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Abstract: Accurate information on dominant tree species and their spatial distribution in subtropical
natural forests are key ecological monitoring factors for accurately characterizing forest biodiversity,
depicting the tree competition mechanism and quantitatively evaluating forest ecosystem stability. In
this study, the subtropical natural forest in northwest Yunnan province of China was selected as the
study area. Firstly, an object-oriented multi-resolution segmentation (MRS) algorithm was used to
segment individual tree crowns from the UAV RGB imagery and satellite multispectral imagery in
the forests with different densities (low (547 n/ha), middle (753 n/ha) and high (1040 n/ha)), and
parameters of the MRS algorithm were tested and optimized for accurately extracting the tree crown
and position information of the individual tree. Secondly, the texture metrics of the UAV RGB imagery
and the spectral metrics of the satellite multispectral imagery within the individual tree crown were
extracted, and the random forest algorithm and three deep learning networks constructed in this study
were utilized to classify the five dominant tree species. Finally, we compared and evaluated the per-
formance of the random forest algorithm and three deep learning networks for dominant tree species
classification using the field measurement data, and the influence of the number of training samples
on the accuracy of dominant tree species classification using deep learning networks was investigated.
The results showed that: (1) Stand density had little influence on individual tree segmentation using
the object-oriented MRS algorithm. In the forests with different stand densities, the F1 score of
individual tree segmentation based on satellite multispectral imagery was 71.3–74.7%, and that based
on UAV high-resolution RGB imagery was 75.4–79.2%. (2) The overall accuracy of dominant tree
species classification using the light-weight network MobileNetV2 (OA = 71.11–82.22%), residual
network ResNet34 (OA = 78.89–91.11%) and dense network DenseNet121 (OA = 81.11–94.44%) was
higher than that of the random forest algorithm (OA = 60.00–64.44%), among which DenseNet121
had the highest overall accuracy. Texture metrics improved the overall accuracy of dominant tree
species classification. (3) For the three deep learning networks, the changes in overall accuracy of
dominant tree species classification influenced by the number of training samples were 2.69–4.28%.

Keywords: multi-source remote sensing; deep learning network; tree species classification; unmanned
aerial vehicles; natural forests

1. Introduction

As the main part of the terrestrial ecosystem, forests play an important role in maintain-
ing biodiversity, improving the ecological environment and mitigating climate change [1–3].
Natural forests have abundant biodiversity, which is essential for maintaining the stabil-
ity of forest ecosystems [4–6]. Trees are the foundation of the forest ecosystem, and the
composition of tree species is one of the key indicators to measure forest biodiversity [7].
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The composition and spatial distribution of tree species are critical for forest resource
management and forest biodiversity monitoring [8], which can be also used as an indi-
cator of species richness to assess the potential of forest ecosystem services [9], explore
aboveground biomass changes [10] and reveal competition among tree species [11]. The
traditional method of obtaining tree species information mainly depends on the field in-
ventory. However, this is time-consuming and labor-intensive [12,13]. Furthermore, tree
species information is typically collected using sample plots, so the spatially continuous
information is normally ignored [7]. Particularly in the natural forests with complex struc-
tures, it is difficult to obtain the fine-scale spatial distribution of tree species using a field
inventory approach [14]. Remote sensing can provide multi-dimensional and spatially con-
tinuous information on forests, which makes it possible to access tree species composition
in a timely and efficient manner [15].

Multispectral remote sensing can provide lots of spectral (or texture) and spatially
continuous information about forests, which plays a key role in the identification of tree
species [16,17]. However, due to the limitations of spatial and spectral resolution, traditional
optical imagery is normally used to classify forest types [18]. Yu et al. [19] used SPOT-5
imagery to identify forest types in Pangu Forest Farm in the Daxing’an Mountains, and the
overall accuracy of classification was 76.0%. With an improvement in spatial and spectral
resolution, optical imagery can be used to identify the dominant tree species [20]. Cho
et al. [21] used high-resolution WorldView-2 imagery (resolution = 0.5–2 m) to classify
three dominant tree species in the native forests of South Africa, with an overall accuracy
of 87.2–91.4%. Immitzer et al. [14] used 8-band WorldView-2 imagery combined with the
random forest algorithm to classify 10 types of tree species in temperate forests, and the
overall accuracy was 82.0%. Moreover, the combination of spectral indices and texture
metrics can generally improve the accuracy of dominant tree species classification [22,23].
Deur et al. [24] used multispectral WorldView-3 satellite imagery to classify dominant
tree species in deciduous mixed forests. The results showed that the overall accuracy of
classification can be improved by 7.0–10.0% after adding texture metrics. Ferreira et al. [25]
classified eight dominant tree species from Brazil’s semi-deciduous forests using the visible
bands of WorldView-3 imagery combined with texture metrics. Compared with using the
visible bands only, the average producer accuracy was improved by 22.0–34.0%.

Unmanned aerial vehicles (UAVs) can operate at a lower attitude to obtain ultra-
high spatial resolution data [26]. In recent years, due to the advantages of low cost, high
efficiency and fine precision, the application of UAVs in assessing forest regeneration,
monitoring forest health and detecting individual trees has increased rapidly. Reis et al. [27]
used UAVs to access multispectral images and classify them to evaluate the status of
forest renewal, and the performance was good (OA = 94.0%). Dash et al. [28] obtained
multispectral images of time series based on UAVs and simulated early stress on trees using
non-parametric methods, which had a high classification accuracy (kappa = 0.694). Nuijten
et al. [29] used a digital aerial photogrammetry point cloud (DAP) acquired via UAVs to
segment individual tree crowns of deciduous forests in different seasons, with an accuracy
of 55.0–77.1%. The high-resolution imagery of UAVs contains fine-scale forest canopy
information [30], which can be used for the segmentation and detection of individual tree
crowns. Marques et al. [31] used the clustering segmentation method to segment Chestnut
trees from UAV high-resolution imagery with an accuracy of 97.0%. The object-oriented
multi-resolution segmentation (MRS) algorithm aims to divide remote sensing imagery into
objects with the same shape or spectral characteristics [32], in which the spectral variation in
various ground objects could be reduced so the statistical and classification accuracy could
be properly improved [33,34]. Xu et al. [35] used the MRS algorithm to segment individual
trees from high-resolution RGB ortho-imagery, and the accuracy was 76.9%. However, most
of the previous studies applied the MRS algorithm to plantation or the forest stands with
simple structures, and there are few studies on the extraction of individual trees using the
MRS algorithm in subtropical natural forests.
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Deep learning is an algorithm that uses successive neural layers to reveal deeper
features and more metaphysical information of images [36]. A convolutional neural net-
work (CNN) in deep learning is commonly used to analyze the spatial features of remote
sensing images, such as edges and textures, which could be suitable for tree species iden-
tification [37]. Natesan et al. [38] used a residual convolutional network to classify three
types of tree species, named red pine, white pine and non-pine, in a coniferous mixed
forest, with an overall classification of 80.1%. Schiefer et al. [37] used a U-Net convolutional
neural network to classify nine dominant tree species in temperate forests, and the overall
classification was 83.2%. Meanwhile, previous studies showed that the combination of
CNN and high-resolution satellite images had a high accuracy for the identification of
dominant tree species in mixed forests. Guo et al. [39] used three types of convolutional
neural networks combined with WorldView-3 imagery to classify seven types of tree species
in coniferous and broadleaf mixed forests. The results showed that the DenseNet model
had the highest classification accuracy (OA = 75.1–78.1%). Yan et al. [40] used five types of
CNN models combined with WorldView-3 imagery to classify six dominant tree species in
a mixed plantation, and the results showed that the improved GoogLeNet model had the
highest classification accuracy (OA = 82.7%). Compared with traditional machine learning
algorithms, deep learning networks can improve the accuracy of dominant tree species
classification [41]. Onishi et al. [42] used a ResNet model to classify dominant tree species
in coniferous mixed forests. Compared with the support vector machine algorithm, the
overall classification accuracy was improved by 5.8–13.1%. Zhang et al. [43] used ResNet50,
KNN and BP neural network algorithms to classify 10 types of urban tree species, and
the results showed that the overall accuracy of ResNet50 was, on average, 30% higher
than KNN and BP neural network algorithms. However, there are few studies combining
deep learning network algorithms with multi-source remote sensing data for dominant
tree species classification, and the potential of using deep learning network algorithms to
identify the dominant tree species in subtropical natural forests needs to be explored.

In view of the above research gaps, this study selected a subtropical natural forest in
northwest Yunnan province of China as the study area and obtained high-resolution ortho-
imagery (spatial resolution = 0.23 m) based on a fixed-wing UAV and sub-meter (spatial
resolution = 0.5 m) multispectral imagery based on the SuperView-1 satellite. The random
forest algorithm and three deep learning networks (lightweight network MobileNetV2,
residual network ResNet34 and dense network DenseNet121) were constructed to classify
the five dominant tree species. The main objectives of this paper are as follows: (1) to
compare the segmentation accuracy of individual trees in forests with different stand densi-
ties (low (547 n/ha), middle (753 n/ha) and high (1040 n/ha)) from UAV high-resolution
ortho-imagery and satellite multispectral imagery; (2) to compare and evaluate the overall
accuracy of three deep learning networks and random forest algorithms combined with
spectral and texture metrics for dominant tree species classification in natural forests; (3) to
explore the variations in the overall accuracy of dominant tree species classification using
three deep learning networks while reducing the number of training samples.

The workflow containing several steps of data processing is shown in Figure 1. In
this study, we obtained high-resolution images from fixed-wing UAVs and multispectral
imagery from the SuperView-1 satellite and then combined these with an individual tree
segmentation algorithm, machine learning and multiple deep learning networks to identify
the dominant tree species in the subtropical natural forests of northwest Yunnan province.
Firstly, the RGB images obtained by the UAV were aligned to generate high-resolution ortho-
imagery. Secondly, the object-oriented MRS algorithm was used to generate individual tree
crown boundaries. Finally, the extracted individual tree crown metrics (i.e., multispectral
and texture metrics) were combined with the random forest algorithm and three deep
learning networks to classify the five dominant tree species.
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Figure 1. The workflow of dominant tree species classification in subtropical natural forests of north-
west Yunnan province using multi-source fine-scale remote sensing data and deep learning network
approaches.

2. Materials and Methods
2.1. Study Area

Gehuaqing (GHQ) is located in Weixi County, south of Diqing Tibetan Autonomous
Prefecture, Northwest Yunnan Province of China, and the south of Baima Snow Mountain
National Nature Reserve (98◦57′–99◦25′E, 27◦24′–28◦36′N), as shown in Figure 2. The
elevation ranges from 2100 m to 3500 m. The study area belongs to the plateau mountain
monsoon climate, which can be divided into two seasons: dry and wet. In the winter half
year (November to April of the next year), the weather is sunny, and rainfall is reduced,
showing the characteristics of dry season climate, while in the summer half year (May to
October), the study area has more clouds and concentrated rain, forming the rainy season.
The annual average temperature is 9.5 ◦C, the average temperature of the coldest month
(January) is 1.5 ◦C and that of hottest month (July) is 17.3 ◦C. The annual average rainfall
is 845.1 mm. The rate of forest coverage in the study area is 76.2%, and the dominant
forest types can be divided into cold temperate conifer forests and deciduous broadleaf
forests. The dominant conifer species is Yunnan pine (Pinus yunnanensis), and the dominant
broadleaf species can be divided into four types: Nepal alder (Alnus nepalensis), aspen
(Populus davidiana), Oriental white oak (Quercus aliena) and maple (Acer forrestii).

2.2. Field Measurements

Considering factors, such as altitude, slope and tree species types, a total of 450 trees
in the study area were selected and measured. The measurement includes individual tree
species and position information, diameter at breast height, tree top height and crown width.
The position of the individual tree was recorded using a Trimble® real-time kinematic (RTK)
R4 GNSS with centimeter-level accuracy. The tree top height was measured via Vertex IV®

hypsometer. The tape was used to measure crown width, and the results were expressed as
the average of two values measured in vertical directions of tree crown. Statistics for five
dominant tree species parameters are aggregated in Table 1.
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Figure 2. Overview of the Gehuaqing (GHQ) study site. (a) Map of Yunnan province and the location
of Gehuaqing; (b) UAV high-resolution RGB imagery and spatial distribution of individual trees
measured in the field work; (c) high-resolution satellite multispectral imagery of the study site.

Table 1. Summary statistics of the trees measured.

Scientific Name N
DBH (cm) Height (m) Crown Width (m)

Mean SD Mean SD Mean SD

Alnus nepalensis (A.N.) 118 27.87 21.01 13.10 6.63 5.32 1.91
Quercus aliena (Q.A.) 80 55.72 19.37 23.41 6.07 6.76 2.30

Populus davidiana (P.D.) 97 30.96 23.07 11.34 5.56 5.44 2.22
Acer forrestii (A.F.) 80 37.90 18.65 14.59 4.93 6.97 2.20

Pinus yunnanensis (P.Y.) 75 38.91 17.95 22.23 8.04 5.31 1.58

Note: DBH: diameter at breast height (cm); H: height (m); N: number of trees; Alnus nepalensis = A.N.; Quercus
aliena = Q.A.; Populus davidiana = P.D.; Acer forrestii = A.F.; Pinus yunnanensis = P.Y.

2.3. Remote Sensing Data

A fixed-wing UAV equipped with RGB camera (Sony ILCE-6000) was used to obtain
RGB images from 7 November to 8 November 2018. The weather condition was clear
without clouds. The UAV flew at an altitude of 800 m relative to the ground, with a speed
of 20 m/s, a forward overlap ratio of more than 80% and the average ground sample
distance was 0.23 m. The satellite multispectral imagery was shot by SuperView-1 satellite
on 4 December 2018, with approximately 0% cloud cover and covering the whole study
area. The multispectral imagery included five bands of panchromatic (450–890 nm), blue
(450–520 nm), green (520–590 nm), red (630–690 nm) and near-infrared (690–890 nm), in
which the spatial resolution of panchromatic band was 0.5 m and that of spectral bands
was 2 m.

2.4. Data Pre-Processing

Before stitching RGB images, the RGB images with poor quality (including blurred
images and images that did not reach the target height at the intersection point of the
flight path) were removed. The images were matched using the GPS data and inertial
measurement units (IMUs) during flight, and the matched images were stitched to obtain
high-resolution RGB imagery.

The pre-processing of multispectral imagery included radiometric calibration, atmo-
spheric correction and Rational Polynomial Coefficient (RPC) ortho-rectification. Firstly,
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radiometric calibration and atmospheric correction were used to convert digital number
(DN) values into reflectance. Secondly, the image after ortho-rectification was fused by
using the misalignment impact (RMI) fusion method [44] to obtain sub-meter-resolution
multispectral imagery. Thirdly, 200 ground control points were selected from RGB and
multispectral ortho-imageries to co-register the multispectral imagery to RGB imagery
using spline algorithm, and the correction error was controlled within 0.01 m. Finally, the
nearest neighbor method was used for resampling to obtain spatially matched RGB and
multispectral ortho-imageries.

2.5. Sample Dataset of Individual Tree

The establishment of the sample dataset of individual trees was based on the pre-
processed images, combined with the segmentation results and the position information of
individual trees obtained from field measurement to generate the dominant tree species
images, and minimum external rectangle method was used to output these images. The
detailed process is shown in Figure 3. Firstly, the pre-processed image (Figure 3a) was
segmented by an object-oriented MRS algorithm (Figure 3 1©) to generate the segmented
image (Figure 3b). Secondly, combined with the position information of individual trees
obtained from field measurement (Figure 3c), the dominant tree species types were labeled
(Figure 3 2©) on the segmented image. Thirdly, the tree crown of each labeled dominant tree
species type (Figure 3d) was output via minimum external rectangle (Figure 3 3©) method
to obtain the tree crown images of individual tree dominant species (Figure 3e). Finally,
data augmentation was performed based on tree crown images of dominant individual
tree species to obtain a sample dataset for training.

With the help of the position of individual tree samples, the images were labeled and
classified for the training of deep learning networks. The sample dataset of individual trees
was divided into five types, including 118 Nepal alder (A.N.), 80 Oriental white oak (Q.A.),
97 Aspen (P.D.), 80 Maple (A.F.) and 75 Yunnan pine (P.Y.).

Figure 3. Steps for constructing the sample dataset of individual trees. (a) Ortho-imagery of the study
area (RGB display); (b) individual tree crown boundaries generated via object-oriented MRS algorithm;
(c) individual tree samples obtained from field measurement (the red and green dots are individual
trees of Yunnan pine and Oriental white oak); (d) crowns of dominant individual tree species; (e) tree
crown images of dominant individual tree species. See Table 1 for short descriptions of the dominant
tree species.
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2.5.1. Data Augmentation

In this study, data augmentation was performed on the individual tree samples to
increase the number of training samples. The data augmentation methods include rotation
and brightening, such as rotating the image clockwise by 90◦, counterclockwise by 90◦,
180◦ and brightening by 50% [45–48]. After data augmentation, the number of sample
datasets was increased to five times. A detailed description is shown in Table 2.

Table 2. Number of samples of each dominant tree species.

Class Training Validation Total

A.N. 472 118 590
Q.A. 320 80 400
P.D. 388 97 485
A.F. 320 80 400
P.Y. 300 75 375

Total 1800 450 2250
Note: Alnus nepalensis = A.N.; Quercus aliena = Q.A.; Populus davidiana = P.D.; Acer forrestii = A.F.; Pinus
yunnanensis = P.Y.

Training an epoch in a deep learning network represents complete model training
with all the data of the training samples. To avoid network overfitting, the validation data
were used to evaluate the accuracy of the deep learning network after each set of training.
In this paper, 80% of the sample dataset was randomly selected for model training and 20%
for model validation.

2.5.2. Remote Sensing Sample Dataset of Individual Trees

To take advantage of the texture metrics of high-resolution RGB imagery, the SuperView-
1 satellite multispectral imagery (SV) was resampled and stacked with the RGB imagery (RGB)
to obtain the post-stacked image (SVRGB). Therefore, multispectral and post-stacked images
were used for dominant tree species classification and generated two individual tree sample
datasets, named “SV” and “SVRGB”. All the sample datasets included 2250 samples and five
dominant tree species (i.e., Nepal alder, Oriental white oak, Aspen, Maple and Yunnan pine).
A detailed description is shown in Table 2.

2.6. Spectral and Texture Metrics Calculation

After the individual tree crowns were segmented, spectral data were extracted from
the multispectral imagery, and a set of vegetation indices was calculated. Then, the
high-resolution RGB imagery was used to calculate seven texture metrics of each band
(blue, green and red band) for a total of 21 metrics. The meanings and calculation for-
mulas for spectral indices variables and texture metrics of individual trees are shown
in Tables 3 and 4.

Table 3. Summary of the vegetation indices with respective equations and references.

Metrics Equation Reference

Difference Vegetation Index (DVI) ρnir − ρred [49]

Atmospherically Resistant Vegetation Index (ARVI) (ρnir − ρrb)/(ρnir + ρrb), ρrb = ρred – γ × (ρblue − ρred),
γ = 0.5 [50]

Green Normalized Difference Vegetation Index (GNDVI) (ρnir − ρgreen)/(ρnir + ρgreen) [51]

Modified triangular vegetation index 2 (MTVI2)
[1.5 × (1.2 × (ρnir − ρgreen) − 2.5 × (ρred −ρgreen)]/[(2

× ρnir+1)2 – (6 × ρnir – 5 × ρred
0.5) – 0.5]0.5 [52]
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Table 3. Cont.

Metrics Equation Reference

Normalized Difference Vegetation Index (NDVI) (ρnir – ρred)/(ρnir + ρred) [52]
Simple Ration Vegetation Index (SR) ρnir/ρred [53]

Soil Adjusted Vegetation Index (SAVI) 1.5 × (ρnir − ρred)/(ρnir + ρred + 0.5) [52]
Ratio Vegetation Index (RVI) ρred/ρnir [54]

Normalized Greenness (Norm G) ρgreen/(ρred + ρgreen+ ρblue) [55]
Normalized Green-Red Ratio (Norm GR) (ρgreen – ρred)/(ρgreen + ρred) [55]

Optimized Soil Adjusted Vegetation Index (OSAVI) (ρnir – ρred)/(ρnir + ρred + 0.16) [56]
Red Green Ratio Index (RGRI) ρred/ρgreen [57]

Note: the ρblue represents the reflectance of blue band; the ρgreen represents the reflectance of green band; the ρred
represents the reflectance of red bands; the ρnir represents the reflectance of near-infrared band.

Table 4. Summary of the texture metrics with respective equations and references.

Metrics Equation

Correlation (CR) CR = ∑N−1
i,j=0 i·Pi,j|

(i−ME)(j−ME)√
VAiVAj

|

Contrast (CO) CO = |∑N−1
i,j=0 n2·Pi,j|

Dissimilarity (DI) DI = ∑N−1
i,j=0 i·Pi,j|i− j|

Entropy (EN) EN = ∑N−1
i,j=0 i·Pi,j(−ln Pi,j)

Homogeneity (HO) HO = ∑N−1
i,j=0 i· Pi,j

1+(i−j)2

Mean (ME) ME = ∑N−1
i,j=0 i·Pi,j

Variance (VA) VA = ∑N−1
i,j=0 i·Pi,j(i−ME)

Note: i, j represents the gray scale of image; N represents the gray level of image; Pi,j represents the gray-level
co-occurrence matrix.

2.7. Random Forest and Deep Learning Network Classifier
2.7.1. Random Forest

Random forest algorithm creates several CART-like trees, and each tree is trained with
the original training samples to vote on the most popular class of the input variables, and
the output class is determined by the majority vote of the tree [58,59]. The training samples
were used to train the random forest classifier, and the validation samples were used to
evaluate the classification accuracy. The training and validation samples were randomly
divided into 80% and 20% of the total samples for each tree species, respectively.

2.7.2. Deep Learning Networks

A deep learning network is a framework consisting of a stack of several convolutional
layers, pooling layers and fully connected layers [38]. The convolutional layer is used to
extract features from the input image, the pooling layer is responsible for reducing the
dimension of the image and the fully connected layer classifies the image by probability.
Three deep learning networks were used to classify dominant tree species in this study,
namely, the lightweight network MobileNetV2 [60], the residual network ResNet34 [61]
and the dense network DenseNet121 [62].

(1) Lightweight network MobileNetV2

The core of the MobileNetV2 model is the “inverted residual structure”. In the struc-
ture, the tensor depth containing the input feature image is firstly boosted by 1 × 1
convolution; then, the output is provided to 3 × 3 depth-wise convolution, and finally,
1 × 1 convolution is used to reduce the dimension of the feature image. Each convolution is
followed by batch normalization and ReLu6 activation functions. However, ReLu6 function
can easily cause the loss of low-dimension feature information in the image; thus, linear
activation function is selected in the dimensionality reduction stage.

The overview MobileNetV2 model is shown in Figure 4a. This framework consists of
55 training layers, including 2 regular convolutional layers, 17 inverted residual feature
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layers (containing 51 convolutional layers) and 2 fully connected layers. The MobileNetV2
model is composed of 7 inverted residual convolution groups (Bk1-Bk7), each of which
includes a number of basic residual convolution units, and then passes the input feature
image to the next layer.

(2) Residual network ResNet34

The ResNet34 model consists of stacked blocks called “residual structure”. The main
branch of this residual structure consists of two 3 × 3 convolutional layers, and the con-
necting line is the shortcut branch, which serves to skip one or more layers during model
training. The ResNet34 model solves the problem that deep learning networks are difficult
to train and introduces the idea of deep residual learning, which effectively weakens the
gradient disappearance problem.

The overview ResNet34 model is shown in Figure 4b. This framework consists of
35 training layers, including 1 convolutional layer, 16 residual feature layers (containing
32 convolutional layers) and 2 fully connected layers. The ResNet34 model is composed
of four residual convolution groups, each of which includes one or more basic residual
convolution units. The first convolution group performs only one convolution operation
and has a convolution kernel size of 7 × 7. The second to fifth convolution groups contain
many consistent residual units, named Conv2_x, Conv3_x, Conv4_x and Conv5_x.

(3) Dense network DenseNet121

Compared with ResNet34 model, DenseNet121 model proposes a more radical dense
connection mechanism: all layers are connected to each other, and each layer will receive
the output of all previous layers as additional input. Different from ResNet34 model’s
element-level addition, DenseNet121 model uses concatenation method for image feature
fusion. The specific expression is shown in Formulas (4) and (5) [62]. The dense layers in
the DenseNet121 model can be directly connected to the input and residual gradients; thus,
the phenomenon of gradient disappearance can be further mitigated.

xl = Hl(xl−1) + xl−1 (1)

xl = Hl([x0, x1, . . . , xl−1]) (2)

xl represents the input at layer l, xl−1 represents the output of layer l− 1, Hl(xl−1) represents
the nonlinear transformation for the output of layer l – 1 and [x0, x1, . . . , xl−1] represents
concatenation of outputs from layers 0 to l − 1.

The overview DenseNet121 model is shown in Figure 4c. This framework consists of
125 training layers, including 1 convolutional layer, 4 dense blocks (containing 116 convo-
lutional layers), 3 transition layers (each transition layer has 1 convolutional layer and 1
average pooling layer) and 2 fully connected layers. The DenseNet121 model is composed
of 4 dense blocks, including 6, 12, 24 and 16 dense layers, which are connected to each
other.

All the code in this study was completed in PyCharm v. 2019.3 using the “torch-vision”
and “tqmd” packages. The training of the three deep learning networks took 10.5 h on
an NVIDIA GPU (GeForce RTX 3050, 4G). Each deep learning network was trained for
100 epochs, with a batch size of 32, an initial learning rate of 0.001 and a learning rate fall
of 0.1.
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Figure 4. Framework of the three deep learning networks. (a) Lightweight network MobileNetV2
framework; (b) residual network ResNet34 framework; (c) dense network DenseNet121 framework.

2.8. Validation of Individual Tree Segmentation and Tree Species Classification

In this paper, an object-oriented multi-resolution segmentation (MRS) algorithm was
used to segment individual trees from high-resolution RGB and spectral imageries in
ecognition software, and the background information was removed to obtain the individual
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tree crowns. The MRS algorithm calculates the heterogeneity index for two adjacent objects
to be segmented and compares it with the threshold value. If the heterogeneity index
is smaller than the threshold value, the two objects are merged; otherwise, they will be
detached [63]. The main parameters of the object-oriented MRS algorithm include scale,
shape and compactness. In this study, a series of scale parameters ranging from 10 to 90 was
set, and the optimal scale was found via enumeration method with step size of five. The
optimal shape and compactness parameters were also calculated based on this approach.

The position information of individual trees obtained from field measurement was
combined with the tree crown boundary extracted using the algorithm to evaluate the
segmentation accuracy. Three measures were used to evaluate the accuracy of individual
tree segmentation: recall (r, represented the rate of tree detection), precision (p, represented
the detection trees precision) and F1 score (F1, represented the overall accuracy). The
equations are as follows [64,65]:

r =
Nt

Nt + No
(3)

p =
Nt

Nt + Nc
(4)

F1 =
2(r× p)

r + p
(5)

Nt is the number of detected trees that exist in field position, No is the number of trees that
are not detected by algorithm and Nc is the number of detected trees that do not exist in
the field.

The overall accuracy (OA) and Kappa accuracy were used to evaluate the accuracy of
the classification. The three selected typical plots contained 90 field measurement samples,
and the classification accuracy was calculated by comparing the tree species types classified
by the algorithm with those field measurements. The OA was calculated through the total
number of correctly classified samples divided by the total number of samples [66]. Kappa
accuracy is calculated using the following formula:

k =
po − pe

1− pe
(6)

pe =
∑c

i=1 ai × bi

n2 (7)

po presents the overall classification accuracy; ai represents the number of true samples for
specific class; bi represents the number of samples predicted for specific class; n represents
the number of samples.

2.9. Effects of the Number of Training Samples on the Performance of Dominant Tree Species
Classification

The training of deep learning networks generally requires a large number of samples,
and the performance of deep learning networks is more robust when the number of given
samples is sufficient [67]. Based on the SVRGB sample dataset, 20%, 40%, 60% and 80% of
the total samples of each dominant tree species were randomly selected to train the three
deep learning network classifiers, we and calculated the overall accuracy of dominant tree
species classification.

3. Results
3.1. Individual Tree Segmentation

As shown in Figure 5, the results showed that when the scale factor was 20, the
segmented vector layer could be well matched to each tree crown from the multispectral
imagery. However, when the scale factor was 10, over-segmentation occurred, with a tree
crown being divided into two or more vector layers; when the scale factor was 30, part
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of the crowns faced under-segmentation. For UAV RGB imagery, the best segmentation
performance was obtained when the scale factor was 40. However, when the scale factors
were 20 or 60, the individual tree segmentation results could not be well matched to the
tree canopy.

Figure 5. Sensitivity analysis of individual tree segmentation using object-oriented MRS algorithm
(plot size: 50× 50 m). (a–c) MRS segmentation using satellite multispectral imagery (the segmentation
scale factors are 10, 20 and 30, respectively); (d–f) MRS segmentation using UAV RGB imagery (the
segmentation scale factors are 20, 40 and 60, respectively).

As shown in Table 5 and Figure 6, the object-oriented MRS algorithm performed well
in the forests with different stand densities (low, middle and high) and had an average
overall accuracy greater than 70% (Table 4). For the satellite multispectral imagery, the MRS
algorithm had the best detection rate (68.3%) and F1 score (74.7%) in the forests with low
density. Under high-density forests, the detection rate of trees was 62.8% and the F1 score
was 72.6%. In the middle-density forests, the detection rate of trees was 59.6% and the F1
score was 71.3%. For the UAV high-resolution RGB imagery, the MRS algorithm had the
best detection rate (73.1%) and F1 score (79.2%) in the forests with middle density. Under
low-density forests, the detection rate of trees was 65.9% and the F1 score was 76.1%. In
high-density forests, the detection rate of trees was 66.7% and the F1 score was 75.4%.

The performances of individual tree segmentation using multispectral imagery and
high-resolution RGB imagery are shown in Table 6, with the average overall accuracy above
65%. For satellite multispectral imagery, the detection rate of trees was 60.7%, the precision
was 75.0% and the F1 score was 67.1%. For the UAV high-resolution RGB imagery, the
detection rate of trees was 70.7%, the precision was 74.1% and the F1 score was 72.4%.
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Table 5. Accuracy assessment of individual tree segmentation in the forests with different stand
densities.

Density Nt No Nc r (%) p (%) F1 (%)

Satellite multispectral imagery

Low 28 13 6 68.3 82.4 74.7
Middle 31 21 4 59.6 88.6 71.3
High 49 29 8 62.8 85.9 72.6

UAV high-resolution RGB imagery

Low 27 14 3 65.9 90.0 76.1
Middle 38 14 6 73.1 86.4 79.2
High 52 26 8 66.7 86.7 75.4

Note: r, represents the rate of tree detection; p, represents the detection trees precision; F1, represents the overall
accuracy taking both omission and commission in consideration.

Figure 6. The multispectral imagery and high-resolution RGB imagery with the positions of in-
dividual trees (test data), tree tops and tree crowns were detected via the object-oriented MRS
algorithm in the forests with three stand densities (low (N = 41), middle (N = 52) and high (N = 78)).
(a,e,i) Multispectral imagery; (b,f,j) individual tree segmentation using the multispectral imagery
combined with MRS algorithm in the three plots; (c,g,k) high-resolution RGB imagery; (d,h,l) indi-
vidual tree segmentation using the high-resolution RGB imagery combined with MRS algorithm in
the three plots.

Table 6. Accuracy assessment of individual tree segmentation of dominant tree species.

Data Source Nt No Nc r (%) p (%) F1 (%)

Satellite multispectral imagery 273 177 91 60.7 75.0 67.1
UAV high-resolution RGB imagery 318 132 111 70.7 74.1 72.4

Note: r, represents the rate of tree detection; p, represents the detection trees precision; F1, represents the overall
accuracy taking both omission and commission in consideration.



Remote Sens. 2023, 15, 2697 14 of 25

3.2. Feature Optimization and Analysis

The importance analysis of metrics showed that normalized greenness (Norm_G),
atmospherically resistant vegetation index (ARVI) and modified triangular vegetation
index 2 (MTVI2) of spectral indices were most important for the dominant tree species
classification (Figure 7a). With the addition of texture metrics, the contrast of the red band
(red correlation), the normalized greenness (Norm_G), and the contrast of the green band
(green correlation) ranked in the top three of the ten most important metrics (Figure 7b).

Figure 7. The importance values of the ten most important metrics of the random forest algorithm
used for the dominant tree species classification. (a) Dominant tree species classification using
spectral indices; (b) dominant tree species classification using spectral and texture metrics. Note:
red correlation represents the correlation degree of red band. Red VA represents the variance in the
red band; red CO represents the contrast of the red band. See Table 3b for short descriptions of the
spectral and texture metrics.

3.3. Training of Deep Learning Networks

In order to compare the classification performances of deep learning networks on
different data sources, the satellite multispectral imagery (SV) sample dataset, the multi-
spectral imagery and high-resolution RGB imagery post-stacked image (SVRGB) sample
dataset were used to train the deep learning network classifier. For the SV sample dataset,
the training processes of the lightweight network MobileNetV2, the residual network
ResNet34 and the dense network DesnseNet121 are shown in Figure 8. The blue curve
represented the changes in loss value and accuracy in the training samples, and the or-
ange curve represented the changes in loss value and accuracy in the validation samples.
Figure 8a shows that the loss values of the lightweight network MobileNetV2 remained
stable after 80 epochs. The changes in accuracy also embodied a similar trend in Figure 8b.
Figure 8c,d show that the changes in loss value and accuracy in the residual network
ResNet34 tended to steady after 70 epochs. Figure 8e,f show that the changes in training
loss value and accuracy in the dense network DenseNet121 showed a similar trend to that
of the lightweight network MobileNetV2, which stabilized after 80 epochs of iteration.

Similar to the SV sample dataset, three deep learning networks were trained with the
SVRGB sample dataset. The overall convergence of this sample dataset was faster than
that of the SV sample dataset. As shown in Figure 9a,c, the loss values of the lightweight
network MobileNetV2 and the residual network ResNet34 became stable after 60 epochs.
In Figure 9b,d, the changes in accuracy remained steady after 60 epochs. The changes in
training loss value and accuracy in the dense network DenseNet121 remained stable after
70 epochs, as shown in Figure 9e,f.
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Figure 8. Training processes of the three deep learning networks based on SV sample dataset.
(a) Change in loss value in the lightweight network MobileNetV2; (b) change in accuracy in
lightweight network MobileNetV2; (c) change in loss value in the residual network ResNet34;
(d) change in accuracy in the residual network ResNet34; (e) change in loss value in the dense
network DenseNet121; (f) change in accuracy in the dense network DenseNet121.

3.4. Accuracy Assessment

Table 7 shows the confusion matrix of five dominant tree species classification using
the random forest algorithm combined with two groups of metrics. For spectral metrics,
the overall accuracy of the dominant tree species classification was 60.00%, and the Kappa
accuracy was 47.80%. For the combination of spectral and texture metrics, the overall
accuracy of the dominant tree species classification was 64.44%, and the Kappa accuracy
was 53.61%. The dominant tree species classification accuracy of using two groups of
metrics improved successively, indicating that texture metrics had a positive impact on the
dominant tree species classification (OA and Kappa accuracy increased by 4.44% and 5.81%,
respectively). Among the five dominant tree species classifications, using the combination
of spectral and texture metrics had the best performance (OA was 64.44%, Kappa accuracy
was 53.61%).
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Figure 9. Training processes of the three deep learning networks based on SVRGB sample dataset.
(a) Change in loss value in the light-weight network MobileNetV2; (b) change in accuracy in
lightweight network MobileNetV2; (c) change in loss value in the residual network ResNet34;
(d) change in accuracy in the residual network ResNet34; (e) change in loss value in the dense
network DenseNet121; (f) change in accuracy in the dense network DenseNet121.

Table 7. Confusion matrix of five dominant tree species classifications using random forest algorithm
combined with two groups of metrics.

Class A.N. Q.A. A.F. P.D. P.Y.

Spectral metrics
A.N. 23 2 6 3 5
Q.A. 1 7 3 3 0
A.F. 2 0 6 2 0
P.D. 1 0 2 10 0
P.Y. 2 1 1 2 8

Overall
Accuracy 60.00% Kappa

Accuracy 47.80%
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Table 7. Cont.

Class A.N. Q.A. A.F. P.D. P.Y.

Spectral and texture metrics
A.N. 24 1 4 2 5
Q.A. 2 7 1 1 0
A.F. 1 1 8 2 0
P.D. 1 0 3 12 1
P.Y. 1 1 2 3 7

Overall
Accuracy 64.44% Kappa

Accuracy 53.61%

Note: Alnus nepalensis = A.N.; Quercus aliena = Q.A.; Acer forrestii = A.F.; Populus davidiana = P.D.; Pinus
yunnanensis = P.Y.

Tables 8 and 9 show the confusion matrix of five dominant tree species classifica-
tions using the three deep learning networks based on SV and SVRGB sample datasets,
respectively. For the SV sample dataset, the average overall accuracy of the three deep
learning networks was over than 70%. Dense network DenseNet121 had the highest
overall accuracy (OA = 81.11%, Kappa accuracy = 75.53%). The overall accuracy of
residual network ResNet34 was followed (OA = 78.89%, Kappa accuracy = 72.86%).
Lightweight network MobileNetV2 had the lowest overall accuracy (OA = 71.11%, Kappa
accuracy = 63.01%). For the SVRGB sample dataset, the average overall accuracy of the
three deep learning networks was more than 80%. Among them, the overall accuracy
of dense network DenseNet121 was 94.44%, and the Kappa accuracy was 92.79%, which
showed the best classification performance. The overall accuracy of residual network
ResNet34 was 91.11%, and the Kappa accuracy was 88.49%, whereas the overall accuracy
of lightweight network MobileNetV2 was 82.22%, and the Kappa accuracy was 77.09%.
Compared with the SV sample dataset, the average overall accuracy of dominant tree
species classification based on the SVRGB sample dataset was improved by 11.11–13.33%.

Table 8. Confusion matrix of five dominant tree species classifications using three deep learning
networks based on SV sample dataset.

Class A.N. Q.A. A.F. P.D. P.Y.

Light-weight network MobileNetV2
A.N. 20 2 2 2 1
Q.A. 3 7 1 3 3
A.F. 2 0 13 0 0
P.D. 4 1 1 15 0
P.Y. 0 0 1 0 9

Over
Accuracy 71.11% Kappa

Accuracy 63.01%

Residual network ResNet34
A.N. 24 1 1 2 0
Q.A. 1 8 0 2 0
A.F. 3 0 13 0 3
P.D. 0 1 0 16 0
P.Y. 1 0 4 0 10

Over
Accuracy 78.89% Kappa

Accuracy 72.86%
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Table 8. Cont.

Class A.N. Q.A. A.F. P.D. P.Y.

Dense network DenseNet121
A.N. 24 2 3 1 0
Q.A. 1 7 0 2 0
A.F. 4 0 14 0 2
P.D. 0 1 0 17 0
P.Y. 0 0 1 0 11

Over
Accuracy 81.11% Kappa

Accuracy 75.53%

Note: Alnus nepalensis = A.N.; Quercus aliena = Q.A.; Acer forrestii = A.F.; Populus davidiana = P.D.; Pinus
yunnanensis = P.Y.

Table 9. Confusion matrix of five dominant tree species classifications using three deep learning
networks based on SVRGB sample dataset.

Class A.N. Q.A. A.F. P.D. P.Y.

Light-weight network MobileNetV2
A.N. 25 0 2 1 1
Q.A. 1 8 1 1 0
A.F. 0 1 12 0 1
P.D. 1 0 1 18 0
P.Y. 2 1 2 0 11

Over
Accuracy 82.22% Kappa

Accuracy 77.09%

Residual network ResNet34
A.N. 27 1 0 1 0
Q.A. 0 8 0 0 0
A.F. 2 1 16 0 1
P.D. 0 0 0 19 0
P.Y. 0 0 2 0 12

Over
Accuracy 91.11% Kappa

Accuracy 88.49%

Dense network DenseNet121
A.N. 28 2 0 0 0
Q.A. 1 8 0 0 0
A.F. 0 0 17 0 1
P.D. 0 0 0 20 0
P.Y. 0 0 1 0 12

Over
Accuracy 94.44% Kappa

Accuracy 92.79%

Note: Alnus nepalensis = A.N.; Quercus aliena = Q.A.; Acer forrestii = A.F.; Populus davidiana = P.D.; Pinus
yunnanensis = P.Y.

Therefore, the overall accuracy of the dominant tree species classification of the three
deep learning networks (OA = 71.11–94.44%) was higher than that of the random forest
algorithm (OA = 60.00–64.44%). Among them, dense network DenseNet121 had the highest
overall accuracy (OA = 81.11–94.44%).

3.5. Mapping of Five Dominant Tree Species

In this paper, the best deep learning network (dense network DenseNet121) was
applied to the remote sensing images of individual trees to predict the dominant tree
species. It took about 0.5 s to predict each individual tree remote sensing image and
obtained the tree species type of the image. Figure 10 shows the mapping of five dominant
tree species classifications in three plots (100 × 100 m). In general, Yunnan pine and Nepal
alder tree species were dominant in distribution and quantity. In plot 1, the distribution of
Nepal alder (A.N.) tree species was more extensive, and the distribution of Oriental white
oak (Q.A.) tree species was more concentrated. In plot 2, the number of Yunnan pine (P.Y.)
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tree species was similar to that of Nepal alder, while aspen (P.D.) tree species were mainly
distributed in the eastern of the plot. In plot 3, the number of Nepal alder tree species was
the highest and widely distributed. The number of Yunnan pine tree species was second
and concentrated in the southwest of the plot.

Figure 10. Mapping of five dominant tree species classifications in three plots (100 × 100 m). Left:
Image after RGB imagery and multispectral imagery stacked (display in RGB); (a,c,e) plot 1, plot 2
and plot 3, respectively. Right: The results of five dominant tree species classifications using dense
network DenseNet121; (b,d,f) the five dominant tree species classifications mapping plot 1, plot 2
and plot 3, respectively. See Table 1 for short descriptions of the dominant tree species.

3.6. Effects of the Number of Training Samples on the Classification Performance of Three Deep
Learning Networks

The number of training samples has little effect on the overall accuracy of dominant
tree species classification using three deep learning networks, as shown in Figure 11.
When the number of training samples varied by 20–80% of the total samples of each
dominant tree species (the interval was 20%), the overall accuracy of the dominant tree
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species classification using three deep learning networks changed slightly (the change in
OA was 2.69–4.28%). For lightweight network MobileNetV2, the overall accuracy of the
dominant tree species classification was 74.09–78.37%. For the residual network ResNet34,
the overall accuracy of the dominant tree species classification was 88.05–91.02%. For dense
network DenseNet121, the overall accuracy of the dominant tree species classification was
90.32–93.01%.

Figure 11. The overall accuracy of three deep learning networks using 20%, 40%, 60% and 80% of the
total samples of each dominant tree species based on the SVRGB sample dataset.

4. Discussion
4.1. Influence of Different Data Sources on Individual Tree Segmentation

In this study, UAV RGB imagery and satellite multispectral imagery were applied for
individual tree segmentation. Compared with the multispectral imagery, the individual tree
segmentation accuracy of RGB imagery was higher. The reason is that RGB imagery has
higher spatial resolution and clearer canopy boundaries. The lower the spatial resolution,
the larger the range of ground objects contained in one pixel, thus potentially interfering
with the segmentation of the target object [68]. Moreover, high-resolution RGB images
have abundant texture information of tree crown edges, which can be used to accurately
extract individual tree crowns [28,69]. Zhou et al. [70] segmented individual trees from
high-resolution RGB images, reaching a better segmentation accuracy. However, the
complex stand structure, high canopy density and high stand density in natural forests
adversely affected the individual tree segmentation. In this paper, although our tree species
classification accuracy was high, the individual tree segmentation accuracy was relatively
low. It is relatively difficult to segment individual trees in complex stands, which has
also been confirmed by previous studies. Xu et al. [35] used three methods to segment
individual trees in subtropical natural forests and classified eight types of dominant tree
species. The accuracy of the advanced multiresolution segmentation method was highest
(F1 score = 82.5%), and the image-based multiresolution segmentation method exhibited the
lowest accuracy (F1 score = 78.6%), which is similar to the results (F1 score = 72.4%) obtained
in this paper by using RGB images for individual tree segmentation. Zhong et al. [71]
used LiDAR point cloud and hyperspectral images for individual tree segmentation in
natural forests, and the total accuracy was 84.6%. Compared with our individual tree
segmentation results, this accuracy was higher. However, the LiDAR point cloud provides
three-dimensional information of the forest canopy structure [72], which can be better
used for individual tree segmentation. The data source of this study was two-dimensional
images, which do not have this advantage in the process of individual tree segmentation.
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After the individual tree segmentation was completed, we optimized the segmentation
results using a splitting and merging method to match the tree crowns. Although the
accuracy of individual tree segmentation in this study was relatively low, the classification
accuracy was improved by using the optimized crown boundaries. There is a certain risk,
but this risk could be acceptable considering the characteristics of natural forests, such as
complex stands and extremely high canopy density. In the future, better methods and data
are needed to improve the accuracy of individual tree segmentation in complex stands, so
as to provide guidance for forest application.

4.2. Performance of Deep Learning Networks and Effect of Texture metrics on Tree Species
Classification

Since the combination of multispectral and RGB data could provide not only spectral
information but also texture metrics of the forests, the dominant tree species classification
showed a higher accuracy. Previous studies have shown that the combination of many
metrics generally showed higher accuracy for dominant tree species classification [73,74].
Gini et al. used texture metrics to improve classification accuracy, and they proved that
the use of texture increased OA by 20% [75]. In this study, the random forest algorithm
and three deep learning networks were used to classify five dominant tree species. For the
random forest algorithm, the addition of texture metrics improved the overall accuracy
of dominant tree species classification (the OA was increased by 4.44%). This result was
consistent with the conclusion of previous studies. This result occurred because the addi-
tion of texture features makes the description of tree species more comprehensive, and the
algorithm can identify more features related to the target tree species during classification,
thereby improving the classification accuracy. For the deep learning networks, the combi-
nation of UAV high-resolution RGB imagery and satellite multispectral imagery enabled
the models to learn the features from forest edge and texture, and, thus, the overall accu-
racy of dominant tree species classification was also improved (the OA was increased by
11.11–13.33%).

In the past, there have been studies using deep learning networks combined with
multi-source remote sensing data to improve the overall accuracy of dominant tree species
classification [67,76]. However, most previous studies applied deep learning networks
to the forests with relatively simple structures. Here, we explored the potential of deep
learning networks for the classification of dominant tree species in subtropical natural
forests. The result showed that the overall accuracy of dominant tree species classification
using the three deep learning networks was higher than that of the random forest algorithm.
Previous studies have also proved this point. Onishi et al. [42] used a convolutional neural
network (CNN) and SVM algorithm to classify seven classes, and the classification accuracy
of CNN was 5.8–13.1% higher than SVM. Zhang et al. [43] used three convolutional neural
networks (CNNs) and two machine learning (ML) algorithms to classify tree species; the
classification accuracy of CNNs was higher than 70%, while that of ML algorithms was
less than 70%. Among the three deep learning networks, dense network had the best
performance (81.11–94.44%). The tree species dataset has more complex features, and the
convolutional layers in the dense network structure are densely connected with each other,
which is more suitable for extracting high-level features. In this paper, three deep learning
networks were combined with multi-source remote sensing data to classify five dominant
tree species in subtropical natural forests. Compared with the random forest algorithm, the
deep learning networks had the potential to identify dominant tree species in subtropical
natural forests. However, since the study area selected for tree species classification is only
three plots, it is still necessary to explore the large-scale tree species classification.

4.3. Effect of Variation in the Number of Training Samples on Classification Accuracy

Although the variation in training samples had little effect on the overall accuracy of
dominant tree species classification using the three deep learning networks, the increased
number of training samples had a positive impact on the dominant tree species classification.
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Hartling et al. divided the total samples into several proportions (10%, 30%, 50% and 70%)
to train DenseNet network and found that the overall accuracy of dominant tree species
classification increased when the number of samples increased [67]. In this paper, with the
increased number of training samples, the overall accuracy of the dominant tree species
classification was also improved (the OA was increased by 2.69–4.28%). Furthermore,
among the three deep learning networks, the dense network DenseNet121 outperformed
the other two models, indicating that it was able to learn deeper information from the
sample dataset and, therefore, had strong robustness to the training samples.

5. Conclusions

In this paper, UAV high-resolution RGB imagery and satellite multispectral imagery
were obtained, combined with the three deep learning networks and random forest algo-
rithm to identify five dominant tree species in the subtropical natural forest of northwest
Yunnan province of China. It was preliminarily confirmed that the deep learning network
can be combined with multi-source remote sensing data for the classification of dominant
tree species in natural forests. In addition, individual tree segmentation was carried out in
natural forests with different stand densities, indicating that the objected-oriented MRS
method can be applied to individual tree extraction in natural forests. We found that the
individual tree segmentation of UAV high-resolution RGB imagery was better than that
of satellite multispectral imagery. A total of 12 spectral indices and 7 texture metrics were
extracted from the multispectral imagery and UAV RGB imagery, and the top 10 metrics
were selected via the permutation-based importance based on the RF algorithm. In general,
Norm_G, ARVI, MTVI2, red correlation and green correlation are the most important
metrics in the classification of dominant tree species. Additionally, we found that the
overall accuracy of dominant tree species classification using three deep learning networks
was higher than that of the random forest algorithm. The addition of texture metrics
improved the overall accuracy of dominant tree species classification. For the three deep
learning networks, the changes in overall accuracy of dominant tree species classification
influenced by the number of training samples were minor, and the classification accuracy
of the dense network was higher than that of the other two deep learning networks. This
study demonstrated that deep learning networks have the potential to classify dominant
tree species in natural forests. However, to further explore their robustness, deep learning
networks need to be tested in other study areas and more tree species types.
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