 G 84.28

To demonstrate the influence of AMMEN in a real scene in a more intuitive way,
according to the comparative results in Table 5, we chose YOLOv5s, FCOS, YOLOv7-Tiny,
YOLOvV8s, YOLOXs, and AMMEN to predict the same remote sensing image with the same
parameter settings, where the image contains a mass of small objects, and the results are
shown in Figure 7 and Table 6. A total of 38 objects were detected by YOLOVSs, 39 objects
were detected by YOLOXs, and 48 objects were detected by AMMEN, indicating that
AMMEN can detect more small objects, and that the accuracy of the regression boxes
was improved. Additionally, AMMEN is able to detect more distant objects compared to
several other models. Therefore, it can be demonstrated that AMMEN can improve the
effectiveness of small-object detection.

The modules proposed in this paper introduce attention mechanisms. To demonstrate
whether the attention mechanism has a considerable impact on the models, we visualized
the detection results of four models, YOLOv5s, YOLOv7-Tiny, YOLOvS8s, and AMMEN,
using a heat map. The results are shown in Figure 8. The darker the color, the more
important the region is to the model. Compared to other models, it can be seen that
AMMEN is able to focus precisely on task-relevant objects. Other models treat the railing
as a car category and as important information; in contrast, AMMEN is able to competently
mitigate the interference that this background information brings to the model, as shown
in the yellow boxes in the figure. The reason for this is that the attention mechanism used
in the AMMEN enhances the feature information of the objects and improves the ability of
the model to perceive them.
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Original Label box

YOLOV5s YOLOV7-Tiny

YOLOvS8s

YOLOXs AMMFN

Figure 7. Pictures of the detection effect of each comparison model. The green and blue lines indicate
the box and category of the label, respectively. The red and light blue lines indicate the prediction
boxes for the pedestrian category and the car category, respectively.
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Table 6. Total number of detected objects per comparison model.
Categories YOLOvV5s YOLOvV7-Tiny FCOS YOLOvVS8s YOLOXs AMMEFN Label
Car 4 4 4 4 4 4 12
Pedestrian 33 27 30 34 35 44 91

YOLOXs AMMFN

Figure 8. Visualization of the heat map for each comparison model.

In addition, we also used the log-average miss rate of four networks, YOLOv5s,
YOLOXs, YOLOvS8s, and AMMEN, to illustrate the leakage detection performance of our
proposed model. The log-average miss rate indicates the missed detection rate of the
model; as shown in Table 7, compared to the other three advanced object detection models,
AMMEN has a lower log-average miss rate for both types of objects, but unfortunately, its
log-average miss rate is still on the high side.

Table 7. Log-average miss rate for each comparison model.

Log-Average Miss Rate YOLOvV5s YOLOXs YOLOvVS8s AMMEFN
Pedestrian 091 0.88 0.89 0.86
Car 0.78 0.75 0.76 0.75

Finally, we use the example image in Figure 7 to investigate the effect that differently
sized images have on the test results when fed into the model, and the results are shown in
Table 8. The pedestrian category in this example image is almost exclusively small or ex-
tremely small objects. When the image is scaled down, the pedestrians in the image occupy
fewer pixels, making the model less effective in detecting them, which was consistent with
our theory. When the image is scaled up twice by interpolation, the small objects in the
image become medium-sized objects and the extremely small objects become small objects.
We believe that the reason for the lack of significant improvement in the model’s detection
results is that the interpolation method resulted in a change in the object’s characteristics,
which affected the detection results of the test model.
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Table 8. The effect of different input sizes of images on the results during the test.

Input Size Car Pedestrian Sum
224 x 224 2 6 8
320 x 320 3 18 21
416 x 416 4 25 29
512 x 512 4 32 36
640 x 640 4 44 48

1280 x 1280 3 46 49

4.6. Comparison of the Homemade Dataset

To demonstrate whether the proposed modules perform well in other remote sensing
datasets, we also conducted ablation experiments on a homemade dataset. This is shown
in Table 1. The percentage of the quantity of tiny objects in the homemade dataset was not
as large as the percentage of tiny objects in the VisDrone2021 dataset, so we only integrated
the three improvements in NWD, DHEM, and AMCC into the YOLOv5s model to train,
validate, and test. The results are shown in Table 9, where our proposed module still
manages to perform well compared to the benchmark model, thus proving the usefulness
of our proposed modules.

Table 9. Ablation results of each innovation module on the homemade dataset.

NWD DHEM AMCC mAP APy 5 APy.75 APs APy AP, Params GFLOPS
0.441 0.865 0.389 0.302 0.491 0.649 7.025M 15954 G

Vv 0.478 0.877 0.465 0.314 0.541 0.661 7.025M 15.954 G
vV 0.466 0.874 0.440 0.311 0.527 0.679 7.406 M 17.803 G

v 0.450 0.871 0.425 0.313 0.518 0.651 7.088 M 16.030 G

v Vv 0.485 0.877 0.479 0.330 0.555 0.710 7.405M 17.803 G
Vv vV 0.472 0.879 0.451 0.320 0.537 0.674 7.468 M 17.878 G

Vv v 0.487 0.883 0.485 0.329 0.554 0.669 7.088 M 16.030 G
Vv Vv vV 0.492 0.896 0.489 0.334 0.557 0.703 7.468 M 17.878 G

In addition, we randomly selected two typical images in the test set for testing the
detection effect of YOLOv5s and AMMEN, and the original images and detection results
are shown in Figure 9. AMMEN is able to detect small objects that both resemble the
background or are obscured, although there is a case of missed detection, as shown in the
yellow boxes. In addition, the number of objects detected by AMMEN and the accuracy of
the regression boxes were better than those of YOLOv5s. Therefore, it can be emphasized
that AMMEN can improve the model’s ability to detect small objects.

Original (al) Original (a2)

Figure 9. Cont.
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AMMEN (d1) AMMEFN (d2)

Figure 9. Pictures of detection results of YOLOv5s and our model. The green and blue lines indicate
the box and category of the label, respectively. The red and light blue boxes indicate the forecast
boxes for the aircraft category and the car category, respectively. The yellow box indicates the objects
missed by the model.

5. Discussion

Detecting small objects is a highly challenging problem in object detection, and is also
essential in some fields. The aim of this paper was the improvement in the accuracy of the
detection of small objects in remote sensing images, which is of certain practical importance.
Additionally, through the improvement of four aspects, the accuracy of the detection of
small objects will be improved to a certain extent.
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5.1. Discussion of Comparison with Other Advanced Models

Firstly, as seen in Table 5, AMMEN is slightly better than the two advanced object-
detection networks, YOLOv8s and YOLOXs, in terms of overall performance, but its
detection of large- and medium-sized objects is poor and not as good as the advanced
models, such as YOLOv8s and YOLOXs. Such results are also acceptable in terms of the
object distribution in the dataset, because most objects in remote sensing images belong to
small objects; so, AMMEN has some advantages. Secondly, as seen in Table 7, in terms of
the leakage rate, AMMEN is better than other advanced models, but the overall leakage
rate is still relatively high. This is because the backbone network of YOLOV5s is small and
the features of the objects are not extracted sufficiently, resulting in insufficient learning of
object features by the model. Therefore, our next task will be to design a lightweight but
extraction-capable backbone network.

5.2. Discussion of the Proposed Innovation Module

As can be seen in Table 4, simply referencing NWD does not improve the detection
of large objects, but the advantages of both NWD and GloU can be exploited through our
methods to improve the model performance. However, the shortcoming is that there is
variability in the object classification of different datasets, thus causing a change in the
scaling relationship between NWD and GIoU. As can be seen from Table 3, the addition
of the detection head and detection head enhancement module increases the number of
parameters of the model, but brings a greater improvement in the small-object detection
performance of the model, which makes it worthwhile.

5.3. Speed of Inference

As can be seen from Table 5, since our main task in this study was not to go in the
direction of lightweighting, our model has much room for improvement regarding speed. It
should be acknowledged, furthermore, that the module we designed wastes a lot of time on
reading and writing data, which leads to slower inference of the model. We were surprised
to find that YOLOVvS8s was still able to maintain a very fast speed with large parameters.
We believe this may have been the reason for the gradient shunt, which will be one of the
next focuses of our research.

6. Conclusions

In this paper, we proposed a remote sensing small-object detection network based on
the attention mechanism and multi-scale feature fusion, to address the problem that existing
object detectors are poor at detecting small objects due to the object’s size, unsatisfactory
feature extraction, and large-scale variation in UAV images.

In terms of the network structure, we firstly designed a detection-head-enhancement-
module (DHEM) to enhance the weight information of foreground objects. Secondly, we
proposed a feature cascade module with a multi-scale attention mechanism (AMCC) to
reduce the redundant information in the feature layer and enhance the feature represen-
tation of small objects. Finally, a new detection head was added to predict small objects
using shallow fine-grained information. In terms of loss functions, we introduced the NWD
loss function to address the problems of small-object optimization weights and inaccurate
small-object prediction boxes.

Although the detection performance of small objects in remote sensing images can be
improved with the network described in this paper, there is still more room for improve-
ment, such as the existence of large-model arithmetic power, missed objects, and its poor
detection performance of large objects. The next step is to investigate ways to improve the
overall performance of the object detector in a more efficient and lightweight manner.
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