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Abstract: Air temperature (Ta) is a common meteorological element involved in many fields, such as
surface energy exchange and water circulation. Consequently, accurate Ta estimation is essential for
the establishment of hydrological, climate, and environmental models. Unlike most studies concerned
with the estimation of daily Ta from land surface temperature, this study focused on the estimation
of instantaneous Ta from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric
profile products aboard the Terra and Aqua satellites. The applicability of various estimation methods
was examined in two regions with different geomorphological and climate conditions, North and
Southwest China. Specifically, the spatiotemporal trend of Ta under clear sky conditions can be
reflected by the atmospheric profile extrapolation and average methods. However, the accuracy of
Ta estimation was poor, with root mean square error (RMSE) ranging from 3.5 to 5.2 ◦C for North
China and from 4.0 to 7.7 ◦C for Southwest China. The multiple linear regression model significantly
improved the accuracy of Ta estimation by introducing auxiliary data, resulting in RMSE of 1.6
and 1.5 ◦C in North China and RMSE of 2.2 and 2.3 ◦C in Southwest China for the Terra and Aqua
datasets, respectively. Since atmospheric profile products only provide information under clear sky
conditions, a new multiple linear regression model was established to estimate the instantaneous Ta

under cloudy sky conditions independently from atmospheric profile products, resulting in RMSE
of 1.9 and 1.9 ◦C in North China and RMSE of 2.5 and 2.8 ◦C in Southwest China, for the Terra and
Aqua datasets, respectively. Finally, instantaneous Ta products with high accuracy were generated
for all-weather conditions in the study regions to analyze their Ta spatial patterns. The accuracy of Ta

estimation varies depending on MODIS datasets, regions, elevation, and land cover types.

Keywords: instantaneous air temperature; atmospheric temperature profile; multiple linear regression
model; land surface temperature; MODIS

1. Introduction

Air temperature (Ta), typically measured at a sheltered height of 2 m above ground
level [1], is a crucial parameter in various applications such as vector-borne disease bio-
nomics [2], hydrology [3], and climate change [4,5]. Ta is principally obtained from ob-
servations of ground-based meteorological stations with high temporal resolution and
accuracy [6]. However, it can only cover a limited spatial range and cannot accurately re-
flect the spatial heterogeneity of Ta, especially in areas with significant variations in climate
and altitude. Regional-scale distribution patterns of Ta are easily obtained by interpolation,
such as the inverse distance weighted, kriging, and spline methods [7,8]. However, it is
difficult to generate high-accuracy Ta data by these methods due to the limited number of
stations in areas with complex natural environments and scarce meteorological data [9–11].

Compared with ground-based observation products, remote sensing satellites provide
continuous surface and atmospheric parameters over a large region, resulting in temporal
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and spatial distribution data of Ta [12]. Generally, remote-sensing-based Ta estimation
methods can be divided into four groups. The first category is the temperature-vegetation
index (TVX), which is based on the assumption that the temperature of dense vegetation
is in equilibrium with Ta within the canopy [13,14]. This method establishes a negative
correlation between land surface temperature (LST) and vegetation index (VI); the saturated
VI value is then utilized to estimate Ta. The shortcomings are the need to remove excess
cloud or water body information within the window and the consequent uncertainties
when applied to areas with sparse vegetation [15]. The second class is the energy balance
method, which utilizes the energy conversion process to estimate Ta based on the surface
heat flux balance equation [16,17]. The main drawback of this method is its complexity
and the requirement for numerous parameters. It is difficult for remote sensing technology
to simultaneously provide information on multiple parameters, especially in a large-scale
region [18]. According to the principle of energy balance, the Ta can also be estimated by
using the energy conservation equation in the local scale mesoscale model [19,20]. It can
consider various thermodynamic processes in the atmosphere and solve the Ta distribution
through numerical algorithms. However, it has disadvantages in estimating Ta, such as
low resolution and difficulties in collecting and transmitting meteorological data. Thirdly,
statistical analysis methods such as simple and multiple regression models can explore
the relationship between Ta and other variables directly. Their advantages lie in model
simplicity and convenient application [21–23]. Fourthly, some studies utilized machine
learning methods such as random forest, neural networks, and support vector machines
to estimate Ta accurately from remote sensing data [24–26]. Such studies usually require
more computing resources and time. In addition, machine learning methods are usually
black-box models, which are inadequate to provide a clear explanation of the relationship
between model inputs and outputs. Therefore, the simple and intuitive linear regression
models were adopted in this study, aiming to reflect the contribution of each variable to the
output more directly.

Moderate Resolution Imaging Spectroradiometer (MODIS) datasets have been widely
used in the Ta estimation approaches mentioned above. Most of them are based on LST
provided by MOD11A1 and MYD11A1 products [27,28]. For instance, Yoo et al. [6] applied
LST to estimate the daily maximum and minimum Ta for two megacities. In contrast, fewer
studies have focused on the atmospheric profile products provided by MOD07_L2 and
MYD07_L2. Some studies showed the potential advantage of MODIS atmosphere profile
products to estimate Ta. Bisht et al. [29] proposed an approach to estimate Ta based entirely
on MOD07_L2 atmospheric profile products through the linear relationships between
Ta and altitude for different air pressure zones. Ta of Limpopo River was estimated by
utilizing MOD07_L2 atmospheric profile products and applying the vertical lapse rate of
Ta [30]. Unfortunately, the remote sensing data of this approach were affected by cloudiness
and were only applicable to clear sky conditions. Ta in the east part of the Qaidam Basin
in China and the Southern Great Plains in the USA under all-weather conditions was
estimated by Zhu et al. [31] based on the MODIS atmospheric profile products and LST
provided by MOD06_L2.

The effectiveness of the atmospheric profile products in Ta estimation has been demon-
strated in different areas [32]. However, its adaptability in large-scale complex subsurface
conditions still lacks effective validation and comparative analyses among different meth-
ods. Additionally, the study areas were small, and the climate and elevation changes in the
regions were not prominent. Therefore, this study evaluated the applicability of the esti-
mation scheme in two areas with completely different topography and climate conditions.
Apart from verifying the applicability of the atmospheric profile products, this study is
committed to further improving the accuracy of Ta estimation. So far, the linear regression
model is one of the most popular statistical models for estimation using MODIS prod-
ucts [33–35]. Therefore, high accuracy Ta was expected by a multiple regression method in
combination with LST products and other auxiliary datasets.
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Since atmospheric profile products can only provide Ta information under clear sky
conditions, Ta estimation under cloudy sky conditions is a crucial focus of this study. The
instantaneous Ta under cloudy sky conditions was estimated by simple and multiple linear
regression models. Moreover, the instantaneous Ta under all-weather conditions and the
spatial distribution patterns of Ta in the study areas were analyzed. Meanwhile, the study
incorporated two different datasets from the MODIS sensors onboard the Terra and Aqua
satellites to explore the influence of datasets on estimation accuracy.

The instantaneous Ta is vital for meteorological processes and weather forecasting
due to its near-real-time characteristics. Additionally, the instantaneous Ta at the moment
of satellite overpass is the basis for determining other daily temperature statistics [36]. It
provides indispensable inputs to remote sensing models for evapotranspiration [37], net
radiation [38], and soil moisture [39]. However, this study found that previous studies
have mainly focused on daily minimums and maximums or the average Ta over a given
period [6,21,35,40], with little attention paid to the estimation of instantaneous Ta. Con-
sequently, the primary focus of this study is to estimate instantaneous Ta at the time of
satellite overpass under clear and cloudy sky conditions.

In summary, the main objectives of this paper were the following: (1) to verify the
applicability of atmospheric profile products in the estimation of instantaneous Ta under
clear sky conditions and enhance the accuracy of estimation by introducing LST and
auxiliary data; (2) to estimate the instantaneous Ta under cloudy sky conditions using
regression methods, generate the instantaneous Ta under all-weather conditions in the
study area and analyze its spatial distribution pattern; (3) to compare the applicability of
different estimation approaches and the difference in instantaneous Ta estimation based on
the Terra and Aqua datasets; and (4) to apply the estimation methods to two regions with
entirely different topography and climate factors (North and Southwest China) to verify
the applicability of the parameterization scheme.

2. Study Area and Materials
2.1. Study Area

The present study was conducted in two regions, namely North and Southwest China,
with completely different geomorphological and climatic conditions (Figure 1).

2.1.1. North China

The definition of North China differs slightly according to the source. In this study, ac-
cording to the administrative division, the Shanxi, Shandong, Hebei, and Henan provinces
and the cities of Beijing and Tianjin were classified into North China [41]. The latitude
and longitude range is 110◦15′–122◦43′E and 31◦23′–42◦37′N, respectively. North China
is a semi-humid region with a temperate continental monsoon climate. Precipitation is
unevenly distributed during the year and primarily occurs in summer [42]. Its northern
and western regions are mountainous, and the vegetation types are mainly woodland and
grassland; the central and eastern regions are extensive plains and represent the main crop
production areas in China [43,44].

2.1.2. Southwest China

In this study, the southwest region, excluding Tibet, was selected as the study area
(97◦21′–110◦11′E, 21◦03′–34◦19′N). It includes the Sichuan, Yunnan, and Guizhou provinces
and Chongqing city, with a total area of approximately 10.5 × 105 km2. Southwest China
has a complex topographic structure with plateaus and mountains [45]. The terrain is
high in the west and low in the east [46]. The climate of the region is dominated by the
subtropical monsoon climate, tropical monsoon forest climate, and the unique plateau
climate of the Tibetan Plateau [47]. In addition, the vertical climate varies, and the annual
precipitation decreases from southeast to northwest.
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2.2. Datasets
2.2.1. MODIS Datasets

The remote sensing data for this study were obtained from the MODIS Terra and
Aqua satellites with overpass times of approximately 10:30 a.m. and 1:30 p.m. (local time),
respectively. Specifically, the MOD03, MOD06_L2, MOD07_L2, and MOD13_A2 products
correspond to the Terra satellite platform, while the MYD03, MYD06_L2, and MYD07_L2
products correspond to the Aqua satellite platform.

The MOD07_L2 and MYD07_L2 atmospheric profile products include the atmospheric
temperature profiles and the surface pressure distribution with a spatial resolution of
5 km [48]. The temperature profiles are distributed through 20 vertical atmospheric pres-
sure levels (5, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 620, 700, 780, 850, 920, 950,
and 1000 hPa). They are determined through regression based on the statistical relation-
ship between observed radiances and the corresponding atmospheric profile. However,
MOD07_L2 and MYD07_L2 products can only provide temperature profiles and surface
pressure under clear sky conditions. The MOD06_L2 and MYD06_L2 products contain op-
tical and physical parameters of clouds that are used to determine cloud properties. Unlike
MOD11A1 or MYD11A1 products, the LST is available in the MOD06_L2 and MYD06_L2
products for both clear and cloudy sky conditions. The LST data in the MOD06_L2 and
MYD06_L2 products, with a spatial resolution of 5 km, is derived from the MOD11_L2 and
MYD11_L2 products, National Centers for Environmental Prediction (NCEP) grid analysis,
and Data Assimilation Office (DAO) data [29]. Bisht et al. [29] verified the LST obtained



Remote Sens. 2023, 15, 2701 5 of 23

from the MOD06_L2 product against ground measurements. Their results showed that the
RMSEs of daytime and nighttime LST estimates from the MOD06_L2 are 3.80 and 2.54 K,
respectively. Thus, in this study, the LST was retrieved from MOD06_L2 and MYD06_L2
rather than MOD11A1 and MYD11A1 products. The solar zenith angle (SZA) was extracted
from MOD03 and MYD03 products with a spatial resolution of 1 km. Additionally, the
16-day Normalized Difference Vegetation Index (NDVI) was extracted from the MOD13A2
product with a spatial resolution of 1 km.

2.2.2. Meteorological and Digital Elevation Model Datasets

Two additional datasets—Shuttle Radar Topography Mission’s digital elevation model
(SRTM DEM) product and a meteorological dataset—were also employed. Specifically,
hourly Ta observations from 502 national meteorological stations in North China and
364 stations in Southwest China were used. Since the target of this study was the estima-
tion of instantaneous Ta, only the Ta observations closest to the Terra and Aqua satellites’
overpass time were used. It should be noted that the measurement errors of the meteoro-
logical dataset may have a potential impact in assessing the accuracy of the Ta estimation.
Measurement errors may increase the discrepancy between the estimated and actual Ta.
The data quality has been preliminarily controlled by the data providing platform. The
elevation was obtained from the SRTM DEM dataset, which has a spatial resolution of
90 m. To facilitate the analysis of the spatial distribution pattern of Ta in combination with
MODIS products, it was resampled using the nearest neighbor method to match the spatial
resolution of the MODIS products.

3. Methodology

In this study, we adopted and compared different methods for the estimation of
instantaneous Ta from MODIS products and auxiliary data. Specifically, the approaches for
Ta estimation under clear sky conditions are the atmospheric profile extrapolation, average,
and multiple linear regression methods. Meanwhile, the approaches for Ta estimation
under cloudy sky conditions include the simple and multiple linear regression models. The
atmospheric profile extrapolation and average methods for clear sky Ta and the simple
linear regression for cloudy-sky Ta were entirely based on MODIS products without any
auxiliary data. As for the multiple linear regression method, auxiliary data, such as Ta
observations and the DEM dataset were introduced as input information under clear and
cloudy sky conditions.

3.1. Estimation of Instantaneous Ta under Clear Sky Conditions
3.1.1. Atmospheric Profile Extrapolation

The atmospheric profile extrapolation method estimates Ta based on the linear rela-
tionship between Ta and altitude at different pressure levels. Bisht and Bras [29] assumed
that the vertical decrement rate of Ta is 6.5 K·km−1. However, the Ta decrement rate has
spatial and temporal variability, meaning that setting it as a constant would result in sig-
nificant errors. Therefore, the method of Zhu et al. [31] was applied in this study. They
estimated the direct temperature decrement rate by the temperature difference and the
atmospheric pressure difference between the two atmospheric layers closest to the surface
in the MOD07_L2 product. This effectively overcomes the limitations of the Bisht and Bras
method. The calculation can be expressed as follows:

Ta1,clear = TL1
a +

TL2
a − TL1

a
PL2

a − PL1
a

(
PS − PL1

)
(1)

where Ta1,clear is Ta retrieved by the atmospheric profile extrapolation method, PS is the
surface pressure level obtained from MOD07_L2 or MYD07_L2 products, PL1 is the lowest
pressure level of the MOD07_L2 or MYD07_L2 products in this study, PL2 is the nearest
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level above PL1, and TL1
a and TL2

a are the atmospheric temperatures retrieved at a pressure
level PL1 and PL2, respectively.

According to the surface pressure value of each pixel, the 16th–20th pressure levels of
the atmospheric profile products corresponded to North China, and the 13th–20th pressure
levels corresponded to Southwest China. In addition, many studies directly selected the
air temperature (TL1

a ) corresponding to the nearest pressure band (PL1) of the surface
in atmospheric profile products to represent the near-surface Ta [38,49]. However, this
approach has poor applicability compared with the atmospheric profile extrapolation
method; therefore, it was not considered in this study.

3.1.2. Average Method

Zhu et al. [31] showed that the atmospheric profile extrapolation method tends to
underestimate Ta due to the uncertainty of the MOD07_L2 product and the error in the
parameterization of near-surface Ta. Meanwhile, LST retrieved from MOD06_L2 over-
estimates instantaneous Ta. Based on the revealed statistical relationships, an average
parameterization scheme was proposed to retrieve Ta under clear sky conditions [32]:

Ta2,clear =
Ta1,clear + Ts

2
(2)

where Ta2,clear represents Ta under clear sky conditions estimated by the average method,
Ta1,clear represents Ta under clear sky conditions assessed by the atmospheric profile
extrapolation method and Ts represents the LST data provided by the MOD06_L2 or
MYD06_L2 products.

3.1.3. Multiple Linear Regression Model

The multiple linear regression method can reliably predict the near-surface Ta with
high accuracy [33,50,51]. This model expresses the relationship between a response vari-
able and multiple predictor variables through parameters estimated by linear inputs and
least squares [52]. In this context, Ta and LST strongly correlate, but their relationship is
very complex [36,53,54]. Furthermore, Ta is a physical quantity that reflects the degree of
coldness and heat of the atmosphere and has strong mobility. It is influenced by various
environmental factors, including vegetation coverage and terrain, which must be consid-
ered when selecting predictor variables for the model. Therefore, Ta calculated by the
atmospheric profile extrapolation method under clear sky conditions, LST from MOD06_L2
and MYD06_L2, NDVI [55], SZA [56], and elevation [57] were defined as the independent
variables. Specifically, NDVI is an indicator factor that reflects the vegetation growth status
and vegetation coverage of the underlying surface. Different vegetation covers reflect and
absorb solar radiation differently, thus affecting Ta estimation. The influence of the SZA
on Ta is manifested in the total solar radiation reaching the ground. The SZA is negatively
correlated with total solar radiation. Smaller SZA results in greater solar radiation reaching
the ground, making SZA an indispensable factor. The influence of elevation on Ta is mainly
reflected in the vertical lapse rate of Ta, while the high terrain has a blocking effect on the
monsoon, which is not conducive to the heat dissipation of the basin terrain. The aspect of
the mountain slopes, whether shaded or sunny, can also affect Ta. The hourly Ta observed
at the meteorological stations was the dependent variable. The multiple linear regression
estimation model of Ta under clear sky conditions can be expressed as follow:

Ta3,clear = A + B1 × X1 + B2 × X2 + B3 × X3 + . . . + Bn × Xn (3)

where Ta3,clear is the Ta produced by the multiple linear regression model under clear sky
conditions, A is a constant term, Bn (n = 1, 2, 3, . . . ) is the regression coefficient, and Xn
(n = 1, 2, 3, . . . ) is the independent variable.

The regression model in which all variables are involved is not necessarily optimal.
Consequently, the multiple stepwise regression method was adopted to test and filter the
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independent variables. In this study, 70% of the observations were randomly selected as
the dependent variable to establish the equations. The remaining 30% of the samples were
exploited for validation. Since the samples were selected randomly, ten repetitions of the
experiment were conducted for cross-validation to assess the stability of the model.

3.2. Estimation of Instantaneous Ta under Cloudy Sky Conditions
3.2.1. Simple Linear Regression Model

Since MOD07_L2 and MYD07_L2 only provide the atmospheric profile data under
clear sky conditions, the methods described in Section 3.1 can only realize remote sensing
estimation of clear sky Ta. Studies by Stisen et al. [58] and Vancutsem et al. [8] have
confirmed a strong linear relationship between LST and Ta, enabling remote sensing
estimation of cloudy sky Ta through regression method. Therefore, on the basis of the Ta
estimation under clear sky conditions, a simple linear regression model for Ta estimation
under cloudy sky conditions can be established pixel by pixel. The relational expression is:

Ta1,cloudy = M + N × Ts (4)

where M is the constant term, N is the slope, and Ts is the LST from MOD06_L2 and MYD06_L2.
Specifically, the daily Ta under clear sky conditions was defined as the dependent

variable, and the daily LST under clear sky conditions was defined as the independent
variable. The LST under cloudy sky conditions is substituted into the regression equations
to carry out the remote sensing estimation of instantaneous Ta under cloudy sky conditions.

3.2.2. Multiple Linear Regression Model

Similar to Ta under clear sky conditions, Ta under cloudy conditions can be obtained
by multiple linear regression models. The multiple stepwise linear regression model with
LST, NDVI, SZA, and elevation as independent variables was used to obtain the Ta values
under cloudy sky conditions. The independent variables in this method are listed in Table 1.
The estimation model of Ta under cloudy sky conditions applying the multiple linear
regression method can be defined as follow:

Ta2,cloudy = C + D1 ×Y1 + D2 ×Y2 + D3 ×Y3 + . . . + Dn ×Yn (5)

where Ta2,cloudy is the Ta produced by the multiple linear regression model under cloudy
sky conditions, C is a constant term, Dn (n = 1, 2, 3, . . . ) is the regression coefficient and Yn
(n = 1, 2, 3, . . . ) is the independent variable.

Table 1. The independent variables of the multiple linear regression model.

Clear Sky Conditions Cloudy Sky Conditions Data Source

LST LST MOD06_L2 and MYD06_L2
NDVI NDVI MOD13A2
SZA SZA MOD03 and MYD03

Elevation Elevation SRTM DEM

Ta1,clear - The clear sky Ta from atmospheric
profile extrapolation method

3.3. Statistical Metrics

Four statistical metrics were applied to evaluate the accuracy of the different estimation
methods, as in Jia et al. [59], namely, Pearson’s correlation coefficient (r), bias (B), mean
absolute error (MAE), and root mean square error (RMSE). The equations expressing these
metrics are as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1 (xi − x)2 ∑n

i=1(yi − y)2
(6)
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B =
∑n

i=1(xi − yi)

n
(7)

MAE =
1
n

n

∑
i=1
|xi − yi| (8)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (9)

where n is the sample size, xi and yi represent the estimated and observed Ta, respectively,
x and y denote the average values of xi and yi, respectively, and the subscript i represents
the sample number at the ith position.

4. Results
4.1. Accuracy of Instantaneous Ta Estimation under Clear Sky Conditions

In this study, the instantaneous Ta estimates at meteorological stations in the study
regions from 2016 to 2017 were compared with the observed Ta to generate the estimation
accuracy.

4.1.1. Atmospheric Profile Extrapolation and Average Method

The values of r, B, MAE, and RMSE of atmospheric profile extrapolation and the
average method are presented in Table 2. Ta1,clear and Ta2,clear had strong correlations with
Ta observations in both regions, with r ranging from 0.94 to 0.97 in North China and 0.75 to
0.87 in Southwest China.

Table 2. Accuracy of instantaneous air temperature (Ta ) estimation under clear sky conditions
produced by atmospheric profile extrapolation (Ta1,clear ) and average method (Ta2,clear ).

Study
Area Variable Data

Source r B/◦C MAE/◦C RMSE/◦C

North
China

Ta1,clear
Terra 0.949 −0.2 4.3 5.2
Aqua 0.951 0.1 2.9 4.0

Ta2,clear
Terra 0.951 0.0 2.8 3.5
Aqua 0.969 0.2 3.5 4.2

Southwest
China

Ta1,clear
Terra 0.762 −0.3 5.8 7.7
Aqua 0.758 −0.2 4.6 6.7

Ta2,clear
Terra 0.868 0.0 2.8 4.0
Aqua 0.844 −0.1 3.1 4.4

Specifically, in North China, the Ta inferred by the atmospheric profile extrapolation
method based on the Terra dataset tends to underestimate, with the B of −0.2. The av-
erage method produced better simulation results for instantaneous Ta under clear sky
conditions in the model validation stage, and MAE and RMSE were reduced by 1.5 and
1.7 ◦C, respectively. As for the Ta inferred using the Aqua dataset, the atmospheric profile
extrapolation method overestimated Ta. The overestimation increased after averaging
Ta1, clear and MYD06_L2 LST conversely. This suggests that the estimated Ta obtained by
the atmospheric profile extrapolation method may not always underestimate in all cases.

In the case of Southwest China, the Ta values obtained with the atmospheric profile
extrapolation method based on the Terra and Aqua datasets were underestimated. In
comparison, MAEs (2.8 and 3.1 ◦C) of the average method estimation results were reduced
by 3.0 and 1.5 ◦C, respectively. Similarly, RMSEs (4.0 and 4.1 ◦C) were also much lower
than that of the atmospheric profile extrapolation method (7.7 and 6.7 ◦C). Therefore, the
average method performs well in Southwest China.
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4.1.2. Multiple Linear Regression Model

The LST, NDVI, SZA, elevation, clear sky Ta calculated by atmospheric profile extrap-
olation and hourly Ta observations were substituted into the multiple stepwise regression
model to obtain the instantaneous Ta with higher accuracy. It is worth noting that, to ensure
the applicability of the multiple regression equations, equations were created on a daily
basis. The statistical metrics of Ta estimation’s accuracy for ten replicate experiments and
their average values were calculated, as shown in Figure 2 and Table 3.
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Table 3. Average accuracy of ten Ta3,clear estimations.

Study Area Data Source r B/◦C MAE/◦C RMSE/◦C

North China
Terra 0.991 0.0 1.1 1.6
Aqua 0.991 0.0 1.1 1.5

Southwest
China

Terra 0.959 0.0 1.6 2.2
Aqua 0.950 0.0 1.6 2.3

It is clear that the accuracy difference among the ten estimation results is not significant,
which confirms that the model is stable. Obviously, the multiple linear regression model
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performs much better compared with the atmospheric profile extrapolation and average
methods. The average values of r for both regions were above 0.95, and the absolute values
of B were less than 0.001 ◦C. The average MAEs of Ta estimation on clear days in North
China for the MODIS Terra and Aqua datasets were both 1.1 ◦C, being reduced by 1.7 and
1.9 ◦C compared with the minimum MAEs of the first two methods, respectively. Similarly,
the average RMSEs were 1.6 and 1.5 ◦C, having decreased by 1.9 and 2.5 ◦C, respectively.
Meanwhile, the average MAEs in Southwest China were both 1.6 ◦C, and they decreased by
1.2 and 1.5 ◦C compared to the first two methods, respectively. The average RMSEs were
2.2 and 2.3 ◦C, being reduced by 1.8 and 2.1 ◦C, respectively. The accuracy of instantaneous
Ta under clear sky conditions estimated using the MODIS Terra and Aqua, datasets are not
significantly divergent.

4.2. Accuracy of Instantaneous Ta Estimation under Cloudy Sky Conditions
4.2.1. Simple Linear Regression Model

The regression model of clear sky Ta and MOD06_L2 or MYD06_L2 LST was estab-
lished in this study. It should be noted that the Ta with higher accuracy between the
atmospheric profile extrapolation and average method was adopted here. The LST under
cloudy sky conditions was applied to the regression model to carry out the remote sensing
estimation of instantaneous Ta under cloudy conditions. Thus, it lays the foundation for Ta
estimation under all-weather conditions. Its overall accuracy is shown in Table 4.

Table 4. Accuracy of instantaneous Ta estimation under cloudy sky conditions obtained with simple
linear regression (Ta1,cloudy ) model based on Ta1,clear or Ta2,clear.

Study Area Data Source r B/◦C MAE/◦C RMSE/◦C

North China
Terra 0.890 −0.2 3.8 4.6
Aqua 0.945 0.7 3.1 3.9

Southwest
China

Terra 0.813 −0.3 3.5 4.5
Aqua 0.823 −0.1 3.4 4.4

In North China, the validation results show that the MAEs of Ta estimation under
cloudy sky conditions using the Terra and Aqua datasets were 3.8 and 3.1 ◦C, and the
RMSEs were 4.6 and 3.9 ◦C, respectively. Meanwhile, in the case of Southwest China,
the MAEs were 3.5 and 3.4 ◦C, and the RMSEs were 4.5 and 4.4 ◦C, respectively. The
overestimation or underestimation of Ta was evident and slightly lower than the estimation
accuracy of Ta under clear sky conditions.

The comparison of the three methods under clear sky conditions confirmed that the
accuracy of the instantaneous Ta estimated by the multiple linear regression model is
significantly higher. Accordingly, Ta3,clear and the MOD06_L2 and MYD06_L2 LST were
applied to establish the regression model. The independent variables were substituted into
the multiple linear regression equations with the smallest RMSE among the ten regressions
to generate Ta3,clear. The results were used to create a linear equation with LST to obtain
the instantaneous Ta estimates under cloudy sky conditions. The accuracy is presented in
Table 5.

Table 5. Accuracy of instantaneous Ta estimation under cloudy sky conditions produced by a simple
linear regression model (Ta2,cloudy ) based on Ta3,clear.

Study Area Data Source r B/◦C MAE/◦C RMSE/◦C

North China
Terra 0.895 0.0 3.6 4.5
Aqua 0.948 0.0 2.5 3.3

Southwest
China

Terra 0.848 −0.1 3.4 4.3
Aqua 0.901 0.0 2.6 3.4
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Compared with Table 4, the absolute values of B, MAE, and RMSE were reduced but
not significantly. For instance, in North China, the MAEs of the Terra and Aqua datasets
were only reduced by 0.2 and 0.6 ◦C, and the RMSEs were only reduced by 0.1 and 0.6 ◦C,
respectively. Even if the higher accuracy Ta under clear sky conditions were applied as
input information, the improvement of the accuracy of the instantaneous Ta on cloudy
days was not significant. This systematic error always exists when the simple regression
model is adopted to estimate Ta under cloudy sky conditions, making Ta overestimated
or underestimated to a relatively different extent. Therefore, it is necessary to verify the
applicability of the simple regression model itself for the estimation of Ta under cloudy sky
conditions. In such a situation, the actual observed values of Ta were regressed with LST
instead of the estimated Ta values.

The validation results (Table 6) demonstrate that even when the observations of Ta
were introduced into the model, the errors of the instantaneous Ta under cloudy sky
conditions were still significant. Specifically, the RMSEs estimated by the independent
variables of LST from the Terra and Aqua datasets were 4.3 and 3.0 ◦C for North China
and 4.0 and 2.9 ◦C for Southwest China, respectively. Compared to the multivariate linear
regression model that uses estimated values as input information, the difference in accuracy
is not significant. The RMSEs in North China decreased only by 0.2 and 0.3 ◦C, and in
Southwest China, they decreased by 0.3 and 0.5 ◦C, respectively. This indicates an obvious
systematic error in the simple regression model itself. The linear relationship between Ta
and LST under different elevations and vegetation types cannot be accurately estimated
under cloudy sky conditions.

Table 6. Accuracy of instantaneous Ta estimation under cloudy sky conditions produced by a simple
linear regression model based on Ta observations.

Study Area Data
Source r B/◦C MAE/◦C RMSE/◦C

North China
Terra 0.916 0.0 3.5 4.3
Aqua 0.961 0.0 2.5 3.0

Southwest
China

Terra 0.917 −0.2 3.4 4.0
Aqua 0.946 −0.1 2.4 2.9

4.2.2. Multiple Linear Regression Model

As in the case of Ta under clear sky conditions, multiple stepwise linear regression was
applied for the estimation of Ta under cloudy sky conditions. The independent variables
were LST (MOD06_L2/MYD06_L2), NDVI, SZA, and elevation. The actual observations
were the dependent variables. Similarly, 70% of the samples were randomly selected to
establish the multiple regression equation, and the remaining 30% of the samples were
used for validation. The validation results are presented in Figure 3.

Compared with Table 5, it is clear that the multiple linear regression model produces
better results for Ta estimation than the simple linear regression model. The r values for the
two regions were greater than 0.93, and the absolute values of B were less than 0.01 ◦C. The
MAEs for the Terra and Aqua datasets of North China decreased by 2.2 and 1.1 ◦C, and
the RMSEs were reduced by 2.6 and 1.4 ◦C, respectively. In Southwest China, the MAEs
decreased by 1.5 and 0.6 ◦C, and the RMSEs decreased by 1.8 and 0.7 ◦C, respectively. In
conclusion, the applicability of the multiple linear regression method to Ta estimation is
higher than a simple linear regression model under cloudy sky conditions. Ta under cloudy
sky conditions is not as accurate as under clear sky conditions, but all four statistics show
that this is still acceptable given that the regression model for cloudy sky conditions does
not involve atmospheric profile products. Furthermore, the LST under cloudy conditions
may be subject to uncertainty due to varying cloud cover. The uncertainty of LST under
cloudy sky conditions may lead to deviations in the coefficients corresponding to LST in
the multiple regression model, resulting in errors in Ta estimation.
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4.3. Accuracy of Instantaneous Ta Estimation under All-Weather Conditions

Based on the parameterization scheme described in Sections 4.1 and 4.2, it is possible
to obtain highly accurate instantaneous Ta under all-weather conditions from the MODIS
products, DEM, and observation datasets. The scatter diagram comparing estimated Ta
and measured Ta in North and Southwest China is presented in Figure 4.

On the whole, the r, B, MAE, and RMSE calculated for North China through Terra
and Aqua datasets were 0.986, 0.0 ◦C, 1.3 ◦C, 1.8 ◦C, and 0.987, 0.0 ◦C, 1.3 ◦C, and 1.8 ◦C,
respectively; for Southwest China, they were 0.951, 0.0 ◦C, 1.8 ◦C, 2.5 ◦C, and 0.943, 0.0 ◦C,
2.0 ◦C, and 2.6 ◦C, respectively.

The discrepancy exists in Ta estimation based on the MODIS Terra and Aqua datasets.
The reason may be that the Terra and Aqua satellites operate in different orbits, resulting
in different observation times and angles in the same area, so their solar zenith angles are
different. As mentioned in Section 3.1, the influence of the SZA on Ta is manifested in the
total solar radiation reaching the ground, and the SZA is negatively correlated with the
total solar radiation. Differences in total solar radiation may have contributed to major
differences in Ta estimates for the two datasets.

In order to further analyze the spatial uncertainty of the estimated Ta, the accuracy
of the Ta estimated by each meteorological station was calculated. Figure 5 shows the
statistical metric RMSE of each meteorological station in North and Southwest China.
Specifically, the RMSE at the meteorological station scale for North China is higher in the
western and northern plateau regions and lower in the central plain regions. For Southwest
China, the RMSE is higher in the plateau of the northwest region and lower in the basin and
plain regions. Overall, compared with the spatial distribution of elevation in Figure 1, the



Remote Sens. 2023, 15, 2701 13 of 23

Ta estimation model performs better for meteorological stations located in plains and basins
with lower elevations than those in plateaus with higher elevations. Complex terrain can
reduce the correlation between Ta and other variables, which may lead to model uncertainty
in Ta estimation.
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Figure 4. Accuracy of instantaneous Ta estimation under all-weather conditions: (a) North China,
Terra data; (b) North China, Aqua dataset; (c) Southwest China, Terra dataset; (d) Southwest China,
Aqua dataset.

The accuracy of instantaneous Ta estimation varied somewhat with different land
cover types. Therefore, the RMSEs of meteorological stations within each land cover type
were demonstrated in the two study areas. Land cover types include cultivated land,
woodland, grassland, and constructive land. The RMSEs of each land cover type are shown
in Table 7. For North China, the accuracy of Ta estimation is ranked from high to low as
cultivated land, constructive land, grassland, and woodland. The RMSEs for constructive
land and construction land are relatively close, as are those for woodland and grassland.
For Southwest China, the descending order of estimation accuracy is constructive land,
cultivated land, woodland, and grassland. The accuracy difference between the four land
cover types is not significant. In general, the estimation model exhibits better performance
for stations situated in areas with constructive and cultivated land but displays relatively
poor performance in regions characterized by woodland and grassland. Each land cover
type corresponds to a different elevation, which is the main reason for differences in Ta
estimation. Specifically, for meteorological stations in North China, the average elevations
of cultivated land, woodland, grassland, and constructive land are 300.63 m, 566.91 m,
841.10 m, and 227.20 m, respectively. In Southwest China, the average elevations for these
land cover types are 1125.62 m, 1246.78 m, 1682.55 m, and 997.05 m, respectively. Woodland
and grassland are primarily distributed in mountainous and hilly areas with higher eleva-
tions, while cultivated land and constructive land are largely influenced by human activities
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and mainly distributed in low-elevation plains and mountainous, hilly areas with lower
elevations. In addition, cultivated land and construction land often have relatively simple
land cover and uniform surface characteristics, resulting in higher estimation accuracy of
Ta. There are variations in the precision of identical land cover types between the two study
regions. In terms of woodland and grassland, the accuracy in Southwest China is higher
than that in North China. Conversely, North China exhibits greater accuracy in estimating
Ta for cultivated and construction land, compared to Southwest China.
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Table 7. RMSE of instantaneous Ta estimation of land cover types (◦C).

Study Area Data Source Cultivated
Land Woodland Grassland Constructive

Land

North China
Terra 2.0 3.0 3.0 2.0
Aqua 2.6 3.6 3.2 2.7

Southwest
China

Terra 2.5 2.5 2.8 2.4
Aqua 2.7 2.8 2.9 2.7

As mentioned in the introduction, most previous studies have focused on daily min-
imums and daily maximums or the average Ta over a given period but rarely on the
instantaneous Ta. The following two studies that used a similar method to estimate instan-
taneous Ta are mentioned in this study. Based on the MODIS datasets, Xu et al. [60] took
NDVI, water vapor pressure, surface albedo, and elevation as four influencing factors, used
multiple regression analysis to fit the instantaneous Ta under clear sky conditions. The
RMSE of the estimation result is 2.3 ◦C; the accuracy is lower than that in this study. The
estimation accuracy of Ta is slightly different from that in Southwest China, but the RMSE
difference with that in North China is more than 0.7 ◦C. Xu et al. [61] developed a statistical
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method for instantaneous Ta using MODIS Aqua dataset and meteorological dataset. Four
regression models with different independent variables resulted in MAE ranging from 2.2
to 2.3 ◦C. The estimation accuracy is slightly lower than that in this study (MAE ranges
from 1.3 to 2.0 ◦C). Different from this study, the above two studies only involved the
instantaneous Ta under clear sky conditions but did not consider the instantaneous Ta
under cloudy sky conditions. In addition, the regression equations in this study were
established on a daily scale, while the regression equations of the above two studies were
the same for each day.

Our study demonstrates the feasibility of multiple stepwise regression models for Ta
estimation. However, there are several uncertainties associated with these models. Firstly,
the variables selected for the multiple stepwise regression models were retrieved mainly
from MODIS products, which may lead to varying results if the dataset changes. Secondly,
the coefficient estimates in the multiple stepwise regression model are calculated based
on the sample dataset, resulting in inherent errors and uncertainties. Thirdly, if the model
exhibits multicollinearity, the prediction results may be uncertain. Additionally, if too many
predictor variables are used in the multiple stepwise regression model, it may result in
overfitting problems, which can negatively impact the models’ estimation accuracy. In
order to mitigate these uncertainties, we performed quality control on the datasets, carefully
selected features, and evaluated the model’s performance using various evaluation metrics.

4.4. Spatial Distribution of Ta in North and Southwest China

The average annual Ta under all-weather conditions was calculated. The spatial dis-
tribution of the average annual Ta estimated with the Terra and Aqua datasets in North
(Figure 6a,b) and Southwest China (Figure 6c,d) are presented. It should be especially
emphasized that the average annual Ta here represents the annual mean values of instanta-
neous Ta at the time of satellite overpasses, which is somewhat different from the average
annual Ta in the traditional sense of meteorology.
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The spatial distribution of Ta is significantly influenced by altitude. Considering the
spatial distribution of elevation in the study area (Figure 1), the Ta values at high altitudes
were significantly lower than those at low altitudes. Specifically, the overall distribution of
the annual average Ta in North China was higher in the south than the north, and in the
east than the west. In Southwest China, the estimated Ta showed a distribution where it
was lower in the northwest than in the southeast. The annual average Ta in the Sichuan
Basin was significantly higher, while the western Sichuan Plain, which has a higher altitude,
showed a lower Ta.

To illustrate the relationship between Ta and elevation more accurately, the meteo-
rological stations were divided into 17 zones in North China and 38 zones in Southwest
China according to the elevation, with an initial elevation of 1 m and an interval of 100 m.
Figure 7 presents the scatter plot of the estimated annual mean Ta and its mean height
for the elevation zones. To demonstrate the accuracy of the estimates, the Ta observations
at the meteorological stations were also introduced for comparison. The results display
a significant negative correlation between elevation and Ta. The Ta in Southwest China
varies more than that in North China due to the elevation factor. In addition, even in the
same elevation range, the Ta in Southwest China is higher than that in North China due to
climate and other natural factors.
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5. Discussion

This study showed that the establishment of a multiple linear regression model is
accurate in estimating Ta. However, the model’s performance is inadequate for small
sample sizes. To ensure the stability of this model, the relationship between estimation
accuracy and the sample size was analyzed. Meanwhile, the contribution of independent
variables to Ta estimation is different, the relative importance of them was expressed in this
study to measure the effect of the independent variables on the dependent variable.
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5.1. Effect of Sample Size on the Multiple Linear Regression Model

In the course of this study, there were some days with small sample sizes for estimating
the instantaneous Ta on clear days by the multiple stepwise linear regression method. This
was mainly because MODIS atmospheric profile products only provide input information
under clear sky conditions. In this vein, the applicability of linear regression is related to
the sample size, as previously confirmed [62–64]. With limited sample information, the
conclusions may be unreliable when the usual stepwise regression method is applied to
analyze the effect of each explanatory variable x on the dependent variable y. To avoid
the influence of a small sample size on the estimation results, the relationship between the
statistical metric RMSE and the sample size was analyzed. Figure 8 shows the maximum,
minimum, and average values of RMSE for the ten estimation results for each sample size.
In addition, the sample size was divided into 49 groups in North China and 31 groups in
Southwest China to analyze this relationship more accurately, with an initial number of 11
and an interval of 10.
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According to the results, the RMSE of the model evaluation index was closer to the
stable value with an increased sample size. The RMSEs tend to be 1.5 and 2.5 ◦C in North
and Southwest China, respectively. In particular, the maximum, minimum, and average
values of RMSE were significantly higher in the case of a sample size <30. Specifically,
for sample size ranges between 11 and 20, the positive errors (difference between the
maximum and average values) of RMSE for ten estimation results based on the MODIS
Terra and Aqua datasets of North China were 3.3 and 3.5◦C, respectively; the negative
errors (absolute value of the difference between the minimum and the mean) were 2.6 and
1.4 ◦C, respectively. The positive errors of RMSE for Southwest China were 3.0 and 2.5 ◦C,
while the negative errors were 2.2 and 2.8 ◦C, respectively. If the sample size ranges from
21 to 30, the positive errors of RMSE in North China were 0.6 and 0.2 ◦C, and the negative
errors were 0.4 and 0.3 ◦C, respectively. The positive errors of RMSE in Southwest China
were 2.4 ◦C and 0.5 ◦C, and the negative errors were 2.2 ◦C and 1.2 ◦C, respectively.

In summary, both positive and negative errors are significantly higher if the sample
size ranges from 11 to 30. This indicates that the model is unstable in this case and
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potentially increases the overall error due to the randomness of the model itself. Therefore,
the multiple regression equation was not established for a given day with a sample size <30
in this study.

5.2. The Correlation of Variables and Relative Importance of Each Independent Variable

As mentioned in Sections 3.1 and 3.2, Ta1,clear (only for clear sky conditions), LST,
NDVI, SZA, and elevation were selected as independent variables and observed Ta was
dependent variable. Stepwise regression was applied to construct multiple regression
models. In order to explore the correlation of the variables, this study calculated the
correlation coefficient of the variables. The value range of the correlation coefficient ranges
from −1 to 1, and its absolute value is a measure that characterizes the correlation between
two variables. The correlation results of each variable are shown in Figure 9. Specifically,
the observed Ta has a significant positive correlation with Ta1,clear, LST and NDVI, and a
negative correlation with elevation and SZA.
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Correlation analysis can indicate the close relationship between the dependent variable
and Ta, but additional analysis is necessary to explain the degree to which each dependent
variable contributes to Ta estimation. To ensure comparability of the effects of different
variables, the regression coefficient βi is typically transformed into a dimensionless standard
regression coefficient [65], as shown in the following equation [66]:

bi = βi × σ(Xi) / σ(Y) (10)

where βi is the regression coefficient of Xi, bi is the standardized regression coefficient of
Xi, σ(Xi), and σ(Y) are the standard deviations of the independent variable Xi and the
dependent variable Y, respectively.

The standard regression coefficient eliminates the impact of the dimension of the
variable Xi and it is comparable. It could evaluate the relative significance of predictors,
which represent the expected change in the response variable while keeping other predictors
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fixed [40]. The greater the absolute value of bi, the more significant the contribution of its
corresponding independent variable Xi on Y. In order to intuitively compare the relative
size of the standardized regression coefficients to measure the contribution degree of
dependent variables to regression equations, the absolute value of bi under clear and
cloudy sky conditions are shown in Table 8. It should be noted that since the regression
equation in this study was established on a daily scale, the average of the absolute values
of bi for each independent variable of all regression equations was calculated.

Table 8. The bi of independent variables for clear and cloudy sky conditions.

Weather
Conditions Study Area Data Source Ta1,clear LST SZA NDVI Elevation

Clear sky
conditions

NorthChina
Terra 0.296 0.232 0.200 0.044 0.551
Aqua 0.304 0.172 0.242 0.068 0.617

Southwest
China

Terra 0.339 0.149 0.155 0.066 0.656
Aqua 0.321 0.160 0.257 0.087 0.694

Cloudy sky
conditions

NorthChina
Terra - 0.438 0.193 0.067 0.492
Aqua - 0.512 0.189 0.066 0.427

Southwest
China

Terra - 0.361 0.248 0.105 0.536
Aqua - 0.517 0.320 0.079 0.484

The contribution of five independent variables based on the Terra dataset to Ta estimation
under clear sky conditions in North China is elevation, Ta1,clear, LST, SZA, and NDVI in
descending order. For other clear sky conditions, the contribution of independent variables
in descending order is elevation, Ta1,clear, SZA, LST, and NDVI. Specifically, the contribution
of independent variables Ta1,clear, elevation, and NDVI in Southwest China to Ta estimation
is greater than that in North China, while the LST contributes more in North China than in
Southwest China. Under cloudy sky conditions, the overall contribution of four independent
variables from the Terra and Aqua dataset, in descending order, are elevation, LST, SZA,
and NDVI, and LST, elevation, SZA, and NDVI, respectively. Moreover, the contribution of
elevation, SZA, and NDVI in Southwest China is greater than those in North China, and the
contribution of LST in North China is higher than that in Southwest China.

On the whole, the elevation contributes the most and has the greatest impact on Ta
estimation. The influence of elevation on Ta is reflected in the fact that as the altitude increases,
atmospheric pressure decreases, leading to a decrease in air density and, thus a decrease in
Ta [67]. The contribution degree of elevation in Southwest China is greater than that in North
China. Therefore, the difference in topographical conditions may be one of the influencing
factors for the difference in Ta estimation in the two study regions. It is followed by LST,
Ta1,clear, and SZA. NDVI has relatively little influence on Ta estimation compared with other
independent variables, and its contribution degree in Southwest China is greater than that in
North China. In conclusion, the independent variables contribute differently to Ta estimates
in the two study regions, which may lead to differences in Ta estimation of them.

6. Conclusions

The instantaneous Ta was estimated under clear and cloudy sky conditions from 2016
to 2017 in North and Southwest China based on MODIS products provided by the Terra and
Aqua satellites, actual Ta observations and DEM datasets. In particular, this study focused
on the application of MODIS atmospheric profile products in Ta estimation. Moreover, the
accuracy of different approaches was examined.

Under clear sky conditions, the Ta estimates obtained by the atmospheric profile
extrapolation and average methods had a strong correlation with the Ta observations (r
ranging from 0.758 to 0.969). However, the accuracy of these two estimation methods
was poor, with RMSE ranging from 3.5 to 5.2 ◦C for North China and from 4.0 to 7.7 ◦C
for Southwest China. If the Ta obtained by the atmospheric profile extrapolation method
is significantly underestimated; the average method can minimize the underestimation
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and achieve higher accuracy. The accuracy of the Ta estimates under clear sky conditions
obtained with the multiple linear regression model were significantly improved by in-
troducing auxiliary data. The average RMSEs of Ta estimated using the Terra and Aqua
datasets in North China were reduced by 1.9 and 2.4 ◦C, respectively, compared with the
minimum RMSEs of the previous two methods. Similarly, the RMSEs in Southwest China
decreased by 1.8 and 2.2 ◦C, respectively. The multiple stepwise regression method is also
well-suited for use under cloudy sky conditions, with RMSE of 1.9 for both the Terra and
Aqua datasets in North China and RMSEs of 2.5 and 2.8 ◦C in Southwest China. For all
estimation models based on the two types of datasets in the two study regions, Ta accuracy
estimated under cloudy sky conditions is lower than that under clear sky conditions. The
reason for this phenomenon might be related to the uncertainty of LST under cloudy sky
conditions due to the influence of different cloud cover. Therefore, the following methods
are used to reduce the uncertainty of LST: other related variables are added as independent
variables to assist in the prediction of Ta; the accuracy and stability of the model are eval-
uated by cross-validation to ensure the reliability of the model. Furthermore, the MAEs
and RMSEs under all-weather conditions calculated for North China were both 1.3 ◦C and
1.8 ◦C, while for Southwest China, they were 1.8, 2.0 ◦C, and 2.5, 2.6 ◦C, respectively.

The accuracy of instantaneous Ta estimation is influenced by complex factors. The
results of the study show that the estimation model in this study has high applicability in
two regions with different geomorphological and climatic conditions. Specifically, the Ta
estimation model performs better for meteorological stations located in plains and basins
with lower elevations compared to those in plateaus with higher elevations. Among all the
independent variables, elevation has the greatest impact on Ta estimation. The contribution
degree of elevation in Southwest China is greater than in North China. It performs well for
stations located in constructive land and cultivated land and performs poorly in woodland
and grassland areas. In addition, the accuracy of Ta estimation is not identical if the input
datasets are from different satellites with different overpass times. For Southwest China,
the accuracy of Ta estimated by the Terra dataset is higher than that of the Aqua dataset,
while the opposite is true in North China.
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