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Abstract: Continuous long-term eddy covariance (EC) measurements of CO2 fluxes (NEE) in a variety
of terrestrial ecosystems are critical for investigating the impacts of climate change on ecosystem
carbon cycling. However, due to a number of issues, approximately 30–60% of annual flux data
obtained at EC flux sites around the world are reported as gaps. Given that the annual total NEE is
mostly determined by variations in the NEE data with time scales longer than one day, we propose a
novel framework to perform gap filling in NEE data based on machine learning (ML) and time series
decomposition (TSD). The novel framework combines the advantages of ML models in predicting
NEE with meteorological and environmental inputs and TSD methods in extracting the dominant
varying trends in NEE time series. Using the NEE data from 25 AmeriFlux sites, the performance
of the proposed framework is evaluated under four different artificial scenarios with gap lengths
ranging in length from one hour to two months. The combined approach incorporating random
forest and moving average (MA-RF) is observed to exhibit better performance than other approaches
at filling NEE gaps in scenarios with different gap lengths. For the scenario with a gap length of
seven days, the MA-RF improves the R2 by 34% and reduces the root mean square error (RMSE) by
55%, respectively, compared to a traditional RF-based model. The improved performance of MA-RF
is most likely due to the reduction in data variability and complexity of the variations in the extracted
low-frequency NEE data. Our results indicate that the proposed MA-RF framework can provide
improved gap filling for NEE time series. Such improved continuous NEE data can enhance the
accuracy of estimations regarding the ecosystem carbon budget.

Keywords: CO2 fluxes; long length gaps; moving average; empirical mode decomposition;
random forest

1. Introduction

In recent decades, eddy covariance (EC) technology has advanced, and it has been
used to perform continuous measurements of ecosystem–atmosphere exchanges of carbon,
water, and energy around the world [1,2]. The data produced using EC technology is
not only useful for estimating ecosystem-level annual carbon budgets; it can also help
to establish parameterization relationships between CO2 fluxes and meteorological and
environmental variables [3]. Since the late 1990s, several regional networks of EC flux
towers have been set up [4], the data from which have greatly improved our understanding
of the temporal and spatial variations in net ecosystem exchange of CO2 (NEE) [5,6]. To
date, a few thousand EC towers have been established worldwide [7]. However, due to a
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number of factors, including power outages, instrument malfunctions and maintenance, as
well as data quality checking, there exist gaps, which account for approximately 30–60%
of the half-hourly flux data at many EC sites [8–14]. These gaps have different temporal
lengths, ranging from hours to days, or even to months for remote sites [15]. A robust
gap-filling approach capable of filling such flux gaps is therefore urgently needed.

Accurate and robust NEE gap-filling methods are essential for quantifying the in-
terannual variability in the carbon budget [12,13,16,17]. A variety of approaches and
algorithms have been developed for performing gap filling in flux data, including non-
linear regressions [12], linear/multiple regressions [18], look-up tables [19–21], multiple
imputation [22], etc. However, the performance of these approaches varies depending on
the EC site, the time of the day, and the season of the year, and they are not able to achieve
consistent results. Recently, marginal distribution sampling (MDS) [12,20] and machine
learning (ML) [12,16,23] have become the standard approaches for NEE gap filling in the
EC community [14]. However, there is still lack of robust methods for filling long data gaps.

Filling long data gaps is challenging for the most commonly used gap-filling ap-
proaches. Large degrees of uncertainty have been reported when using MDS to fill long
gaps (e.g., 1–2 weeks) [24]. A variety of different ML algorithms, including artificial neu-
ral network (ANN), support vector machine (SVM), and random forest (RF), have been
evaluated for their ability to fill flux gaps with different gap lengths and across different
vegetation covers [23,25,26]. It is suggested that ML-based gap-filling models have the
potential to fill long gaps, and RF generally outperforms both the other ML algorithms
as well as the MDS method [16,23,25,27,28]. However, the overall performance of gap-
filling models greatly depends on the type of ecosystem, climate, prediction target, and
gap length [29].

Numerous studies have found that variations in NEE are affected by multiple environ-
mental factors, including solar radiation or photosynthetic active radiation, air temperature,
vapor pressure deficit, soil water content, water table depth, wind speed, and precipita-
tion [30–34]. These factors are often used as the inputs for fitting or training gap-filling
algorithms. For instance, the standard MDS model uses three meteorological parameters as
the controlling factors for identifying similar conditions that would allow the NEE data to
be used to fill the gaps [14]. Meanwhile, vegetation type, leaf area index and vegetation
cover also affect CO2 emissions [35], and these vegetation indices also change with weather
and climate. The sensitivity of NEE variations to these factors has been shown to be site
specific and time/season dependent, which limits the model performance for NEE gap
filling [25,26]. For example, factors including needle drop, prescribed fire, wind sweep
events, and morning venting of the canopy have been found to be responsible for the
variability of NEE in a longleaf pine forest [36]. NEE gap-filling models usually have better
performance for gaps occurring during the daytime period and in the growing season
compared to those occurring in the nighttime and during the non-growing season [25].
Therefore, identifying how to better use the time and scale information embedded in the
datasets could help to improve the performance of NEE gap-filling models.

In this study, we hypothesize that the observed NEE data are a product standing for
the combined effects of different time and scale information of environmental and weather
factors. After decomposing the NEE data into different time series corresponding to the
effects of difference scales, we can then fill in the data separately. Based on this hypothesis,
we propose a novel framework for performing gap filling in NEE data, combining the
advantages of machine learning and time series decomposition. To examine the proposed
framework, we select 25 AmeriFlux sites with different vegetation types and weather con-
ditions. Two time series decomposition methods in combination with four ML algorithms
are assessed with artificial gaps with different lengths. The objectives of this study are
(1) to evaluate the performance of the novel framework compared to the commonly used
approaches; and (2) to examine the reliability and accuracy of the novel framework across
different sites with multiple vegetation types.
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2. Data Sets and Study Sites
2.1. Eddy Covariance CO2 Fluxes

The eddy covariance CO2 fluxes used in this study were obtained from the AmeriFlux
FLUXNET data product (https://ameriflux.lbl.gov/data/flux-data-products/, accessed on
17 September 2022). Eddy covariance technology consists of a three-dimensional sonic
anemometer and a CO2/H2O gas analyzer, which measures longitudinal, lateral, and
vertical wind velocities and scalars (CO2, H2O, and temperature) at a sample rate of
10–20 Hz. The high-frequency measurements are processed post field to estimate the net
exchange in the scalars at the ecosystem level. The post-field processing procedures include:
despiking and filtering for physically impossible values and abnormal diagnostic values
of the instruments, applying coordinate rotation (double rotation or planar fit) to wind
velocities, calculating raw fluxes, and correcting the raw fluxes for the effects of high- and
low-pass filtering and air density fluctuations, respectively [37].

2.2. Ancillary Data for Gap-Filling Algorithms

Ancillary data used for the gap-filling algorithms include global radiation (Rg), air
temperature (Tair), vapor pressure deficit (VPD), wind speed (WS), rain, soil temperature
(Tsoil) and soil water content (SWC) obtained from the flux data product, and the nor-
malized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from
the Moderate-Resolution Imaging Spectroradiometer (MODIS). The meteorological data
have an average interval of 30 min, and the gaps in these data are filled using the ERA5
Reanalysis global atmospheric product created by the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a spatial and temporal downscaling process [1]. The
NDVI and EVI data around the flux tower locations are obtained from the MOD13Q1
version 6 data product (https://lpdaac.usgs.gov/products/mod13q1v006/, accessed on
13 October 2022) at 16 d temporal and 250 m spatial resolutions [38]. The 16 d NDVI and
EVI data were resampled to 30 min using cubic spline interpolation.

2.3. Study Sites

We applied the proposed gap-filling framework to 25 AmeriFlux sites (Figure 1). Based
on their land surface ecosystems, these sites can be categorized into five groups. US-AR1,
US-AR2, US-Goo, US-IB2, US-Lin, US-SRG, and US-Var are predominantly composed of
grasslands. US-ARM, US-CRT, US-GZ1, US-SZ2, and US-Tw2 are covered with croplands.
US-Hn1, US-KS2, US-SRC, US-SRM, US-Sta, and US-Whs are shrubland sites. US-Me1, US-
Me6, and US-NR1 are covered with evergreen coniferous forests, while US-Oho, US-UMd,
and US-WCr are covered with deciduous broadleaved forest. US-Syv is a mixed forest
site. At these sites, due to instrumental maintenance, power failures, data quality control,
and other site-specific issues, approximately 46% of data, on average, are accounted for by
high-quality CO2 flux data, while the percentages corresponding to data gaps of different
lengths vary from site to site (Figure 1b). Here, the high-quality NEE data refer to the data
after quality checking and removing data obtained under low-turbulence conditions.

https://ameriflux.lbl.gov/data/flux-data-products/
https://lpdaac.usgs.gov/products/mod13q1v006/
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Figure 1. (a) Location of the 25 AmeriFlux sites and pie charts of percentages of high-quality data 
and data with gaps of different lengths at each site. The percentages of gaps are counted for five 
lengths (one hour, one day, one week, two months, and greater than two months), respectively. (b) 
Grouped histograms of all data gaps for different vegetation covers. 
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The purpose of applying time series decomposition is to extract the dominant varia-
tions in the NEE time series that not only contribute greatly to the annual total NEE, but 
also determine the interannual variability of NEE (Figures A1 and A2 in Appendix A). In 
addition, the complexity of the trend term (i.e., nonlinear and non-stationary) is greatly 
reduced, which in turn is beneficial for ML model training. Here, we adopt moving aver-
age and empirical mode decomposition to decompose the pre-filled NEE data at each site. 
As stated above, the trend (T) and fluctuation (P) terms refer to the low- and high-fre-
quency variations in the time series, respectively, and hence, a time series of NEE can be 
constructed as 

𝑋𝑋 = 𝑇𝑇 + 𝑃𝑃 (1) 

3.1.1. Moving Average (MA) 

Figure 1. (a) Location of the 25 AmeriFlux sites and pie charts of percentages of high-quality data and
data with gaps of different lengths at each site. The percentages of gaps are counted for five lengths
(one hour, one day, one week, two months, and greater than two months), respectively. (b) Grouped
histograms of all data gaps for different vegetation covers.

3. Methodology
3.1. Time Series Decomposition Approaches

The purpose of applying time series decomposition is to extract the dominant varia-
tions in the NEE time series that not only contribute greatly to the annual total NEE, but
also determine the interannual variability of NEE (Figures A1 and A2 in Appendix A). In
addition, the complexity of the trend term (i.e., nonlinear and non-stationary) is greatly
reduced, which in turn is beneficial for ML model training. Here, we adopt moving av-
erage and empirical mode decomposition to decompose the pre-filled NEE data at each
site. As stated above, the trend (T) and fluctuation (P) terms refer to the low- and high-
frequency variations in the time series, respectively, and hence, a time series of NEE can be
constructed as

X = T + P (1)

3.1.1. Moving Average (MA)

By selecting an appropriate window, moving average can be applied to extract the
trend term in NEE data. Considering the facts that (1) the impact factors for the half-hourly
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variations in NEE are highly nonlinear, and (2) the balance between the surface available
energy and the EC fluxes of sensible and latent heat is much better at the daily scale than at
the half-hourly scale [39], we use 24 h as the length of the moving window. The fluctuation
term is then determined by subtracting the trend term from the pre-filled NEE time series.

3.1.2. Empirical Mode Decomposition (EMD)

Compared to the moving average, the empirical mode decomposition is adaptive
and suitable for the analysis of nonlinear and non-stationary signals, as well as linear
and stationary signals. The EMD method assumes that a signal consists of a finite set of
amplitude–frequency-modulated oscillatory components, each of which can be linear or
nonlinear [40]. Using a sifting process, the oscillatory components can be extracted from
the original data sequentially. For the EMD, the trend term is defined as the sum of certain
oscillatory components, which represent the variations with scales longer than one day.
Therefore, the trend terms determined by MA and EMD are comparable, although the
EMD has the potential to decompose discontinuous data [41], suggesting that the impacts
of pre-filled NEE data on the extracted trend term are constrained. The fluctuation term is
calculated in the same way as for MA.

3.2. Machine Learning Approaches

To fill the gaps in the trend term of NEE variations, four machine learning (ML) ap-
proaches, including random forest (RF), extreme gradient boosting (XGboost), support
vector regression (SVR), and back propagation (BP) neural network, are employed and
evaluated. In the following subsections, we briefly introduce the characteristics and im-
plementation of each ML algorithm. The optimal parameters for each of the four ML
algorithms are listed in Appendix A, Table A1.

3.2.1. Random Forest (RF)

RF has commonly been used to perform gap filling in flux data [23,26]. The algorithm
operates as an ensemble of many independent decision trees, each of which is trained
independently on bootstrapped data [42]. The performance of the algorithm is influenced by
multiple factors, including the number of decision trees, the maximum depth of the decision
trees, the minimum number of samples required for each leaf node, the minimum number
of samples required for the split nodes, etc. In this study, we optimize these parameters
using grid search and five times cross-validation with the “scikit-learn” Python library.

3.2.2. EXtreme Gradient Boosting (XGboost)

XGBoost is an improved boost model based on the gradient boosting decision tree
(GBDT), which has been widely used as an efficient GBDT framework to build decision
trees sequentially [43]. The parameter optimization method is the same as RF, including
the learning rate (0.01, 0.1 or 0.2), the minimum loss function descent value required for
node splitting (0–0.5), the minimum sample weight sum in child nodes (1, 2, 5 or 10), and
the proportion of features sampled when building the tree (0.6, 0.7, 0.8 or 0.9). In addition,
the maximum depth of each tree and the number of decision trees are the same as in RF.

3.2.3. Support Vector Regression (SVR)

SVR was developed by Cortes and Vapnik [44], and it has now been applied to perform
gap filling in flux data [23,25,26]. SVR is a supervised learning algorithm for predicting
discrete values. The basic idea of SVR is to reduce the complexity of the algorithm by
adding kernel functions to the SVR algorithm so that nonlinear regressions can be converted
into linear regressions. The performance of the algorithm is greatly influenced by the type
of kernel function. In this study, we optimize the parameters using a grid search, where the
tuning parameters include the kernel function and the cost regularization parameter (C = 1,
10, 100 or 100).
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3.2.4. Back Propagation (BP) Neural Network

The BP neural network was first proposed by Rumelhart et al. [45], and is a multi-layer
feed-forward neural network whose main feature is that the signal is forward propagated
while the error is backward propagated. The BP neural network model can be divided
into three layers: input layer, hidden layer, and output layer. In this study, the structural
design and parameter setting of the BP neural network are carried out using the “keras”
Python library.

3.3. The Novel Framework Based on ML and Time Series Decomposition

To fill long gaps in a time series of CO2 fluxes, we propose a novel framework based
on machine learning and time series decomposition, the structure and inputs of which are
summarized in Figure 2. The time series decomposition aims to extract the low-frequency
variations in the NEE data, which largely correspond to changes in vegetation phenology.
In order to decompose the NEE data, we first pre-fill the gaps in CO2 fluxes using an
RF model (i.e., the first-layer machine learning model), because most recent studies have
shown that RF has the best performance at filling NEE gaps when compared to other
gap-filling methods [23,25]. The RF model is trained using ancillary data at times when the
learning target of the CO2 fluxes is available in high quality. The trained RF model is then
used to obtain the predicted NEE at times when the CO2 fluxes are missing. This step is
actually the same as in the traditional gap-filling framework when using ML algorithms.
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Figure 2. Flow chart for the proposed three-layer machine learning framework, consisting of (top
panel) pre-filling NEE data using RF, (middle panel) extracting the dominant signal by decomposing
the time series using the empirical mode decomposition (EMD) and moving average (MA) methods,
and (bottom panel) re-filling the gaps in the extracted signal and reconstructing the NEE time series.
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Second, we decompose the pre-filled NEE data into two time series representing
high- and low-frequency variations (fluctuation and trend terms, hereafter), respectively,
using the moving average (MA) and empirical mode decomposition (EMD) methods. The
threshold used to separate the fluctuation and trend terms is determined by considering
the contribution of the trend term to the annual total flux, as well as the distribution of
the fluctuation terms. As shown in Figure 3, the histogram of the fluctuation term has
a distribution more similar to a normal distribution, compared to that of the trend term,
and thus the accumulated contribution of the fluctuation term to annual total NEE is
constrained. In general, the trend term contributes more than 90% of the annual total NEE
at each site, while the fluctuation term only accounts for a small portion of the annual total
NEE. After separating the fluctuation and trend terms, the data in the trend term at times
when the original NEE data are not available are removed, while the data in the fluctuation
term are reserved for reconstructing the time series.
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Using ancillary data and the extracted NEE trend term, the second-layer machine
learning model is trained at times at which the learning target and inputs are available. The
gaps in the trend term are obtained through the second-layer machine learning model. The
time series of NEE is then reconstructed by adding the refilled trend term and the extracted
fluctuation term together.

3.4. Model Evaluation

Gaps of different lengths occur non-randomly in the time series of CO2 fluxes due to a
variety of factors. In order to evaluate the performance of the gap-filling models, artificial
gaps with four typical lengths are randomly generated in the original flux data, i.e., short
gaps (1 h), medium gaps (1 day), long gaps (1 week), and very-long gaps (2 months). The
total length of the artificial gaps accounts for approximately 10% of the total data length at
each site. In addition, to eliminate the potential influence of gap location on the evaluation
of model performance, each gap length scenario is permuted 10 times to create test sets
with distinct artificial gaps, and for each test set, we also generate 10 training and validation
sets to train and validate the ML model (Figure 4).
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With the artificial gaps, we evaluate the model performance by comparing the pre-
dicted and measured values for different gap lengths at each site. Four commonly used
performance metrics are calculated, including the coefficient of determination (R2), the root
mean square error (RMSE), mean absolute error (MAE), and the bias error (Bias):

R2 =
(∑ (p− −p)(m− −m))

2

∑ (p− −p)
2
∑ (m− −m)

2 (2)

RMSE =

√
∑(m− p)2

n
(3)

MAE =
∑|p−m|

n
(4)

Bias = ∑ p−∑ m
n

(5)

where m and p refer to the measured and predicted values, respectively, and the overbar
denotes the mean value.

4. Results
4.1. Comparison of Model Performance between the Traditional and Proposed
Gap-Filling Frameworks

Using the NEE data at five EC sites with different vegetation types, we first examine
whether the proposed gap-filling framework improves the model performance compared to
the traditional framework. Here, the traditional framework refers to an RF model similar to
that trained for pre-filling the gaps. As shown in Figure 5, the proposed framework of either
EMD or MA in combination with RF (i.e., EMD-RF or MA-RF) outperforms the gap-filling
model with only RF, though the improvement in the proposed framework appears to be site
dependent. At US-AR1, R2 increases by approximately 0.4 from RF to EMD-RF or MA-RF,
while at US-Oho, R2 increases by around 0.1. On average, the traditional RF gap-filling
framework has median R2 and RMSE values of 0.78 and 2.58 µmol m−2 s−1, respectively, at
these five sites. The median R2 values increase to 0.94 and 0.97 for the proposed framework
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with EMD-RF and MA-RF, respectively, while the median values of RMSE decrease to
1.31 µmol m−2 s−1 and 1.04 µmol m−2 s−1 for EMD-RF and MA-RF, respectively. Note
that, at US-GZ1, the large scatter of R2 and RMSE for the gap-filling frameworks are mostly
caused by the large fraction of very long data gaps and the changes in planted crops, as well
as human activities. Therefore, the models have relatively low performance over croplands
compared to over other vegetation types (Figure A3 in Appendix A). In addition, Figure 5
also suggests that when using MA to extract the dominant signal in NEE time series, the
proposed framework has a slightly better performance than when using EMD.
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4.2. Comparison of the Model Performance of the Proposed Framework in Combination with
Different ML Algorithms

To figure out which ML approach possesses the best performance when carrying
out NEE gap filling using the proposed framework, we compare the performance of
four commonly used ML approaches. After extracting the trend term of the NEE data from
the 25 AmeriFlux sites, we train and evaluate the ML algorithms following the procedures
explicated in Figures 2 and 4. As shown in Figure 6, the median performance of each
ML algorithm degrades with increasing gap length for both EMD and MA combinations.
Among the four ML algorithms, RF and XGboost have comparable performance for filling
gaps of different lengths, and both outperform the SVR and BP neural network in each
of the gap scenarios. For the short gap length scenario, all four ML algorithms have the
highest R2 and the lowest RMSE and MAE, as well as the lowest degree of scatter of bias.
For the very long gap length scenario, both RF and XGboost have median values of R2 of
around 0.85 and 0.88 when combined with EMD and MA, respectively, while SVR and
BP neural network have median R2 values of around 0.78 and 0.82 when combined with
EMD and MA, respectively. Compared to RF and XGboost, SVR and BP neural network
display a larger decrease in R2 and a larger increase in RMSE and MAE with increasing
gap length. In addition, there are no significant differences between the performances of
the ML algorithms when carrying NEE gap filling over different vegetation types. Overall,
the ML algorithms combined with MA slightly outperform the ML algorithms combined
with EMD.
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Figure 6. The median performance metrics of the proposed gap-filling framework for short, medium,
long, and very long gap length scenarios, using two different time series decomposition methods
(EMD and MA) in combination with four machine learning approaches (XGboost, RF, SVR, and BP
neural network), respectively.

4.3. Relative Importance of the Input Variables

Figure 7 shows the relative importance of the input variables for the trend term of the
NEE data at each site. Here, we use the absolute value of Pearson’s correlation coefficient
to characterize relative importance. Each row represents a driver and each column a site,
and the color bar shows the absolute value of the correlation coefficient. For the trend
term of the NEE data, EVI and NDVI are the most important variables at most of the
sites, and the relative importance of the other variables varies among different sites, with
precipitation being the least influential predictor. For the fluctuation term, neither EVI nor
NDVI have any significant impacts on the variations of NEE, while VPD and rain are the
most important variables. These results suggest that the variations in vegetation phenology
play a critical role in the prediction of the trend term in ecosystem carbon flux.
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4.4. Comparison with Results in a Peer’s Study

In this subsection, we compare the performance of the proposed framework with the
results of a recent study by Zhu et al. [28], in which an RF-based model with ten driving
variables (RFR10) outperformed other gap-filling models. The RFR10 was evaluated by
filling artificial gaps of 24 h (24 H) and 7 days (7 D) in flux data at 16 AmeriFlux sites. Here,
we select the same AmeriFlux sites and calculate the values of the same statistical metrics
for EMD-RF and MA-RF with the two gap length scenarios. As shown in Figure 8, both
EMD-RF and MA-RF outperform RFR10, with larger values of R2 and smaller values of
RMSE. On average, for a gap length scenario of seven days, MA-RF has better performance,
with an increase in R2 by 0.24 (34%) and a decrease in RMSE by 1.30 µmol m−2 s−1 (55%),
respectively, compared to RFR10. Therefore, the proposed frameworks of EMD-RF and
MA-RF outperform the RFR10; however, due to the potential difference in the artificial gaps
generated for testing, it is hard to quantify the improvement of the proposed framework
for NEE gap filling compared to the RFR10.
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4.5. Consistency of the Annual Total NEE Filled Using Different Methods

To assess the impacts of different gap-filling approaches on the annual total NEE,
in this subsection, we compare the accumulated annual NEE using the gap-filled NEE
data at these sites. As shown above, MA-RF outperforms the other models, and thus we
use the NEE data filled using MA-RF (i.e., NEEMA-RF) as a reference. The gap-filled NEE
data [1] from the AmeriFlux FLUXNET data product (NEEFLUXNET) are also obtained for
comparison. As shown in Figure 9, the difference between the annual total NEEMA-RF and
NEEFLUXNET is approximately 5%, with an R2 of 0.96. The highest agreement is found
between NEEMA-RF and NEEMA-XGboost, with a linear regression coefficient of 0.99 and
an R2 of 0.99, respectively. Overall, the results suggest that the proposed framework of
RF and XGboost in combination with MA or EMD can provide relatively consistent gap
filling for NEE data. The comparison of the cumulative monthly NEE of MA-RF and
FLUXNET in Figure A4 in Appendix A also shows a relatively good agreement, with
constrained scattering.
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5. Discussion

In this study, we proposed and evaluated a novel framework to perform gap filling in
eddy covariance NEE data. The proposed framework is based on the concept that the ob-
served variations in the NEE data stand for the combined effects of different environmental
and weather factors, while the annual total NEE is largely determined by the low-frequency
variations (the trend term) in the NEE data (Figure 3). The proposed framework can thus be
summarized into three steps: (1) pre-fill the gaps using the RF algorithm (i.e., the first-layer
ML model); (2) decompose the pre-filled NEE data to extract the trend term; and (3) refill
the gaps in the trend term using the ML algorithm (i.e., the second-layer ML model) and
reconstruct the time series by adding the refilled trend term and the extracted fluctuation
term together (Figure 2). The commonly used RF-based gap-filling method is applied in the
first step because different studies have shown that RF has relatively better performance at
filling NEE gaps than other other ML algorithms [23,25,28]. The time series decomposition
is performed using the MA and EMD methods, and on average, the trend term accounts
for approximately 90% of the total annual fluxes, while the high-frequency term has a
distribution similar to the normal distribution (Figures A1 and A2 in Appendix A).

The two time series decomposition methods, combined with four ML algorithms, are
trained and evaluated with respect to their capacity to fill the gaps in the trend term. Using
the NEE data from 25 AmeriFlux sites, our results suggest that MA combined with RF
(MA-RF) outperforms the other combinations, as well as the traditional RF-based gap-filling
model (Figures 5 and 6). The improved performance is most likely due to the reduced
complexity of the NEE data in the trend term, which can ease the training and prediction
of the ML algorithm. On the other hand, it implies that the trend term is generally able to
capture the annual/seasonal variations in NEE. Therefore, an accurate prediction of the
trend term can improve the accuracy of annual total NEE estimation.

The spatial complexity or variability of the targeted CO2 flux and meteorological
factors within the tower footprint [46,47] could be one of the reasons for the variable
performance of gap-filling models at different sites. Huang and Hsieh [26] found that the
ML algorithms showed better performance at forest and cropland sites than at grassland
sites. Zhu et al. [28] also suggested that the performance of the gap-filling models varied
as a function of ecosystem landcover classification. Figure A3 in Appendix A compares
the performance of the model framework for different landcover types, with the RMSE
for agricultural land showing relatively greater differences. This seems to be reasonably
attributable to the fact that farmland crops often change, and are greatly affected by human
activities (i.e., harvesting). Overall, MA-RF outperforms the other models and maintains a
relatively good performance across different vegetation types. One plausible explanation
could be that the variability of NEE is greatly reduced once the trend term has been
extracted, resulting in improved performance among the gap-filling models.

The selection of inputs or driving variables for the ML algorithms can also influence
the model performance. With an RF-based gap-filling model, Zhu et al. [28] found that the
performance improved by 15% when using ten driving variables instead of three inputs.
Yao et al. [25] found that Rg was the most important driving variable for the RF-based
model. In this study, for the trend term, the vegetation phenology was the most important
input, because the trend term represents the low-frequency variations in the NEE data.
Overall, the results suggested that the proposed framework can indeed serve the purpose
of improving the gap-filling performance, and that the trend term is better able to describe
the annual–seasonal trend of NEE.

Although our results suggest that the model performance for filling gaps longer than
7 days is greatly improved, there is still a lot of room for improvement. For example, the
results obtained using the EMD method were not consistent with those with the MA method
at several sites, and therefore the performance of the model is degraded at individual sites
(Figure 8). Additionally, considering the possible bias and distortion in the long gaps after
pre-filling, future research should focus more on improving the performance when filling
long gaps and the selection of driving variables.
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6. Conclusions

In this study, a novel framework was proposed for gap filling in NEE data, and its
performance was evaluated at multiple sites with different types of vegetation cover. The
core of the research idea was the assumption that the annual/seasonal trend of NEE data
dominates interannual and annual variations in NEE. Therefore, the pre-filled NEE data was
decomposed into two time series representing the trend and fluctuation terms, respectively.
Different time series decomposition methods and ML algorithms were combined to develop
a robust model for gap filling in NEE data. The specific conclusions drawn are as follows:
(1) the method of pre-filling followed by decomposition and re-filling reaps better gap-
filling results; (2) among the two decomposition schemes, MA is slightly better than EMD
decomposition; among the four algorithms, RF and XGboost exhibit higher performance
than the SVR and BP neural networks; and overall, the framework using a moving average
combined with RF has the best performance; (3) compared to a single-layer RF-based
gap-filling model, the R2 of the proposed framework with RF increased by 19%, and RMSE
decreased by around 1.3 µmol m−2 s−1. In addition, our results suggest that, for the trend
term, the vegetation phenology is the most important predictor.
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Appendix A

Table A1. Grid search for the best parameters.

ML Algorithms Best Parameters

RF

n_estimators = 1636, min_samples_split = 5,
min_saples_leaf = 2, max_features = 0.5,
max_depth = None, bootstrap = False,

random_state = 0

XGboost

Subsample = 0.8, seed = 0, reg_lambda = 1,
reg_alpha = 0, n_jobs = −1, n_estimtors = 3333,

min_child_weight = 5, max_depth = 298,
learning_rate = 0.01, gamma = 0.0,

colsample_bytree = 0.7
SVR kernel = ‘rbf’, gamma = 0.1, C = 100

BP neural network input layer-intermediate layer-output layer = 120-10-1,
activation function: sigmoid, trained 200 times

https://doi.org/10.6084/m9.figshare.22598095
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Figure A3. Comparison of the mean statistics of model performance for five different vegetation
types. The five vegetation types are agricultural land (AL), shrubland (S), grassland (G), evergreen
coniferous forest (ECF), and deciduous broadleaf forest (DBF).
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