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Abstract: Downward continuation is a key technique for processing and interpreting gravity anom-
alies, as it has a major role in reducing values to horizontal planes and identifying small and shallow 
sources. However, it can be unstable and inaccurate, particularly when continuation depth in-
creases. While the Milne and Adams–Bashforth methods based on numerical solutions of the mean-
value theorem have partly addressed these problems, more accurate and realistic methods need to 
be presented to enhance results. To address these challenges, we present two new methods, Milne–
Simpson and Adams–Bashforth–Moulton, based on implicit expressions and their predictor-correc-
tors. We test the validity of the presented methods by applying them to synthetic models and real 
data, and we obtain stability, accuracy, and large depth (eight times depth intervals) downward 
continuation. To facilitate wider applications, we use calculated vertical derivatives (of the first or-
der) by the integrated second vertical derivatives (ISVD) method to replace theoretical ones from 
forward calculations and real ones from observations, obtaining reasonable downward continua-
tions. To further understand the effect of introduced calculation factors, we also compare previous 
and presented methods under different conditions, such as with purely theoretical gravity anoma-
lies and their vertical derivatives at different heights from forward calculations, calculated gravity 
anomalies and their vertical derivatives at non-measurement heights above the observation by up-
ward continuation, calculated vertical derivatives of gravity anomalies by the ISVD method at the 
measurement height, and noise. While the previous Adams–Bashforth method sometimes outper-
forms the newly presented methods, new methods of the Milne–Simpson predictor-corrector and 
Adams–Bashforth–Moulton predictor-corrector generally present better downward continuation 
results compared to previous methods. 

Keywords: gravity anomaly; downward continuation; numerical solution; mean-value theorem; 
implicit expression; explicit expression; predictor-corrector 
 

1. Introduction 
It is significant to improve the accuracy and reliability of results in observed gravity 

data processing and interpretation for the successful detection of geological structures 
and exploration of mineral resources [1–5]. In general, data from multiple heights can en-
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rich the description of detected targets and improve the accuracy and reliability of pro-
cessing and interpretation [6,7]. A variety of gravity data can be obtained from different 
altitudes such as satellite, airborne, ground (or ocean), and even seabed, to create multiple 
height datasets [8]. However, it is not always possible to obtain multiple height data sim-
ultaneously over the same gravity measurement area in general; for example, traditional 
ground-based gravity measurements can be difficult and inefficient to implement due to 
actual observation factors such as dense forests or deserts. Aerial-based gravity measure-
ments using satellites or airbornes can avoid such difficulties, but the observed gravity 
data decays with the inverse square of the distance from the Earth’s center, with the in-
crease in height resulting in the loss of information details [9]. Downward continuation of 
aerial-based observed gravity data to a lower level, such as the ground, can enhance the 
resolution [2]. Therefore, a downward continuation of observed gravity data and corre-
sponding anomalies can highlight local and shallow geological information, which plays 
a critical role in the processing and interpretation of gravity data and anomalies [10] and 
further improves the accuracy and reliability of mineral resources exploration.  

Downward continuation of the gravity anomaly is an ill-posed problem, and general 
methods cannot achieve stable and accurate results and deep continuation depth simulta-
neously [10]. The fast Fourier transform (FFT) method is commonly used, but its down-
ward continuation factor amplifies high-frequency components, and its truncation error 
in the Fourier transform causes oscillations in the continuation procedure [11]. Improved 
methods, such as the regularization FFT method, make downward continuation stable, 
but their depths are not large, with typically no more than five times the spacing interval 
[12]. The integral iteration method is stable, accurate, and has deep continuation depth 
[13]. However, its iteration number is large and noise in data will be accumulated heavily 
during iterations. The Milne and Adams–Bashforth methods based on numerical solu-
tions of the mean-value theorem using the observed vertical derivative of the first order, 
simply called vertical derivative herein, at the measurement height, are reported to be 
stable, accurate, and have deep continuation depth [14–16]. However, these two methods’ 
truncation errors are not small enough mathematically compared to other methods based 
on numerical solutions of the mean-value theorem [17].  

To develop a more accurate downward continuation method based on numerical so-
lutions of the mean-value theorem with an equally stable procedure and a deep continu-
ation depth, we present two new methods of the implicit expressions and their predictor-
correctors for gravity anomaly downward continuation. As the advantages of previous 
downward continuations based on numerical solution methods are limited by the ob-
served vertical derivatives at the measurement height, we consider wider application sce-
narios using the calculated vertical derivatives, such as those without observed vertical 
derivatives, while maintaining stability, accuracy, and deep continuation depth. We intro-
duce the ISVD method [18] to calculate the vertical derivative at the measurement height. 
The results show that new methods can provide stable, accurate, and deep-depth down-
ward continuations. To further understand the presented methods, we compared and an-
alyzed them by changing introduced calculation factors in downward continuation pro-
cedures: upward continuation, vertical derivative calculation, and noise disturbance. Fac-
tors, such as calculated gravity anomalies and their vertical derivatives at non-measure-
ment heights above the observation by upward continuation, calculated vertical deriva-
tives of gravity anomalies at the measurement height by the ISVD method, and noise, do 
affect the four numerical solution-based downward continuation methods, but to differ-
ent extents. Overall, the downward continuation methods based on numerical solutions 
of the mean-value theorem perform better than the integral iteration method, and the 
newly presented Adams–Bashforth–Moulton predictor-corrector method is a better choice 
than the other three numerical solution-based ones. 

  



Remote Sens. 2023, 15, 2698 3 of 25 
 

 

2. Methods 
To understand the methods, we first present general expressions of numerical solu-

tions of the mean-value theorem for gravity anomalies. Second, we recall the explicit Ad-
ams–Bashforth and explicit Milne expressions for gravity anomaly downward continua-
tion. Finally, we derive and present two implicit expressions of Adams–Moulton and 
Simpson and their predictor-corrector methods of Adams–Bashforth–Moulton and 
Milne–Simpson for downward continuation. 

2.1. Two Explicit Expressions for Downward Continuation 
2.1.1. Numerical Solutions of the Mean-Value Theorem for Gravity Anomalies 

The mean-value theorem for the gravity anomaly can be [14]: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) ≡ 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝜁𝜁)ℎ, 𝑧𝑧0 ≤ 𝜁𝜁 ≤ 𝑧𝑧0 + ℎ,  (1) 

where 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) is the gravity anomaly at the height of 𝑧𝑧0 + ℎ, (ℎ > 0), 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) is 
the gravity anomaly at the height of 𝑧𝑧0, 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝜁𝜁) is the vertical derivative (of the first 
order) of the gravity anomaly at the height of 𝜁𝜁 , and 𝜁𝜁  is a constant number in 
[𝑧𝑧0, 𝑧𝑧0 + ℎ]. The positive 𝑧𝑧 axis is vertically downward throughout the method section. 

Numerical solutions can be ways to solve the mean-value theorem of (1), which can 
be rewritten as a first-order ordinary differential equation [17]. The numerical solutions 
can be regarded as formulae for the downward continuation of potential fields [14]. One 
category of numerical solutions is multistep methods [16] and can be generally expressed 
for gravity anomalies as: 

� 𝛼𝛼𝑗𝑗𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 𝑗𝑗ℎ)
𝑠𝑠

𝑗𝑗=−1

= ℎ � 𝛽𝛽𝑗𝑗𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 𝑗𝑗ℎ)
𝑠𝑠

𝑗𝑗=−1

,       (2) 

where coefficients 𝛼𝛼𝑗𝑗  and 𝛽𝛽𝑗𝑗  are determined by a polynomial passing through the 𝑠𝑠 
step solutions, the 𝑠𝑠 steps represent different heights, and the 𝑠𝑠 step solutions represent 
gravity anomalies at these heights herein. Expression (2) is slightly different in symbols 
and their meanings from the recurrence relation of multistep methods of Equation 3.41 in 
[17]. To determine the gravity anomaly of downward continuation at the height of 𝑧𝑧 +
ℎ, (ℎ > 0), we require 𝛼𝛼−1 ≠ 0 and assume 𝛼𝛼−1 = 1. We obtain the general expression for 
the gravity anomaly downward continuation by multistep methods of numerical solu-
tions of the mean-value theorem: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = −�𝛼𝛼𝑗𝑗𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 𝑗𝑗ℎ)
𝑠𝑠

𝑗𝑗=0

+ ℎ � 𝛽𝛽𝑗𝑗𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 𝑗𝑗ℎ)
𝑠𝑠

𝑗𝑗=−1

.  (3) 

2.1.2. Explicit Adams–Bashforth and Explicit Milne Expressions for Downward Continu-
ation 

To utilize these methods, set 𝛽𝛽−1 = 0 in Equation (3), corresponding gravity anom-
aly downward continuations are explicit expressions. Skipping the explicit expression of 
the forward Euler method for downward continuation, which has low accuracy due to its 
approximate calculation with only two terms (𝛼𝛼𝑗𝑗 = −1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 0,𝛼𝛼𝑗𝑗 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ≠ 0; 𝛽𝛽𝑗𝑗 =
1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 0,𝛽𝛽𝑗𝑗 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ≠ 0), explicit expressions of the Adams–Bashforth and the Milne 
are tested to be workable for real problems of downward continuation [14–16], and their 
expressions with the same order of forth [19–21], 𝑘𝑘 = 4, can be written for gravity anom-
aly downward continuationas the explicit fourth-order Adams–Bashforth formula with 
the error term: 
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𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + ℎ �
55
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) −
59
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+
37
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ) −
9

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 3ℎ)�

+
251ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑎𝑎,4�,      

(4) 

and the explicit fourth-order Milne formula with the error term: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 3ℎ)

+ ℎ �
8
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) −

4
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) +

8
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)

+ 0𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 3ℎ)� +
224ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑚𝑚,4�.         

(5) 

where 251ℎ
5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑎𝑎,4�  and 224ℎ

5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑚𝑚,4�  are truncation errors, respectively, 

and 𝜁𝜁𝑎𝑎𝑎𝑎,4 ∈ [𝑧𝑧0 − 3ℎ, 𝑧𝑧0 + ℎ] and 𝜁𝜁𝑚𝑚,4 ∈ [𝑧𝑧0 − 3ℎ, 𝑧𝑧0 + ℎ] represent constant numbers, re-
spectively. The positive constant ℎ is the step length (step size) for math formulae and is 
the depth for downward continuation. For the use of downward continuation, error terms 
in (4) and (5) are omitted, and the remaining parts of (4) and (5) are called the explicit 
fourth-order Adams–Bashforth method and the explicit fourth-order Milne method, re-
spectively. 

A method of order 𝑘𝑘 is that this method has a truncation error of Ο(ℎ𝑘𝑘+1) but the 
number of the method’s steps represented by 𝑠𝑠 denotes the number of known points. 
The number of steps 𝑠𝑠 of the explicit Adams–Bashforth (4) and that of the explicit Milne 
(5) is 4, which is equal to the orders 𝑘𝑘 of the above expressions. It should be noted that 
the equality of 𝑘𝑘 and 𝑠𝑠 for other expressions of multistep methods is not always true.  

2.2. Two Implicit Expressions and Their Predictor-Corrector Methods for Downward Continua-
tion 
2.2.1. Two Implicit Expressions for Gravity Anomalies 

The explicit expressions (4) and (5) represent polynomial extrapolations that are used 
to estimate downward continuations by integrating. However, it is well known that ex-
trapolations tend to have poor accuracy of approximation since they are polynomials that 
are inferred outside the interval of a given dataset [17]. Therefore, it is recommended to 
investigate alternative methods that can estimate the values of unknown points inside the 
dataset and provide better approximations. These alternative methods are called polyno-
mial interpolations.  

In Equation (3) of multistep methods of numerical solutions, if 𝛽𝛽−1 ≠ 0 , methods 
used to estimate gravity anomaly downward continuations are interpolations. These in-
terpolation methods represent implicit expressions for downward continuation.  

To obtain the implicit expressions, recall the identity Equation (1) of the mean-value 
theorem for gravity anomalies. We can calculate the value of 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) by replacing 
the integrated form of the second term of Equation (1) based on the fundamental theorem 
of calculus: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + � 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧.  (6) 

To evaluate the integral for an implicit expression, we use Newton’s backward dif-
ference polynomial [22] to determine a cubic polynomial that interpolates three previous-
step values and one forward-step value 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) to points (𝑧𝑧0), (𝑧𝑧0 − ℎ), (𝑧𝑧0 − 2ℎ), and 
(𝑧𝑧0 + ℎ) , where the step 𝑠𝑠 = 3 . Denoting corresponding values at these steps by 
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𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0), 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ), 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ), and 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ), the required cubic inter-
polating polynomial, 𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧), approximating 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) from Newton’s backward dif-
ference formula, is: 

𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ∇0𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +
(𝑧𝑧 − 𝑧𝑧0 − ℎ)

ℎ
∇1𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)

+
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)

2! ℎ2
∇2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)

+
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)

3!ℎ3
∇3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ),       

(7) 

where ∇ is the backward difference operator. We can evaluate the backward difference of 
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) as follows: 

∇0𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ), 
∇1𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = ∇0𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − ∇0𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

= 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0), 
∇2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = ∇1𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − ∇1𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

= 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ), 

∇3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = ∇2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − ∇2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)
= 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)
− 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ).     

(8) 

Substituting (8) into (7), we obtain: 

𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +
(𝑧𝑧 − 𝑧𝑧0 − ℎ)

ℎ
�𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)�

+
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)

2ℎ2
�𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

+ 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)�

+
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)

6ℎ3
�𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)

− 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) − 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)�.       

(9) 

We now substitute this cubic polynomial approximation 𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  into 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
in the integral Equation (6) and obtain: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + � 𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧

= 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)𝐶𝐶𝐶𝐶0
+ �𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)�𝐶𝐶𝐶𝐶1
+ �𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 2𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)�𝐶𝐶𝐶𝐶2
+ �𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) − 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + 3𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)
− 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)�𝐶𝐶𝐶𝐶3,     

(10) 

where: 

𝐶𝐶𝐶𝐶0 = � 𝑑𝑑𝑧𝑧
𝑧𝑧0+ℎ

𝑧𝑧0
= ℎ, 

𝐶𝐶𝐶𝐶1 = �
(𝑧𝑧 − 𝑧𝑧0 − ℎ)

ℎ

𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧 = −

ℎ
2

, 

𝐶𝐶𝐶𝐶2 = �
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)

2ℎ2
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧 = −

ℎ
12

, 

𝐶𝐶𝐶𝐶3 = �
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)

6ℎ3
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧 = −

ℎ
24

. 

Substituting these integral evaluations into expression (10), we obtain: 
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𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

+ ℎ �
9

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

19
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) −
5

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+
1

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)�.        

(11) 

This is the implicit fourth-order expression of the Adams–Moulton method.  
To determine its truncation error, 𝜀𝜀𝐺𝐺𝐺𝐺, and order, 𝑘𝑘, we note that the error in the 

polynomial approximation 𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  at each point 𝑧𝑧 ∈ [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ]  can be deter-
mined from: 

𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
𝑔𝑔′(4)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑓𝑓,4�

4!
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)(𝑧𝑧 − 𝑧𝑧0 + 2ℎ), (12) 

where 𝜁𝜁𝑓𝑓,4 ∈ [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ] represents the error in Newton’s backward difference for-
mula and can be used to bind the error for either interpolation or extrapolation depending 
on the choice of interval [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ]. This error 𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑧𝑧) can be incorporated into 
the integral of 𝐺𝐺𝑐𝑐′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) in (10) to obtain: 

𝜀𝜀𝐺𝐺𝐺𝐺 = �
𝑔𝑔′(4)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑓𝑓,4�

4!
(𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)(𝑧𝑧 − 𝑧𝑧0

𝑧𝑧0+ℎ

𝑧𝑧0
+ 2ℎ)𝑑𝑑𝑧𝑧,      

(13) 

where 𝜁𝜁𝑓𝑓,4 is a function of 𝑧𝑧. Denoting the minimum and maximum values of 
𝑔𝑔(4)�𝑥𝑥,𝑦𝑦,𝜁𝜁𝑓𝑓,4�

4!
 

in the interval [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ] by 𝑚𝑚 and 𝑀𝑀, respectively, we obtain: 

𝑚𝑚� 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧 ≤ 𝜀𝜀𝐺𝐺𝐺𝐺 ≤ 𝑀𝑀� 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧,      (14) 

where 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧0 − ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 + ℎ)(𝑧𝑧 − 𝑧𝑧0 + 2ℎ) . Since we assume 
𝑔𝑔(4)�𝑥𝑥,𝑦𝑦,𝜁𝜁𝑓𝑓,4�

4!
 to be continuous, taking all values between 𝑚𝑚 and 𝑀𝑀, then there must be a 

value of 𝑧𝑧 ∈ [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ], say 𝜁𝜁𝑎𝑎𝑚𝑚,4, for which: 

𝜀𝜀𝐺𝐺𝐺𝐺 = �
𝜕𝜕𝑔𝑔
𝜕𝜕𝑧𝑧

(4)
�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑓𝑓,4�

4!
𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧

=
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4�

4!
� 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧.      

(15) 

Evaluating the definite integral of 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  above can be carried out by symbolic 
calculus computation to obtain: 

� 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0
𝑑𝑑𝑧𝑧 = −

19ℎ5

30
,      (16) 

hence, 

𝜀𝜀𝐺𝐺𝐺𝐺 = −
19ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4�, 𝜁𝜁𝑎𝑎𝑚𝑚,4 ∈ [𝑧𝑧0 − 2ℎ, 𝑧𝑧0 + ℎ],      (17) 

representing the local truncation error for the Adams–Moulton method and the order 𝑘𝑘 =
4. So: 
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𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + ℎ �
9

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

19
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

−
5

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) +

1
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)�

−
19ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4�.       

(18) 

This is the implicit fourth-order Adams–Moulton formula with the error term. 
For another implicit expression, the Simpson method, we recall the integral Equation 

(6) and rewrite it as: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) + � 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧.       (19) 

We apply Simpson’s rule [22,23] to the above integral. Simpson’s rule is produced by 
a second Lagrange polynomial 𝐺𝐺𝑠𝑠′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  to approximate 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  on [𝑧𝑧0 − ℎ, 𝑧𝑧0 + ℎ] 
with equally spaced intervals at three points, (𝑧𝑧0 − ℎ), (𝑧𝑧0), and (𝑧𝑧0 + ℎ), where the step 
𝑠𝑠 = 2, denoting corresponding values by 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ), 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0), and 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ). 

𝐺𝐺𝑠𝑠′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = � 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑖𝑖)𝐿𝐿𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑖𝑖=𝑧𝑧0−ℎ

,   (20) 

where 𝐿𝐿𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ∏ 𝑧𝑧−𝑘𝑘
𝑖𝑖−𝑘𝑘

𝑧𝑧0+ℎ
𝑘𝑘=𝑧𝑧0−ℎ,𝑘𝑘≠𝑖𝑖  is Lagrange’s interpolation formula (Lagrange polyno-

mials). We can evaluate it as follows: 

𝐿𝐿𝑧𝑧0−ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
(𝑧𝑧 − 𝑧𝑧0)�𝑧𝑧 − (𝑧𝑧0 + ℎ)�

�(𝑧𝑧0 − ℎ) − 𝑧𝑧0��(𝑧𝑧0 − ℎ) − (𝑧𝑧0 + ℎ)�

=
𝑧𝑧2 − (2𝑧𝑧0 + ℎ)𝑧𝑧 + 𝑧𝑧0(𝑧𝑧0 + ℎ)

2ℎ2
, 

𝐿𝐿𝑧𝑧0(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
�𝑧𝑧 − (𝑧𝑧0 − ℎ)��𝑧𝑧 − (𝑧𝑧0 + ℎ)�
�𝑧𝑧0 − (𝑧𝑧0 − ℎ)��𝑧𝑧0 − (𝑧𝑧0 + ℎ)�

=
𝑧𝑧2 − 2𝑧𝑧0𝑧𝑧 + (𝑧𝑧02 − ℎ2)

−ℎ2
, 

𝐿𝐿𝑧𝑧0+ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
�𝑧𝑧 − (𝑧𝑧0 − ℎ)�(𝑧𝑧 − 𝑧𝑧0)

�(𝑧𝑧0 + ℎ) − (𝑧𝑧0 − ℎ)��(𝑧𝑧0 + ℎ) − 𝑧𝑧0�

=
𝑧𝑧2 − (2𝑧𝑧0 + ℎ)𝑧𝑧 + 𝑧𝑧0(𝑧𝑧0 + ℎ)

2ℎ2
.       

(21) 

Therefore, the integral Equation (19) can be: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) + � 𝐺𝐺𝑠𝑠′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧

= 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) + � 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑖𝑖)
𝑧𝑧0+ℎ

𝑖𝑖=𝑧𝑧0−ℎ

� 𝐿𝐿𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧

= 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)𝑆𝑆𝐶𝐶0 + 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)𝑆𝑆𝐶𝐶1
+ 𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)𝑆𝑆𝐶𝐶2,   

(22) 

where: 

𝑆𝑆𝐶𝐶0 = �
𝑧𝑧2 − (2𝑧𝑧0 + ℎ)𝑧𝑧 + 𝑧𝑧0(𝑧𝑧0 + ℎ)

2ℎ2
𝑑𝑑𝑧𝑧

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
=
ℎ
3

, 

𝑆𝑆𝐶𝐶1 = �
𝑧𝑧2 − 2𝑧𝑧0𝑧𝑧 + (𝑧𝑧02 − ℎ2)

−ℎ2
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧 =

4ℎ
3

, 

𝑆𝑆𝐶𝐶2 = �
𝑧𝑧2 − (2𝑧𝑧0 + ℎ)𝑧𝑧 + 𝑧𝑧0(𝑧𝑧0 + ℎ)

2ℎ2
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧 =

ℎ
3

. 
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Substituting these into the expression (22), we obtain: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+ ℎ �
1
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

4
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) +

1
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+ 0�.       

(23) 

This is the implicit fourth-order expression of the Simpson method.  
For its truncation error, we similarly use the interpolation into the integral in (19) to 

obtain: 

𝜀𝜀𝐺𝐺𝐺𝐺 = �
𝑔𝑔′(3)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

3!
(𝑧𝑧 − 𝑧𝑧0 + ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 − ℎ)

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧,      (24) 

where 𝜁𝜁𝑠𝑠,4  is a function of 𝑧𝑧 . We also assume the minimum and maximum values of 
𝑔𝑔(3)�𝑥𝑥,𝑦𝑦,𝜁𝜁𝑠𝑠,4�

3!
 in the interval [𝑧𝑧0 − ℎ, 𝑧𝑧0 + ℎ] by 𝑚𝑚 and 𝑀𝑀, respectively: 

𝑚𝑚� 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧 ≤ 𝜀𝜀𝐺𝐺𝐺𝐺 ≤ 𝑀𝑀� 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧,      (25) 

where 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧0 + ℎ)(𝑧𝑧 − 𝑧𝑧0)(𝑧𝑧 − 𝑧𝑧0 − ℎ) . Similarly to the Adams–Moulton 
method, we evaluate the definite integral of 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  but we obtain zero for 
∫ 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑧𝑧0+ℎ
𝑧𝑧0−ℎ

𝑑𝑑𝑧𝑧 = 0. So we instead define: 

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = � 𝑞𝑞(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧.        (26) 

Integrating (24) by parts we obtain: 

𝜀𝜀𝐺𝐺𝐺𝐺 = �
𝑔𝑔′(3)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

3!
𝑤𝑤′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧

= 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑔𝑔′(3)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

3!
�
𝑧𝑧=𝑧𝑧0−ℎ

𝑧𝑧=𝑧𝑧0+ℎ

− � 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜕𝜕
𝜕𝜕𝑧𝑧
𝑔𝑔′(3)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

4!

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧

= −� 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕𝑔𝑔
𝜕𝜕𝑧𝑧

(3)
�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

4!

𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧.      

(27) 

Applying the integral mean-value theorem we obtain: 

𝜀𝜀𝐺𝐺𝐺𝐺 = −
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�

4!
� 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧0+ℎ

𝑧𝑧0−ℎ
𝑑𝑑𝑧𝑧 = −

𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�
24

4ℎ5

15
,        (28) 

hence, 

𝜀𝜀𝐺𝐺𝐺𝐺 = −
ℎ5

90
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�, 𝜁𝜁𝑠𝑠,4 ∈ [𝑧𝑧0 − ℎ, 𝑧𝑧0 + ℎ],      (29) 

represents the local truncation error for the Simpson method and the order 𝑘𝑘 = 4, so: 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+ ℎ �
1
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

4
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) +

1
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) + 0�

−
ℎ5

90
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�.         

(30) 

This is the implicit fourth-order Adams–Moulton formula with the error term. 
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The remaining parts of (18) and (30), whose error terms are omitted, represented by 
(11) and (23), are called the implicit fourth-order Adams–Moulton method and the im-
plicit fourth-order Simpson method, respectively, for downward continuation. 

It can be seen the implicit fourth-order Adams–Moulton method (11) and the implicit 
fourth-order Simpson method (23) have local truncation errors of −19ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4� 

and −ℎ5

90
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4� , respectively, which are smaller than the corresponding ones of 

251ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑎𝑎,4� and 224ℎ

5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑚𝑚,4� from the explicit fourth-order Adams–Bash-

forth method of (4) and the explicit fourth-order Milne method of (5). However, the im-
plicit fourth-order expressions of the Adams–Moulton (11) and the Simpson (23) methods 
contain vertical derivatives of gravity anomalies of being downward continued at the 
height of 𝑧𝑧0 + ℎ, which is the position of downward continuation depth, at which gravity 
anomalies and their vertical derivatives are unknown. Thus, they cannot be used directly 
for gravity anomaly downward continuation. 

2.2.2. Predictor-Corrector Methods for Downward Continuation 
To solve the implicit expression, which is hard to directly operate, we use results 

𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) from explicit expressions of (11) and (23) to calculate vertical derivatives at 
the height of 𝑧𝑧0 + ℎ, which is the position of downward continuation depth by the ISVD 
method [18]. Other methods for calculating vertical derivatives can also be used. Taking 
calculated vertical derivatives 𝑔𝑔∗′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) as input of implicit expressions, we com-
bine explicit and implicit expressions as ‘predictor-corrector’ pairs. The Adams–Bashforth 
predictor and the Adams–Moulton corrector are, respectively, written as: 

𝑔𝑔𝑃𝑃𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) + ℎ �
55
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) −
59
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+
37
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ) −
9

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 3ℎ)�

+
251ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑎𝑎,4�,        

(31) 

𝑔𝑔𝐶𝐶𝑎𝑎𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)
= 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

+ ℎ �
9

24
𝑔𝑔∗,𝑎𝑎𝑎𝑎
′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

19
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0)

−
5

24
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) +

1
24

𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)�

−
19ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4�.       

(32) 

where 𝑔𝑔𝑃𝑃𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)  and 𝑔𝑔𝐶𝐶𝑎𝑎𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)  are the Adams–Bashforth predictor and 
Adams–Moulton corrector of the gravity anomaly to be downward continued at the 
height of 𝑧𝑧0 + ℎ. 𝑔𝑔𝐶𝐶𝑎𝑎𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) in the expression (32) is the final result of downward 
continuation by the Adams–Bashforth–Moulton predictor-corrector method. Note that 
the 𝑔𝑔∗,𝑎𝑎𝑎𝑎

′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) term in the corrector expression (32) is estimated by calculating ver-
tical derivatives as 𝜕𝜕𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝜕𝜕𝑧𝑧
�
𝑧𝑧=𝑧𝑧0+ℎ

  by the ISVD method from the predictor value 

𝑔𝑔𝑃𝑃𝑎𝑎𝑎𝑎(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) in the expression (31). 
Another pair of the predictor-corrector, the Milne predictor and the Simpson correc-

tor are: 
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𝑔𝑔𝑃𝑃𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 3ℎ)

+ ℎ �
8
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) −

4
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ) +

8
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − 2ℎ)

+ 0� +
224ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑚𝑚,4�,         

(33) 

𝑔𝑔𝐶𝐶𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+ ℎ �
1
3
𝑔𝑔∗,𝑚𝑚
′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) +

4
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0) +

1
3
𝑔𝑔′(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 − ℎ)

+ 0� −
8ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�,         

(34) 

where 𝑔𝑔𝑃𝑃𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)  and 𝑔𝑔𝐶𝐶𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ)  are the Milne predictor and the Simpson 
corrector of the gravity anomaly to be downward continued at the height of 𝑧𝑧0 + ℎ . 
𝑔𝑔𝐶𝐶𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) in the expression (34) is the final result of downward continuation by the 
Milne–Simpson predictor-corrector method. Note that the 𝑔𝑔∗,𝑚𝑚

′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) term in cor-
rector expression (32) is estimated by calculating vertical derivatives as 𝜕𝜕𝑔𝑔𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝜕𝜕𝑧𝑧
�
𝑧𝑧=𝑧𝑧0+ℎ

 

by the ISVD method from the predictor value 𝑔𝑔𝑃𝑃𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧0 + ℎ) in the expression (33). 
The local truncation errors 𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑓𝑓,4� of these two predictor-corrector pairs are 

different. The local truncation errors involved with a predictor-corrector pair of the Milne–
Simpson method are generally smaller than those of the Adams–Bashforth–Moulton 
method. However, mathematically, the technique of Milne–Simpson has limited use be-
cause of round-off error problems, which do not occur with the Adams–Bashforth–
Moulton method [24]. Thus, comparisons of gravity anomaly downward continuations 
between these methods should be carried out. 

3. Examples and Comparison 
To verify the validity of the predictor-corrector methods of the Milne–Simpson and 

the Adams–Bashforth–Moulton methods presented in this study and to compare them 
with the previous Milne and Adams–Bashforth methods, we test them on synthetic mod-
els and real data. 

3.1. Synthetic Models 
The synthetic model (Figure 1) consists of three cuboids with different sizes, different 

buried depths of top interfaces, and different density contrasts with the surrounding rock. 
The axis of z is upward throughout the synthetic model section. The measurement height 
of the ground observation surface equals 0 m (z equals 0 m). The yellow cuboid of the 
model has side lengths of 40 m, 10 m, and 20 m in the x, y, and z directions, respectively, 
with a center point at (75, 65, −25) m. Its top interface is 15 m beneath the ground obser-
vation surface, and its density contrast with the surrounding rock is 0.6 g/cm3. The green 
cuboid’s side lengths in the x, y, and z directions are 10 m, 20 m, and 20 m, respectively, 
with a center point at (65, 90, −22) m. Its top interface is 12 m beneath the ground obser-
vation surface, and its density contrast is 0.5 g/cm3. The x, y, and z direction side lengths 
of the blue cuboid are 10 m, 12 m, and 20 m, respectively, and the center point coordinate 
of this cuboid is (85, 90, −21) m. This cuboid’s buried depth of its top interface is 11 m, and 
its density contrast is 0.4 g/cm3. The observation surface has 150 measurement lines, 150 
points per line, and a grid spacing of 1 m. 
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Figure 1. Subsurface distribution of the synthetic cuboid model. 

In model examples, to compare different gravity anomaly downward continuations, 
we use six methods, including the classical FFT method [10], the integral iterative method 
[13], the fourth-order Milne method [15], the fourth-order Milne–Simpson predictor-cor-
rector method, the fourth-order Adams–Bashforth method [14, 17], and the fourth-order 
Adams–Bashforth–Moulton predictor-corrector method. All theoretical gravity anomalies 
and vertical derivatives are forward calculated from the three-cuboid model by forward 
formulae in [25] in the synthetic model part. The unit depth of downward continuation is 
called a depth interval which is equal to the horizontal surface grid spacing of 1 m. 

As the inputs of the four methods are based on numerical solutions of the mean-value 
theorem, the fourth-order Milne method, the fourth-order Milne–Simpson predictor-cor-
rector method, the fourth-order Adams–Bashforth method, and the fourth-order Adams–
Bashforth–Moulton predictor-corrector method are gravity anomalies and, with their ver-
tical derivatives at different heights, different approaches of obtaining these inputs may 
have different downward continuation results because of calculation factors. To further 
analyze and understand the effect of introduced calculation factors, we also compare these 
methods under different conditions, such as with purely theoretical gravity anomalies and 
their vertical derivatives at different heights from forward calculations; the theoretical 
gravity anomaly and its vertical derivative at the measurement height of 0 m from forward 
calculations and corresponding gravity anomalies and their vertical derivatives at non-
measurement heights above 0 m calculated by upward continuation; the theoretical grav-
ity anomaly at the measurement height of 0 m from the forward calculation and corre-
sponding calculated vertical derivatives of the gravity anomaly at the measurement height 
of 0 m by the ISVD method and corresponding gravity anomalies and their vertical deriv-
atives at non-measurement heights above 0 m calculated by upward continuation; adding 
noise to the third condition.  

3.1.1. Downward Continuation with Theoretical Gravity Anomalies and Their Vertical 
Derivatives at Different Heights from Forward Calculations 

For the classical FFT method, no regularization or filters are added. Furthermore, no 
regularization or filters are added for the following methods. For the integral iteration 
method, the step length of iteration is set to 1, the convergence error is 0.0001 mGal, and 
its convergent iteration stops at 10 times from a total set of 50 times. For the four methods 
with the same fourth-order based on numerical solutions including the previous two, the 
Milne method and the Adams–Bashforth method, and another two new proposed ones, 
the Milne–Simpson predictor-corrector method and the Adams–Bashforth–Moulton pre-
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dictor-corrector method, the input values for downward continuation are theoretical val-
ues, which means that gravity anomalies and their vertical derivatives at different heights 
except at the downward depth are all forward calculated. 

We use the above six methods to downward continue the theoretical gravity anomaly 
(Figure 2a) from the ground observation surface, whose measurement height equals 0 m, 
to the depth of 8 m which is 8 m beneath the ground observation surface. The downward 
continuation results obtained by the classical FFT method, the integral iteration method, 
the Milne method, the Milne–Simpson predictor-corrector method, the Adams–Bashforth 
method, and the Adams–Bashforth–Moulton predictor-corrector method are shown in 
Figure 2c–h. To verify these results, Figure 2b represents the theoretical downward con-
tinuation values at the height of −8 m, called the reference gravity anomaly herein. The 
RMS (root-mean-square) errors between the reference gravity anomaly (Figure 2b) and six 
downward continuation results (Figure 2c–h) are respectively shown in the second col-
umn (Section 3.1.1 column) of Table 1.  

 
Figure 2. Theoretical gravity anomalies and their vertical derivatives from forward calculations at 
different heights are used in downward continuations. All downward continuation depths are 8 m 
(eight times the depth interval) at the height of −8 m. (a) The gravity anomaly to be downward 
continued, which is the theoretical gravity anomaly from forward calculation at the measurement 
height of 0 m regarded as the ground observation surface, (b) The reference gravity anomaly for 
downward continuations, which is the theoretical gravity anomaly from forward calculation at the 
height of −8 m. (c) The downward continuation of (a) by the classical FFT method. (d) The down-
ward continuation of (a) by the integral iteration method. (e) The downward continuation of (a) by 
the Milne method. (f) The downward continuation of (a) by the Milne–Simpson predictor-corrector 
method. (g) The downward continuation of (a) by the Adams–Bashforth method. (h) The downward 
continuation of (a) by the Adams–Bashforth–Moulton predictor-corrector method. 
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Table 1. The RMS errors between the reference gravity anomaly and six downward continuation 
results at the height of −8 m under different conditions: Section 3.1.1 theoretical gravity anomalies 
and their vertical derivatives at different heights from forward calculations; Section 3.1.2 the theo-
retical gravity anomaly and its vertical derivative at the measurement height of 0 m from forward 
calculations and corresponding gravity anomalies and their vertical derivatives at non-measure-
ment heights above 0 m calculated by upward continuation; Section 3.1.3 the theoretical gravity 
anomaly at the measurement height of 0 m from the forward calculation and corresponding calcu-
lated vertical derivatives of the gravity anomaly at the measurement height of 0 m by the ISVD 
method and corresponding gravity anomalies and their vertical derivatives at non-measurement 
heights above 0 m calculated by upward continuation; Section 3.1.4 adding noise to the third condi-
tion. 

RMS Errors 
Methods 

Section 3.1.1 Section 3.1.2 Section 3.1.3 Section 3.1.4 

FFT 0.42 × 1017 0.42 × 1017 0.42 × 1017 0.19 × 1020 
Integral iteration 0.16 × 10−2 0.16 × 10−2 0.16 × 10−2 0.17 × 10−2 

Milne 0.92 × 10−3 0.39 × 10−2 0.30 × 10−2 0.30 × 10−2 
Milne–Simpson predictor-

corrector 0.52 × 10−3 0.13 × 10−2 0.10 × 10−2 0.16 × 10−2 

Adams–Bashforth 0.95 × 10−3 0.95 × 10−3 0.10 × 10−2 0.11 × 10−2 
Adams–Bashforth–Moulton 

predictor-corrector 
0.53 × 10−3 0.53 × 10−3 0.61 × 10−3 0.13 × 10−2 

Compared with the reference gravity anomaly (Figure 2b), the classical FFT method’s 
downward continuation (Figure 2c) is divergent. The downward continuation (Figure 2d) 
of the integral iteration method is accurate, but there are some distortions in the edge 
areas. For the Milne method (Figure 2e) and the Adams–Bashforth method (Figure 2g), 
their downward continuations are relatively accurate and stable, but gravity anomalies 
caused by the small-scale source of the green cuboid are not indicated well. Downward 
continuations by the Milne–Simpson predictor-corrector method (Figure 2f) and the Ad-
ams–Bashforth–Moulton predictor-corrector method (Figure 2h) are accurate and stable 
and provide the best results compared with the reference gravity anomaly (Figure 2b). 

The RMS errors (the second column of Table 1) between the reference gravity anom-
aly (Figure 2b) and six downward continuation results (Figure 2c–h) show that the four 
methods based on numerical solutions of the mean-value theorem have better downward 
continuation than the classic FFT method and the integral iteration method. For the four 
methods based on numerical solutions, two newly presented methods are better than the 
previous methods, and the Milne–Simpson predictor-corrector method provides the best 
downward continuation.  

3.1.2. Downward Continuation with the Theoretical Gravity Anomaly and Its Vertical 
Derivative at the Measurement Height of 0 m from Forward Calculations 

The condition of Section 3.1.1 is too ideal to realise as there are few gravity anomalies 
and their vertical derivatives are known at different heights of the same distance simulta-
neously over one area in real. To simulate real cases, we assume that the gravity anomaly 
and its vertical derivative only on the ground observation surface are known, which 
means the theoretical gravity anomaly (Figure 3a) and its vertical derivative at the meas-
urement height of 0 m are from forward calculations, but the corresponding gravity anom-
alies and their vertical derivatives used in downward continuation at non-measurement 
heights above 0 m are calculated by upward continuation.  

The reference gravity anomaly at the height of −8 m in Figure 3b, the downward con-
tinuation by the classical FFT method in Figure 3c, and the downward continuation by the 
integral iteration method in Figure 3d are the same as those in Figure 2b–d, respectively. 
For downward continuations in Figure 3e–h by the Milne method, the Adams–Bashforth 
method, the Milne–Simpson predictor-corrector method, and the Adams–Bashforth–
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Moulton predictor-corrector method, parts of input values which are the theoretical grav-
ity anomaly and its vertical derivative at the height of 0 m are from forward calculations 
but other inputs at different heights above 0 m are upward continued by the classical FFT 
method. The RMS (root-mean-square) errors between the reference gravity anomaly (Fig-
ure 3b) and six downward continuation results (Figure 3c–h) are respectively shown in 
the third column (Section 3.1.2 column) of Table 1. 

 
Figure 3. The theoretical gravity anomaly and its vertical derivative at the measurement height of 0 
m from the forward calculation and corresponding gravity anomalies and their vertical derivatives 
at non-measurement heights above 0 m calculated by upward continuation are used in downward 
continuations. All downward continuation depths are 8 m (eight times the depth interval) which is 
at the measurement height of −8 m. (a) The gravity anomaly to be downward continued, which is 
the theoretical gravity anomaly from forward calculation at the measurement height of 0 m regarded 
as the ground observation surface. (b) The reference gravity anomaly for downward continuations, 
which is the theoretical gravity anomaly from forward calculation at the measurement height of −8 
m. (c) The downward continuation of (a) by the classical FFT method. (d) The downward continua-
tion of (a) by the integral iteration method. (e) The downward continuation of (a) by the Milne 
method. (f) The downward continuation of (a) by the Milne–Simpson predictor-corrector method. 
(g) The downward continuation of (a) by the Adams–Bashforth method. (h) The downward contin-
uation of (a) by the Adams–Bashforth–Moulton predictor-corrector method. 

Compared with the reference gravity anomaly (Figure 3b), except the result (Figure 
3c) from the classic FFT method, other downward continuations (Figure 3d–h) are accu-
rate and stable. Among them, the newly presented Adams–Bashforth–Moulton predictor-
corrector method provides the best result (Figure 3h).  

The RMS errors in the third column of Table 1 show that, for the condition of the 
theoretical gravity anomaly and its vertical derivative at the measurement height of 0 m 
from forward calculations but corresponding gravity anomalies and their vertical deriva-
tives used in downward continuation at non-measurement heights above 0 m calculated 
by upward continuation, the smallest RMS error is that of the Adams–Bashforth–Moulton 
predictor-corrector method, which provides the best downward continuation, and the fol-
lowing are the Adams–Bashforth method, the Milne–Simpson predictor-corrector 
method, the integral iteration method, the Milne method, and the classic FFT method. 

The sorting order of RMS errors of four methods based on numerical solutions from 
small to large is ‘the Adams-Bashforth-Moulton predictor-corrector method, the Adams-
Bashforth method, the Milne-Simpson predictor-corrector method, and the Milne 
method’, which is different from their corresponding truncation errors’ behaviour increas-
ing from 8ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑠𝑠,4�  of the Milne–Simpson predictor-corrector method, 



Remote Sens. 2023, 15, 2698 15 of 25 
 

 

19ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑚𝑚,4�  of the Adams–Bashforth–Moulton predictor-corrector method, 

224ℎ5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑚𝑚,4� of the Milne method to 251ℎ

5

720
𝑔𝑔(5)�𝑥𝑥,𝑦𝑦, 𝜁𝜁𝑎𝑎𝑎𝑎,4� of the Adams–Bashforth 

method in Section 3.1.1.  

3.1.3. Downward Continuation with the Theoretical Gravity Anomaly at the Measure-
ment Height of 0 m from the Forward Calculation 

Vertical derivatives of gravity anomalies can not always be obtained from measure-
ments in real cases. To simulate this general situation, we assume that only the theoretical 
gravity anomaly (Figure 4a) at the measurement height of 0 m is from the forward calcu-
lation. Used as input of four downward continuation methods based on numerical solu-
tions of the mean-value theorem, the vertical derivative at the measurement height of 0 m 
is calculated by the ISVD method and corresponding gravity anomalies and their vertical 
derivatives at non-measurement heights above 0 m are calculated by the classical FFT 
method of upward continuation. 

The six downward continuation results are shown in Figure 4c-h and the correspond-
ing differences between six downward continuations and the reference gravity anomaly 
(4b) are shown in Figure 5. The RMS (root-mean-square) errors between the reference 
gravity anomaly (Figure 4b) and six downward continuation results (Figure 4c-h) are re-
spectively shown in the fourth column (Section 3.1.3 column) of Table 1. 

 
Figure 4. The theoretical gravity anomaly from forward calculation at the measurement height of 0 
m, corresponding calculated vertical derivatives of the gravity anomaly at the measurement height 
of 0 m by the ISVD method, and corresponding gravity anomalies and their vertical derivatives at 
non-measurement heights above 0 m calculated by upward continuation are used in downward 
continuations. All downward continuation depths are 8 m (eight times the depth interval) which is 
at the measurement height of −8 m. (a) The gravity anomaly to be downward continued, which is 
the theoretical gravity anomaly from forward calculation at the measurement height of 0 m regarded 
as the ground observation surface. (b) The reference gravity anomaly for downward continuations, 
which is the theoretical gravity anomaly from forward calculation at the measurement height of −8 
m. (c) The downward continuation of (a) by the classical FFT method. (d) The downward continua-
tion of (a) by the integral iteration method. (e) The downward continuation of (a) by the Milne 
method. (f) The downward continuation of (a) by the Milne–Simpson predictor-corrector method. 
(g) The downward continuation of (a) by the Adams–Bashforth method. (h) The downward contin-
uation of (a) by the Adams–Bashforth–Moulton predictor-corrector method. 
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Figure 5. The differences between the downward continuations and the reference gravity anomaly 
from forward calculation at the height of −8 m. (a) The difference between Figure 4b,c. (b) The dif-
ference between Figure 4b,d. (c) The difference between Figure 4b,e. (d) The difference between 
Figure 4b,f. (e) The difference between Figure 4b,g. (f) The difference between Figure 4b,h. 

The downward continuations (Figure 4c–h) and corresponding differences (Figure 
5a–f) between the downward continuations and the reference gravity anomaly show that 
the two newly presented methods yield better downward continuations (Figure 4f,h) than 
the other methods, and the Adams–Bashforth–Moulton predictor-corrector method pre-
sents the best downward continuation (Figure 4h) among these six methods.  

RMS errors in the fourth column of Table 1 show that four methods based on numer-
ical solutions are accurate and stable, but the sorting of the accuracy for downward con-
tinuation decreases from the Adams–Bashforth–Moulton method and the Milne–Simpson 
method, equalling the Adams–Bashforth method to the Milne method. The Milne–Simp-
son method and the Adams–Bashforth method almost provide the same RMS errors, but 
the Adams–Bashforth–Moulton method still generates the smallest RMS error.  

We also estimate consuming times for six methods on a PC with i7 CPU at 2.9 GHz 
and 32.00 GB RAM. The classical FFT method, the integral iteration method, the Milne 
method, the Milne–Simpson predictor-corrector method, the Adams–Bashforth method, 
and the Adams–Bashforth–Moulton predictor-corrector method are 0.0091 s, 0.0131 s, 
0.0045 s, 1.2442 s, 0.0041 s, and 1.2532 s, respectively. 

3.1.4. Downward Continuation with the Theoretical Gravity Anomaly at the Measure-
ment Height of 0 m from the Forward Calculation with Gaussian White Noise 

Though we would prefer not to downward continue gravity anomalies with noise, 
noise cannot be avoided or filtered completely. To simulate this condition, we assume that 
only the theoretical gravity anomaly at the measurement height of 0 m is from forward 
calculation but contaminated with 2% Gaussian white noise. The inputs of four down-
ward continuation methods based on numerical solutions of the mean-value theorem are 
the vertical derivative at the measurement height of 0 m calculated by the ISVD method, 
and corresponding gravity anomalies and their vertical derivatives at non-measurement 
heights above 0 m calculated by the classical FFT method of upward continuation. Results 
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of downward continuations are shown in Figure 6c-h, and the RMS (root-mean-square) 
errors between the reference gravity anomaly (Figure 6b) and six downward continuation 
results (Figure 6c-h) are respectively shown in the fifth column (Section 3.1.4 column) of 
Table 1. 

 
Figure 6. The theoretical gravity anomaly from forward calculation with 2% Gaussian white noise 
at the measurement height of 0 m, corresponding calculated vertical derivatives of the gravity anom-
aly at the measurement height of 0 m by the ISVD method, and corresponding gravity anomalies 
and their vertical derivatives at non-measurement heights above 0 m calculated by upward contin-
uation are used in downward continuations. All downward continuation depths are 8 m (eight times 
the depth interval) which is at the measurement height of −8 m. (a) The gravity anomaly to be down-
ward continued, which is the theoretical gravity anomaly from forward calculation with 2% Gauss-
ian white noise at the measurement height of 0 m regarded as the ground observation surface. (b) 
The reference gravity anomaly for downward continuations, which is the theoretical gravity anom-
aly from forward calculation without noise at the measurement height of −8 m. (c) The downward 
continuation of (a) by the classical FFT method. (d) The downward continuation of (a) by the integral 
iteration method. (e) The downward continuation of (a) by the Milne method. (f) The downward 
continuation of (a) by the Milne–Simpson predictor-corrector method. (g) The downward continu-
ation of (a) by the Adams–Bashforth method. (h) The downward continuation of (a) by the Adams–
Bashforth–Moulton predictor-corrector method. 

The results show that four methods (Figure 6e–h) based on numerical solutions can 
provide stable downward continuations. From RMS errors, the presented two methods 
(Figure 6f,h) are better than the integral iteration method. The order of the accuracy for 
downward continuation decreases from the Adams–Bashforth method, the Adams–Bash-
forth–Moulton predictor-corrector method, the Milne–Simpson predictor-corrector 
method, to the Milne method. The Adams–Bashforth method is the best one (Figure 6g) 
with the smallest RMS error.  

3.1.5. RMS Errors at Different Depths by Different Downward Continuation Methods 
To better understand these downward continuation methods, especially the pre-

sented two methods and the previous two based on numerical solutions of the mean-value 
theorem, in Figure 7, we present variations of RMS errors of the integral iteration method, 
the Milne method, the Adams–Bashforth method, the Milne–Simpson predictor-corrector 
method, and the Adams–Bashforth–Moulton predictor-corrector method with the down-
ward continuation depth from 1 m to 10 m on the conditions of Sections 3.1.1, 3.1.2, and 
3.1.3.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Variations of RMS errors between reference gravity anomalies from forward calculations 
and downward continuation results by different methods from the height of −1 m to that of −10 m. 
Green lines represent the integral iteration method, blue lines represent the Milne method, magenta 
lines represent the Milne–Simpson predictor-corrector method, cyan lines represent the Adams–
Bashforth method, and black lines represent the Adams–Bashforth–Moulton predictor-corrector 
method. (a) Under the condition of Section 3.1.1 in general coordinates. (b) Under the condition of 
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Section 3.1.1 in logarithmic coordinates. (c) Under the condition of Section 3.1.2 in general coordi-
nates. (d) Under the condition of Section 3.1.2 in logarithmic coordinates. (e) Under the condition of 
Section 3.1.3 in general coordinates. (f) Under the condition of Section 3.1.3 in logarithmic coordi-
nates. 

From Figure 7a,b, we can see that downward continuations based on four numerical 
solutions with purely theoretical gravity anomalies and their vertical derivatives at differ-
ent heights from forward calculations are better than the integral iteration method. The 
RMS errors of the two presented methods of the Milne–Simpson predictor-corrector 
method and the Adams–Bashforth–Moulton are almost the same. Before the depth of 4 m, 
the two previous methods, the Milne method and the Adams–Bashforth method, have 
smaller RMS errors than the Milne–Simpson predictor-corrector method and the Adams–
Bashforth–Moulton predictor-corrector method, but after the depth of 4 m, the two pre-
sented methods are the best among these methods.  

From Figure 7c,d, we can see that with both the theoretical gravity anomaly and its 
vertical derivative at the height of 0 m available, the downward continuation based on the 
Adams–Bashforth method provides the smallest RMS errors before the depth of 4 m, but 
the presented Adams–Bashforth–Moulton predictor-corrector method gives the smallest 
RMS errors after the depth of 4 m. 

From Figure 7e,f, when only the theoretical gravity anomaly at the height of 0 m is 
possible, the downward continuation by the presented Adams–Bashforth–Moulton pre-
dictor-corrector method has the smallest RMS error.  

3.2. Real Data 
To verify the actual downward continuation by the Milne–Simpson predictor-correc-

tor method and the Adams–Bashforth–Moulton predictor-corrector method proposed in 
this study, we use the gravity anomaly from the airborne measurement at the height of 
200 m over the Nechako Basin area of Canada. Both the airborne Bouguer gravity anomaly 
(Figure 8b) and its vertical derivative are available in this area. The grid spacings of the 
gravity anomaly and its vertical derivative are 400 m. For testing, we upward continue the 
gravity anomaly (Figure 8b) and its vertical derivative from their measurement height of 
200 m to a height of 2200 m (equivalent to five spacing intervals) and consider this upward 
continuation gravity anomaly (Figure 8a) at the height of 2200 m as the one to be down-
ward continued. 

First, we use both the real gravity anomaly (Figure 8a) and the real vertical derivative, 
which are obtained by upward continuation at the height of 2200 m as inputs to down-
ward continue by the Milne method, the Milne–Simpson predictor-corrector method, the 
Adams–Bashforth method, and the Adams–Bashforth–Moulton predictor-corrector 
method, respectively. Results are shown in Figure 8c–f. The two presented methods can 
provide stable and accurate downward continuations (Figure 8d,f).  
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Figure 8. Both the observed airborne gravity anomaly and the observed vertical derivative are used 
to carry out downward continuation in the Nechako basin, with a downward continuation depth of 
2000 m. (a) The gravity anomaly to be downward continued, which is obtained from the measured 
airborne gravity anomaly by upward continuation to 2200 m. (b) The observed gravity anomaly at 
the height of 200 m, which is taken as the reference gravity anomaly. (c) The downward continuation 
of (a) by the Milne method. (d) The downward continuation of (a) by the Milne–Simpson predictor-
corrector method. (e) The downward continuation of (a) by the Adams–Bashforth method. (f) The 
downward continuation of (a) by the Adams–Bashforth–Moulton predictor-corrector method. 

To widely illustrate applications of the proposed methods, we carry out the down-
ward continuations only using the observed gravity anomaly at the height of 2200 m. The 
corresponding results of the Milne method, the Milne–Simpson predictor-corrector 
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method, the Adams–Bashforth method, and the Adams–Bashforth–Moulton predictor-
corrector method are shown in Figure 9c–f. Additionally, reasonable results are obtained 
by the presented methods.  

 
Figure 9. Only the observed airborne gravity anomaly is used to carry out downward continuation 
in the Nechako basin, with a downward continuation depth of 2000 m. (a) The gravity anomaly to 
be downward continued, which is obtained from the measured airborne gravity anomaly by up-
ward continuation to 2200 m. (b) The observed gravity anomaly at the height of 200 m, which is 
taken as the reference gravity anomaly. (c) The downward continuation of (a) by the Milne method. 
(d) The downward continuation of (a) by the Milne–Simpson predictor-corrector method. (e) The 
downward continuation of (a) by the Adams–Bashforth method. (f) The downward continuation of 
(a) by the Adams–Bashforth–Moulton predictor-corrector method. 
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To better understand these four downward continuations based on numerical solu-
tions of the mean-value theorem, we present RMS errors (Figure 10) between the observed 
airborne Bouguer gravity anomaly (Figure 8b or Figure 9b), which is taken as the reference 
anomaly, and the downward continuations (Figure 8c–f and Figure 9c–f) with the down-
ward continuation depth from 400 m to 2000 m. Compared with the reference gravity 
anomaly (Figure 8b or Figure 9b), the downward continuation of the Adams–Bashforth 
method is the best (Figure 8e) with the input of the real vertical derivative, and that of the 
Adams–Bashforth–Moulton predictor-corrector method is the best without the real verti-
cal derivative. 

 
Figure 10. RMS errors between the observed airborne gravity anomaly, which is taken as the refer-
ence anomaly, and the downward continuations from the upward continuation gravity anomaly at 
the height of 200 m. Solid lines represent the real gravity anomaly and its vertical derivative (vertical 
derivative abbreviated as VD), which are obtained by upward continuation at the height of 2200 m 
as input. Dash lines represent only the real gravity anomaly obtained by upward continuation at 
the height of 2200 m as input. The blue lines are by the Milne method. The magenta lines are the 
Milne–Simpson predictor-corrector method. The cyan lines are the Adams–Bashforth method. The 
black lines are the Adams–Bashforth–Moulton predictor-corrector method. 

4. Discussion 
Behaviours of four downward continuation methods based on numerical solutions 

of the mean-value theorem coincide with truncated errors of corresponding mathematical 
formulae only under certain conditions, such as using theoretical gravity anomalies and 
their vertical derivatives at different heights from forward calculations as inputs; mean-
while, the downward continuation depth is no smaller than 4 m, as shown in the synthetic 
models of Figure 2b–e and Figure 7a,b. Therefore, it is important to carry out careful tests, 
analyses, and comparisons to mathematical formulae in geophysics applications, even 
when using highly accurate mathematical methods. One cannot always assume that a 
mathematical formula will hold true under a variety of influencing factors when it is ap-
plied to geophysical calculations. 

From Section 3.1.1, we can see that the RMS error of the Milne–Simpson predictor-
corrector method is the smallest, and the RMS errors increase in the sequence of the Ad-
ams–Bashforth–Moulton predictor-corrector method, the Milne method, the Adams–
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Bashforth method, the integral iteration method, and the classic FFT method. RMS errors’ 
sorting is in accordance with their truncation errors’ first terms’ behavior, which are 8h

5

720
 

of the Milne–Simpson predictor-corrector method’s truncation error 8h5

720
g(5)�x, y, ζs,4� , 

19h5

720
 of the Adams–Bashforth–Moulton predictor-corrector method’s 19h

5

720
g(5)�x, y, ζam,4�, 

224h5

720
  of the Milne method’s 224h5

720
g(5)�x, y, ζm,4� , and 251h5

720
  of the Adams–Bashforth 

method’s g(5)�x, y, ζab,4� . So we may conclude here that though the last terms 
g(5)�x, y, ζs,4�, g(5)�x, y, ζam,4�, g(5)�x, y, ζm,4�, and g(5)�x, y, ζab,4� in these truncation errors 
are different, for downward continuation with theoretical gravity anomalies and their ver-
tical derivatives at different heights from forward calculations, the first terms of 8h

5

720
, 19h

5

720
, 

224h5

720
, and 251h

5

720
 are dominant for choosing a best method with the smallest RMS error.  

As the difference between Section 3.1.1 and Section 3.1.2 is the calculation factor of 
upward continuation, we can infer that the upward continuation applied to the inputs of 
downward continuations based on numerical solutions of the mean-value theorem will 
affect these methods. The RMS errors of the Adams–Bashforth–Moulton predictor-correc-
tor method and the Adams–Bashforth method in Section 3.1.2 are almost the same as those 
in Section 3.1.1, but the RMS errors of the Milne–Simpson predictor-corrector method and 
the Milne method between these two parts change. This means that the upward continu-
ation will affect little of the Adams–Bashforth–Moulton predictor-corrector method and 
the Adams–Bashforth method. Therefore, the Adams–Bashforth–Moulton predictor-cor-
rector method may be the best choice for downward continuation if on the ground obser-
vation surface there is a gravity anomaly and its vertical derivative from forward calcula-
tions or observations.  

RMS errors of the Adams–Bashforth–Moulton predictor-corrector method and the 
Adams–Bashforth method in Section 3.1.3 are smaller than the other methods; they in-
crease compared with those of the Adams–Bashforth–Moulton predictor-corrector 
method and the Adams–Bashforth method in Section 3.1.1 and Section 3.1.2, respectively. 
However, RMS errors of the Milne–Simpson predictor-corrector method and the Milne 
method in Section 3.1.3 decrease compared with corresponding ones in Section 3.1.2. 
Therefore, we may conclude here that the calculation of vertical derivatives will affect the 
downward continuation results. This indicates accurate measurements of vertical deriva-
tives at the measurement height are important in data processing and anomaly interpre-
tation in real exploration.  

RMS errors of the Adams–Bashforth method and the Milne method are almost the 
same between Section 3.1.4 and Section 3.1.3 but those of the Adams–Bashforth–Moulton 
predictor-corrector method and the Milne–Simpson predictor-corrector method change. 
This means that explicit methods such as the Adams–Bashforth method and the Milne 
method are less sensitive to noise than the presented two methods. 

The Milne method and the Milne–Simpson predictor-corrector method are sensitive 
to upward continuation, while the Adams–Bashforth method and the Adams–Bashforth–
Moulton predictor-corrector method are not as shown in Figure 3b–e and Figure 7c,d. The 
vertical derivative at the measurement height calculated by the ISVD method affects the 
Adams–Bashforth method and the Adams–Bashforth–Moulton predictor-corrector 
method a lot, but the Milne method and the Milne–Simpson predictor-corrector method 
are affected little; however, the Adams–Bashforth–Moulton predictor-corrector method 
has the smallest RMS error shown in Figure 4b–e, Figure 7e,f, and Figure 9. Hence, differ-
ent factors have varying weights that affect the four methods of numerical solutions. Dif-
ferent methods should be considered concerning the downward continuation of different 
data. 

RMS errors of these downward continuations based on numerical solutions vary 
smoothly and monotonously, and the result of the eighth-order Adams–Bashforth method 
is more accurate than that of the fourth-order Adams–Bashforth method used here [13]. 
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Therefore, we can infer that higher than fourth-order methods based on numerical solu-
tions would help to improve the accuracy of downward continuation, but further careful 
tests should be carried out in the future. 

5. Conclusions 
In this study, we presented two new methods for gravity anomaly downward con-

tinuation based on implicit expressions and their predictor-correctors, namely the Milne–
Simpson predictor-corrector method and the Adams–Bashforth–Moulton predictor-cor-
rector method. We evaluated the presented methods on both synthetic and real cases. The 
results demonstrated that new methods are valid for stable and accurate downward con-
tinuation even at a downward continuation depth of up to eight depth intervals, and new 
methods produced better results than the integral iteration method.  

Moreover, we found that the accuracy of four methods based on numerical solutions 
of the mean-value theorem, including two new methods presented in this study, can be 
affected by various calculation factors such as upward continuation, vertical derivative 
calculations, and noise during downward continuation and the affect weights of different 
factors are different for these four methods. This reminds us to be careful when applying 
methods in geophysical applications. 

For most conditions, the new method of the Adams–Bashforth–Moulton predictor-
corrector provides the best downward continuation; however, for the condition of theo-
retical (real) gravity anomaly and its vertical derivative known at the measurement height 
of 0 m from the forward calculation (observation), the Adams–Bashforth method is mainly 
better. 

In the future, higher than fourth-order methods based on numerical solutions should 
be carried out to improve the accuracy of downward continuation and corresponding 
techniques of downward continuation on the undulate terrain or observation surface 
should be realized. 
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