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Abstract: Global navigation satellite system reflectometry (GNSS-R) is a remote sensing technology of
soil moisture measurement using signals of opportunity from GNSS, which has the advantages of low
cost, all-weather detection, and multi-platform application. An in situ GNSS-R and radiometer fusion
soil moisture retrieval model based on LSTM (long–short term memory) is proposed to improve
accuracy and robustness as to the impacts of vegetation cover and soil surface roughness. The
Oceanpal GNSS-R data obtained from the experimental campaign at the Valencia Anchor Station
are used as the main input data, and the TB (brightness temperature) and TR (soil roughness and
vegetation integrated attenuation coefficient) outputs of the ELBARA-II radiometer are used as
auxiliary input data, while field measurements with a Delta-T ML2x ThetaProbe soil moisture sensor
were used for reference and validation. The results show that the LSTM model can be used to retrieve
soil moisture, and that it performs better in the data fusion scenario with GNSS-R and radiometer.
The STD of the multi-satellite fusion model is 0.013. Among the single-satellite models, PRN13, 20,
and 32 gave the best retrieval results with STD = 0.011, 0.012, and 0.007, respectively.

Keywords: GNSS-R; Bayes optimisation; LSTM; soil moisture

1. Introduction

Soil moisture is an essential parameter in hydrology, agriculture, and meteorology.
In agriculture, soil moisture is an integral part of crop moisture prediction [1] and an
essential basis for organising irrigation and crop yield estimation. In relation to weather
prediction, numerical simulation weather prediction models show that the introduction
of boundary conditions such as surface soil moisture, vegetation indices, and ground
temperature data can significantly improve the accuracy of the prediction. Soil moisture
measurements on a global or regional scale have therefore great social and economic
advantages. From this point of view, the traditional techniques for measuring in situ soil
water content become impractical when dense spatial and temporal resolutions are required.
Compared to the traditional contact-type soil moisture sensing technologies such as time
domain reflectometry (TDR) and frequency domain reflectometry (FDR), microwave remote
sensing technology can better achieve large-scale, non-contact soil moisture detection [2].
Among these, passive microwave remote sensing uses microwave emissivity to retrieve soil
moisture [3]. Although it is sensitive to soil moisture and has high temporal resolution, its
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spatial resolution is low and cannot yet meet the application’s needs. In contrast, synthetic
aperture radar (SAR) uses a self-contained source of microwave radiation to illuminate the
surface and measures the amount of radiation returned to the sensor. This allows SAR to
monitor surface soil moisture at a spatial resolution of meters to tens of meters under almost
all weather conditions [4,5]. Nonetheless, it still has inherent complexity related to the radar
backscattered signal and to the inverse problem of backscattering models [6]. During the
last few decades, an emerging and challenging technology based on signals of opportunity,
composed of receiving devices that take advantage of existing signals from other systems,
is being exploited for specific Earth observation applications such as the determination of
the geoid, wind speed at the sea’s surface, and surface soil moisture and vegetation water
content [7]. Among these, the technology that employs global navigation satellite systems
(GNSS) is called GNSS reflectometry (GNSS-R). According to recent studies, GNSS-R has
proven its ability to retrieve soil moisture and vegetation water content from the ground,
while airborne, and in spaceborne configurations [8].

Kavak et al. [9] first investigated the sensitivity of the GNSS signal reflected from the
ground surface to the latter’s moisture content, and Zavorotny and Voronovich [10,11]
provided the first theoretical model of GNSS signal-scattering. In 2002, NASA and the
University of Colorado added a GPS-R receiver to the airborne soil moisture measurement
experiment SMEX02 (Soil Moisture Experiment 2002), which showed that the intensity
of the reflected signals was related to soil moisture [12]. ESA and Starlab conducted, in
2009 and 2011, respectively, the LEiMON (Land Monitoring with Navigation Signals) and
GRASS (GNSS Reflectometry Analysis for Biomass) GNSS-R ground and airborne tests to
study the effects of soil moisture, surface roughness and vegetation parameters on GPS
reflection signals under different polarisation conditions [13]. Egido et al. conducted flight
experiments on a low-altitude airborne platform, the results of which showed that, in the
case of moderate roughness, the polarised reflectivity ratio represented the best-observed
value of soil moisture, with a correlation coefficient of 0.93 [14]. Following the successful
launch of the NASA CYGNSS (Cyclone Global Navigation Satellite System), soil moisture
estimation was tested by adopting different methods to process the derived data, and
global soil moisture estimates were obtained with a global spatial resolution of 36 × 36 km2

and RMSE of 0.07 cm3/cm3 [15].
Normally, the ground’s surface is relatively rough at L-band microwaves, so the

influence of surface roughness must be taken into account when retrieving soil moisture
using GNSS-R. The L-MEB (L-band microwave emission of the biosphere) model for
microwave radiometry [16] can retrieve brightness temperature TB, and the TR indices
(representing the combination of vegetation optical thickness and soil roughness) provide
information sufficient to remove the impacts of vegetation cover and ground surface
roughness. On this line, Fernandez-Moran et al. proposed a simplified retrieval method
(SRP) to accurately account for surface roughness and vegetation optical depth effects in
soil moisture retrievals. The τNAD (vegetation optical depth at nadir) and HR (L-MEB
model roughness parameters) can be grouped and retrieved as a single parameter called
TR [17]. Cong et al. compared GNSS-R and ELBARA-II radiometer data, a high correlation
was found between the LHCP reflectivity measured by GNSS-R and the horizontal/vertical
reflectivity from the radiometer. An artificial neural network was used for GNSS-R soil
moisture retrieval, and the RMSE was 0.014 m3/m3 [18]. However, the artificial neural
network cannot take advantage of a soil moisture time series. In time series, data from each
point in time will be affected by the previous points. Recurrent neural networks (RNN)
appeared in the 1980s and 1990s. Through the connection between nodes, it receives the
output information froms the current time and the output information of the previous time
at the same time and then form a network structure with circulation to facilitate learning
the nonlinear characteristics of the timing sequence efficiently [19,20].

In this paper, a GNSS-R soil moisture retrieval model based on a LSTM (long–short
term memory) neural network is proposed. TR and TB of a ground-based radiometer
are introduced in the proposed model to eliminate the influences of soil roughness and
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vegetation effects, as indicated above. Finally, the proposed model is verified by the joint
observation campaign of the passive ground-based microwave remote sensing ELBARA-II
and of the dual-antenna GNSS-R Oceanpal at the Valencia Anchor Station, a remote sensing
validation site in Spain [18].

2. Methods
2.1. Traditional GNSS-R Retrieval Model

With the change of soil moisture in the surface layer, its dielectric constant also changes,
thus affecting the reflected signal intensity, which is the principle by which GNSS-R tech-
nology can detect soil moisture. As shown in Figure 1, traditional GNSS-R is a bi-static
radar configuration, one which uses the GNSS satellite and receiver as radar transmit-
ter and receiver, respectively. The direct GNSS signal is right-hand circularly polarised
(RHCP), but when reflected by the ground’s surface, the reflected signal will contain both
left-hand circularly polarised (LHCP) and right-hand circularly polarised (RHCP) com-
ponents. As the satellite’s elevation angle increases, the right-handed component of the
reflected signal gradually decreases, and the left-handed component gradually becomes
the dominant component.
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The reflection coefficient of a left-hand reflected signal can be expressed by
Equation (1):

Γrl = |Rrl(ε, θ)|2 =
(ε− 1)2 cos2 θ(ε− sin2 θ)

(ε cos θ +
√

ε− sin2 θ)
2
(cos θ +

√
ε− sin2 θ)

2 (1)

Γrr = |Rrr(ε, θ)|2 =
(ε− 1)2 sin4 θ

(ε sin θ +
√

ε− sin2 θ)
2
(cos θ +

√
ε− sin2 θ)

2 (2)

where ε is the relative permittivity of the reflecting surface, and θ is the elevation angle of
the GNSS satellite [21].

The soil dielectric constant is mainly determined by water content so that soil moisture
can be retrieved through it. Therefore, the basic idea of GNSS-R soil moisture retrieval
model is to establish the relationship among reflection coefficient, permittivity and soil
moisture (Figure 2). Although the theoretical model of the soil dielectric constant can be
described in detail, the relationship between soil dielectric constant and water content
could be given either by soil dielectric model such as Wang model [22], the Topp model [23],
the Hallikainen model [24], or the Dobson model [25] and so on.
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With the exception of Wang’s model, the model structure and the information required
are too complex to use, and therefore Wang’s model was selected for soil moisture retrieval
in this work. The model can be expressed by Equation (3):

ε = 3.1 + 17.36 ·mv + 63.12 ·mv
2 + j(0.031 + 4.65 ·mv + 20.42 ·mv

2) (3)

where ε is the permittivity of the soil and mv is volumetric water content of the soil. By
introducing the soil dielectric constant obtained by Equation (1) into Equation (3), the
results of GNSS-R soil moisture retrieval can be expressed by Equation (4):

mv =
−17.36 +

√
17.362 − 252.48[3.1− ε]

126.24
(4)

2.2. ELBARA-II

This traditional GNSS-R retrieval method does not take into account the influence of
surface roughness and vegetation, so the retrieval accuracy can be optimised. Between
2014 and 2016, a joint observation experiment was carried out using the ground-based
radiometer ELBARA-II and the Oceanpal dual-antenna GNSS-R receiver at the Valencia
Anchor Station [18]. This section presents a method to extract surface roughness and
vegetation influencing factors from ELBARA-II data and feed them into a soil moisture
retrieval model based on a non-linear auto-regressive dynamic neural network to improve
retrieval accuracy.

The ground-based microwave radiometer (ELBARA-II, L-band) is a Dicke-type
L-band microwave radiometer ( f = 1.41 GHz, λ = 21 cm) developed by the Swiss Federal
Research Institute for Forest, Snow, and Landscape (WSL) together with GAMMA remote
sensing from the European Space Agency (ESA) [26]. It was designed mainly for SMOS
validation and to improve its L-band soil moisture retrieval algorithm, thus providing
significant ground reference data for the L-band passive microwave radiation transmission
model. ELBARA-II adopts the optimal dual polarisation (P = horizontal polarisation-H,
= vertical polarisation-V) cone antenna design (diameter 1.4 m, antenna length 2.7 m,−3 dB
bandwidth of 11 MHz), as shown in Figure 3. It has two 11 MHz synchronous channels
centred at 1.4075 GHz and 1.4195 GHz, respectively, which allow narrow-band RFI to
be detected within the protected L-band. The absolute error of ELBARA-II brightness
temperature observation is less than 1.0 K, and it can sensitively respond to microwave
brightness temperature changes greater than 0.1 K [26].

The polarisation brightness temperature TBp observed by the L-band ELBARA-II
radiometer at different incident angles α, and the influence of the surface characteristics on
it, can be described by the L-MEB microwave radiation model, as in Equation (5) [16]:

TBp(θ) = TGC[1− r′GP(θ) exp(−2τNAD
cos2(θ) + ttp sin2(θ)

cos(θ)
− HR cosNRP(θ))] (5)

where TBp is the brightness temperature observed by the microwave radiometer, TGC is
the composite soil-vegetation surface temperature, r′GP is the Fresnel reflectance of the soil
surface, tNAD is the optical thickness, HR accounts for the decrease of specular reflectivity
due to soil roughness effects, and θ is the observation angle. The subscript p indicates
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the polarisation mode; ttp is a parameter used to quantify the dependence of tNAD on the
incidence angle θ and NRP governs the changes in the angular dependence of reflectivity,
thus quantifying the dependence of HR on the incidence angle θ [17].
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Under low-frequency L-band conditions, if the dependence of roughness on the
incident angle under different polarisation modes can be assumed as NRV = NRH = −1,
then the influence of vegetation can be regarded as isotropic and Equation (5) can be
simplified as Equation (6):

TBp(θ) = TGC[1− r′GP(θ) exp(−2TR/ cos(θ)] (6)

TR = τNAD + HR/2 (7)

In that case, the effects of vegetation (via the tNAD parameter) and roughness (via the
HR parameter) can be combined into the single parameter TR, defined in Equations (5) and
(6) [17]. The model uses the two-parameter retrieval method to find the optimal solution of
TR based on the iterative form of the least squares method. The parameters are then fed
into the GNSS-R soil moisture retrieval model, based on the LSTM neural network.

2.3. LSTM Neural Networks

LSTM is an RNN that underlies sequential learning applications [27]. As a type of
RNN, LSTM uses sequential information by updating states based on both inputs from
the current time step (xt) and network states from previous time steps. However, the
architectural difference from RNNs is that LSTM has ‘memory states’ units and ‘gates’ that
are trained to decide when they can forget some information, when and what to output,
and which inputs to use. These gates are also responsible for learning and memorizing
the data characteristics of soil moisture. The common structure of the LSTM neuron cell is
demonstrated in Figure 4.
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The following equations are included in the LSTM neuron:
The σ function:

δ(x) =
1

1 + ex (8)

Forget Gate:

ft = δ(W f · [ht−1, xt] + b f ) (9)

Input Gate:
it = δ(Wi · [ht−1, xt] + bi) (10)

Ct =
e(Wc ·[ht−1,xt ]+bo) − e−(Wc ·[ht−1,xt ]+bo)

e(Wc ·[ht−1,xt ]+bo) + e−(Wc ·[ht−1,xt ]+bo)
(11)

Output Gate:

ot = δ(Wo · [ht−1, xt] + bo) (12)

Long Memory:
Ct = ft · Ct−1 + it · Ct (13)

Short Memory:

hi = ot ·
eCt − e−Ct

eCt + e−Ct
(14)

where C is the cell state, W is the corresponding weight coefficient matrix, and b is the
corresponding bias term. Firstly, the input xt at time t and the hidden state ht−1 at time
t− 1 discard distant information through the forgetting gate to obtain an updated value ft.
Next, xt and ht−1 pass through the input gate to obtain the data it to be updated and the
new candidate vector Ct. Finally, xt and ht−1 pass through the output gate to obtain the
output result ot of the neuron. The cell state Ct at time t is obtained by summing the inner
product of ft and Ct−1 and the inner product of it and Ct, and the new cell hidden state ht
is obtained by summing the value of the hyperbolic tangent of the cell state Ct at time t
and ot. By repeating the above process, the LSTM neural network composed of multiple
neurons can be trained [28].

Before building the prediction model, we have to set several hyperparameters of the
LSTM prediction network structure, including the number of LSTM layers, the number of
nodes in each LSTM layer, the number of fully connected layers (FC), and the number of
nodes in each level of the FC layer, as well as the epoch and the learning rate. The LSTM
network of this work consisted of five layers, an input layer, an LSTM layer, a drop layer, a
fully connected layer, and an output layer. The number of nodes, the learning rate, and the
epoch use the Bayesian optimisation method to find the optimal value (Figure 5).
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2.4. Bayesian Optimisation

Parameter optimisation is an indispensable step in building neural network models.
The common problem of finding the extremum of a function can be solved by gradient-
based optimisation [29]. However, traditional grid search requires training on each param-
eter combination, which is highly time-consuming. The Bayesian optimisation algorithm
is a black-box optimisation algorithm that does not need to know the expression of the
objective function. It uses a straightforward framework to find the optimal global solution,
and the optimisation process saves time, so it is very suitable for adjusting the parameters
of the LSTM [30].

In the Bayesian optimisation process, the loss function of the parameter-fitting model
is a Gaussian process, and the parameters are updated to obtain the posterior probability
of this function. The process of Bayesian optimisation is described as follows:

The Bayesian optimisation objective is defined as:

xmin = argmin
x∈X

f (x) (15)

where xmin is the final optimised hyperparameter and f (x) is the objective function to
be optimised.

Assuming that the hyperparameters to be optimised are X = {x1, x2, . . . , xi}, the data
set obtained by Bayesian optimisation iteration is

Dt = {(x1, f (x1)), (x2, f (x2)), . . . , (xt, f (xt))} (16)

The Gaussian process assumes that the observation points follow a Gaussian distribu-
tion with the following expression:

f (x) ∼ GP
(
µ(x1:t),

n

∑ (X1:t, X1:t)

)
(17)

where
n
∑ (X1:t, X1:t) is the covariance matrix:

n

∑ (X1:t, X1:t) =

k(x1, x1) · · · k(x1, xt)
...

. . .
...

k(xt, x1) · · · k(xt, xt)

 (18)
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According to Bayes’ theorem:

P( f (xt+1)| f (x1:t)) ∝ P( f (x1:t)| f (xt+1))P( f (xt+1)) (19)

By iteratively updating xmin = xi+1, the optimal hyperparameters are finally obtained.

2.5. Uncertainty Analysis

The predicted models’ uncertainty must be quantified in order to confirm the validity
of the model [31]. All soil samples were randomly divided between training (70%) and
validation (30%) for each iteration of the uncertainty analysis in order to train 50 distinct
LSTM models. Due to the implicit time information in the data, they cannot be randomly
divided. Therefore, we carried out the uncertainty analysis by adjusting the proportion of
training and testing sets (the first 80% of the data used for training, and the last 20% used
for test or the first 60% of the data used for training, and the remaining 40% used for test).

3. Results
3.1. Experiment Campaign

The Valencia Anchor Station validation site is located on the Utiel–Requena plateau,
80 km northwest of Valencia city, Spain, and the SOMOSTA (Soil Moisture Monitoring
Station) experiment took place at the Valencia Anchor Station MELBEX (Mediterranean
L-band characterization experiment) site within the El Renegado vineyard area, with coor-
dinates (39◦31′17.98′′N, 1◦17′29.29′′W) and an altitude of 800 m. During this experimental
campaign, the ESA GNSS-R Oceanpal antenna was installed on the same tower as the ESA
ELBARA-II passive microwave radiometer, the Ocenapal at 11 m height from the ground,
while ELBARA-II had previously been installed at the top of the tower at a height of 15 m,
and both measuring instruments had a similar field of view. ELBARA-II automatically
adjusts the incident angle every half hour to measure brightness temperature (TB) from
several consecutive angles, ranging from 30◦ to 70◦ at 5◦ intervals. The incident angle range
of the observations used in the soil moisture inversion model was 30~55◦. Oceanpal has
an upward right-hand circularly polarised antenna that receives the direct signal, and a
downward left-hand/right-hand circularly polarised antenna receiving the reflected signal
from the ground. Both antennas were assumed to have the same antenna pattern thanks to
a calibration tool that minimised possible differences between the two channels (Figure 6).
The angle between the direct antenna and the reflection antenna was 20◦, and they were
installed in mirror symmetry relative to the horizontal direction to eliminate the impact of
antenna gain, as shown in Figures 6 and 7. On the one hand, this avoids the influence of
the observation tower on the signal and, on the other, it facilitates a larger observation area.
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Figure 7. Schematic diagram of the Valencia experimental site.

Two ML2x ThetaProbe soil moisture sensors were installed under the observation
tower to collect in situ soil moisture data to verify retrieval precision. The distance between
the probes was 1.5 m. The sensor’s accuracy was ±1%, and the sampling interval was
2 min. As shown in Figure 8, both sensors were 5 cm deep under the soil’s surface. One
sensor was placed under a vine stock and the other between two rows of vines. In addition,
the observation tower also had a Davis Vantage Pro 2 weather station, which is used to
measure precipitation, temperature, wind and humidity.
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Figure 8. Soil moisture ThetaProbe sensors and the Davis Vantage Pro 2 meteorological station.

Radiometer-related data such as brightness temperature (TB), soil roughness and veg-
etation attenuation index TR where obtained by using the L-MEB radiative transfer model
(Equations (5) and (6)). GNSS-R data is processed according to Equation (4). Experimental
data from ELBARA-Oceanpal are then used for validation and optimisation. Figure 9 shows
the variation of Rrl (left-hand circularly polarised reflectivity) with elevation angle, and
the scattered colour indicates the value of the azimuth angle. Rrl does not depend on the
azimuth angle, and reflectivity is distributed in the range of 0.1–0.4 with the same elevation
angle. Therefore, in this experiment, in the presence of vegetation cover, the influence of
azimuth can be ignored, and the surface can be considered an isotropic reflecting surface.
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Figure 9. LHCP reflectivity vs. elevation angle.

The GNSS-R Oceanpal observations lasted from October 2014 to May 2016. During
the experiment, there were several interruptions of the observations for various reasons (in
summer, sometimes the temperature in the hut containing the equipment could become
too high, interrupting the computers and the power supply, although in the end a magneto-
thermal control system was installed and even a shunt to ground to avoid lightning damage
in times of heavy rain). The applicable soil moisture range of the Wang model mentioned
earlier is 0–0.5 [22,32]. It follows from Equation (3) that the theoretical reflectivity range
of Wang’s model is 0–0.4, so data with reflectivity higher than 0.4 are removed. Since
precipitation causes a large amount of water on the surface, which causes an abnormal
increase in reflectivity and affects the reception of the reflected signals, data from the day
of precipitation and the following day are also removed, thus completing the data quality
screening. Finally, 180 days of complete observational data are available, including GNSS
reflectivity, ELBARA-II radiometer brightness temperature observations, and ground-based
soil moisture measurement observations. The data processing flow is shown in Figure 10.
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3.2. Results Derived from the Analytical Model

Figure 11 shows the retrieval results for the Wang model and for ELBARA-II radiome-
ter. The retrieval accuracy of the Wang model is low. Compared to the Wang model, the
effect of ELBARA-II has been dramatically improved. In this figure it can be seen that, com-
pared to the in situ probes, there was a systematic error (0.101 m3/m3) in the ELBARA-II
retrieval result, so we corrected the ELBARA-II retrieval results as to that amount. The
correlation coefficient reaches 0.78, and the RMSE decreases to 0.024 (Table 1).
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Table 1. Statistical errors between retrieved soil moisture and in situ measurements.

R RMSE (m3/m3)

Wang model 0.09 0.123
ELBARA-II 0.58 0.101

Corrected ELBARA-II 0.78 0.024

It is assumed that soil moisture does not vary significantly from one hour to the next,
which is fully valid in the absence of precipitation, since precipitation sharply increases soil
moisture in a short period of time. Thus, we took mean hourly values of the Wang model
and of the ELBARA-II radiometer output results, respectively (Figure 12). As shown in
Table 2, the correlation coefficient of the Wang model inversion results increases to 0.26, and
the RMSE decreases to 0.087, whereas the correlation coefficient of ELBARA-II increased to
0.83, and the RMSE decreased to 0.098 and to 0.024 after the correction mentioned above
(Table 2). However, due to its low temporal resolution, the soil moisture value was output
at 6 a.m. and 6 p.m., and it is necessary to adjust it in the comparison time scale.
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Table 2. Statistical errors between retrieved soil moisture and in situ measurements.

R RMSE (m3/m3)

Wang model 0.26 0.087
ELBARA-II 0.83 0.098

Corrected ELBARA-II 0.83 0.024
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3.3. Results Derived from LSTM Model Retrieval
3.3.1. Results Derived from Multi-Satellite LSTM Model Retrieval

Using Rrl as input data, combined with TB and TR as auxiliary data, the optimal
parameters of the LSTM network were found by a Bayesian optimisation algorithm for
100 iterations, and the LSTM soil moisture retrieval model was established. The field
measurement value of the ThetaProbe soil moisture sensor was used as the target setting
for training. The first 70% of the experimental data (1 October 2014–24 March 2016) was
used for training, and the last 30% (25 March 2016–31 March 2016) was used as the test set
for model prediction and evaluation.

The results are shown in Figure 13. Compared to the black dots in situ, the blue and
red dots in the figure match better, the purple dots less well, and the green dots worse.
When Rrl as such (green) is used as input data for the prediction, the correlation coefficient
is only 0.50, and the RMSE is 0.019. When only Rrl is used as input data, the retrieved soil
moisture obtained fluctuates only around 0.13 m3/m3, which does not reflect the real soil
moisture change. This is because the reflectivity data are mixed with a lot of noise. The
model cannot extract features well in the case of a single input variable, which causes the
soil moisture recovery to show almost a straight horizontal line. The accuracy is poor, so
the subsequent multi-satellite soil moisture retrieval no longer uses only Rrl as input data.
When Rrl is used as input data for prediction together with TR, the correlation coefficient
improves to 0.58, and the RMSE is reduced to 0.018 m3/m3. When Rrl is used as input
data for prediction together with TB, the correlation coefficient improves to 0.81, and the
RMSE decreases to 0.013. Finally, when Rrl, TR, and TB are used together as input data for
prediction, the correlation coefficient increases to 0.83, and the RMSE decreases to 0.013
(Table 3).
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Table 3. Statistical errors between retrieved soil moisture and in situ measurements.

R RMSE (m3/m3)

Rrl as input 0.50 0.019
Rrl, TR as input 0.58 0.018
Rrl, TB as input 0.81 0.013

Rrl, TB and TR as input 0.83 0.013
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Subsequently, we performed an uncertainty analysis of the model. According to
Table 4, the performance of the models under different data allocation methods is good,
thus implying that the model has low variability and low uncertainty.

Table 4. Statistical errors of different methods of allocating data.

R RMSE (m3/m3)

80%, 20% 0.80 0.013
70%, 30% 0.83 0.013
60%, 40% 0.71 0.015

For comparison, we used the multilayer perceptron with backpropagation learning
algorithm (MLP-BP) and support vector machine (SVM) to retrieve soil moisture [33,34].
Table 5 showed that the results of MLP-BP and SVM were not as good as those of LSTM.
Therefore, in following studies, we only used the LSTM model to retrieve soil moisture.

Table 5. Statistical errors of MLP-BP and the SVM model.

R RMSE (m3/m3)

MLP-BP 0.37 0.023
SVM 0.69 0.017

LSTM 0.83 0.013

Because soil surface roughness, vegetation scattering, and other factors affect the
accuracy of model retrieval, more carefully distinguishing model performance under
different roughness conditions still improves accuracy. This section analyses the retrieval
accuracy of two models with different roughness conditions. Since the LSTM model is
applied to continuous time series, the roughness threshold is set to 0.21, considering that
data above 0.21 corresponds to high roughness, and data below 0.21 corresponds to low
roughness (Figure 14). In this section, the model is trained and prepared for prediction
under two different roughness conditions.
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Figure 14. TR data of October 2014–June 2016.

According to the threshold, in this first analysis, experimental data with high rough-
ness are discarded, amounting to a total of 37,783 moments. Similarly, Rrl, TB, and TR are
selected as input data, and the training set and the test set are divided according to the
standard ratio of 70% and 30%, respectively, where the training set has 26,448 moments,
and the test set has 11,335 moments for training and prediction. In Figure 15, the red dots
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and black dots match better. When Rrl is used as input for prediction together with TR,
the correlation coefficient is 0.67, and the RMSE is 0.017. When Rrl is used as input for
prediction with TB, the correlation coefficient improves to 0.90, and the RMSE decreases to
0.009. When Rrl is used as input for prediction together with TR and TB, the correlation
coefficient is 0.85, and the RMSE is 0.012 (Table 6).
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Table 6. Statistical errors between retrieved soil moisture and in situ measurements.

R RMSE (m3/m3)

Rrl, TR as input 0.67 0.017
Rrl, TB as input 0.90 0.009

Rrl, TB and TR as input 0.85 0.012

Similarly, in the second analysis, experimental data with low roughness are discarded,
amounting to a total of 24,509 moments, including 17,156 moments in the training set and
7353 moments in the test set, for training and prediction. Figure 16 shows the prediction
effect of the model in high roughness, where the blue dots and black dots match better.
When Rrl is used as input for prediction with TR, the correlation coefficient is only 0.36, and
the RMSE is 0.010. When Rrl is used as input data for prediction with TB, the correlation
coefficient improves to 0.53, and the RMSE is reduced to 0.009. When Rrl is used as input
data for prediction together with TR and TB, the correlation coefficient is 0.83, and the
RMSE is 0.007 (Table 7).
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Table 7. Statistical errors between retrieved soil moisture and in situ measurements.

R RMSE (m3/m3)

Rrl, TR as input 0.36 0.010
Rrl, TB as input 0.53 0.009

Rrl, TB and TR as input 0.83 0.007

3.3.2. Results Derived from Single-Satellite LSTM Model Retrieval

Considering that the penetration and reflection characteristics of electromagnetic
waves are closely related to their frequencies, the information on soil moisture carried by
reflected GNSS signals in different frequency bands is different [35]. The soil-moisture
retrieval experiment using single-satellite data was carried out utilizing 29 satellites. The
values of Rrl, TB, and TR at each point in time are used as model inputs for retrieval. Taking
PRN13, 20, 32 as an example, the retrieval results from the LSTM model are shown in
Figure 17, and the retrieval results for all satellites are shown in Figures 18 and 19.
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Figure 19. RMSE for the four configurations between Rrl, TR, and TB.

Compared to the Rrl input data alone, the RMSE is reduced by 39 % on average
after adding TR and TB, within the set of which PRN32 has the best retrieval effect, with a
maximum RMSE reduction of 63%. For demonstration purposes, satellites with a correlation
coefficient greater than 0.5 are considered valid for retrieval. We calculated the number of
valid satellites for the four configurations. If only reflectivity is used as input, the number
of valid satellites is only 2. If TR is added, the number increases to 7. If TB is added, it
increases to 24 (Table 8). And when TR and TB are added, all satellites show correlation.
However, multiple satellites such as PRN13, 20, and 32 also performed well (R > 0.9). When
TR and TB are added, all satellites show correlation (R > 0.5), and the optimum coefficient
is 0.94. The single-satellite retrieval statistics show that the model has the highest accuracy
after adding two radiometer output products.
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Table 8. Number of effective satellites used with different input data.

R > 0.5

Rrl as input 2
Rrl, TR as input 7
Rrl, TB as input 24

4. Discussion

As shown in Figure 11, in this experiment, the retrieval accuracy of the Wang model is
poor. Compared to the Wang model, the soil moisture accuracy of ELBARA-II is consider-
ably higher. However, as an experimental prototype, it does not meet the requirements of
practical applications. Since the traditional model is strongly affected by noise and does not
modify environmental factors such as surface roughness, the retrieval effect improves after
average filtering of the results. After averaging the hourly retrieval results, the accuracy
of the Wang model improves by 42% and that of the ELBARA-II model by 2%. As shown
in Figure 12, although the correlation coefficient between the ELBARA-II output and the
ThetaProbe measurements is high, the RMSE value is still significant. The results show that
the trend of ELBARA-II is basically consistent with in situ soil moisture, but there is an
error in the results. Due to the limited time resolution, the radiometer cannot retrieve soil
moisture continuously. Therefore, the LSTM model, which is suitable for continuous time
series, is used to retrieve soil moisture.

The model is modified by introducing the auxiliary data TR. When Rrl is used as input
data with TR, the RMSE is reduced to 0.018 m3/m3, and the model accuracy improves by
7%. As shown in Figure 20, the prediction error is small under high roughness condition,
indicating that TR plays a positive role in correcting the model.
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Figure 20. Prediction error of the LSTM model under high-roughness conditions.

Large-scale precipitation will cause water to accumulate on the surface, which will
affect the reception of reflected signals and produce noise. In addition, soil moisture
increases sharply, thus affecting model accuracy. There were two precipitation events,
4 April and 8 May 2016, which led to a rapid increase in soil moisture and an abnormal
increase in the retrieval accuracy error in these two periods. However, there is a strong
negative correlation between TB and soil moisture [26], so auxiliary TB data is introduced to
modify the model. When Rrl is used as input with TB, the RMSE is reduced to 0.013 m3/m3,
an accuracy improvement of 32%. The correction’s effect is sufficient. Finally, by taking Rrl,
TR, and TB together as inputs, the RMSE is further reduced to 0.013 m3/m3, an accuracy
improvement of 34% over reflectivity alone as input, indicating that TB plays a positive
role in correcting the model.

Since surface roughness, vegetation scattering and other factors affect the accuracy of
model retrieval, accuracy can be improved by distinguishing the performance of models
with different roughness. When Rrl and TB are used as input data with low roughness, the
regression coefficient improves to 0.9, and the RMSE reduces to 0.009, reaching the optimal
state. Under these conditions, the model is less affected by roughness, and hardly any



Remote Sens. 2023, 15, 2693 18 of 20

roughness correction is required. The time resolution of the TR data output by ELBARA-II
is low, so it is necessary to adjust the time scale to the nearest time principle. Therefore, the
accuracy reduces when TR is added to the input data. In the case of high roughness, when
Rrl, TB, and TR are used as input data at the same time, the correlation coefficient increases
from 0.53 to 0.83, the RMSE decreases from 0.009 to 0.007, and the accuracy increases by
27%. It is therefore established that, under high roughness conditions, TR has a good
corrective effect on the model.

In the single-satellite soil moisture retrieval experiment, it can be seen that, after
adding two types of auxiliary data correction, all satellites become effective satellites, and
the correction effect is good. However, only three satellites have a correlation coefficient
higher than 0.9. The reason may be that the data from each satellite is getting smaller and
smaller, resulting in insufficient data for model training. In future experiments, more data
should be considered for single-satellite soil moisture retrieval experiments.

5. Conclusions

In this study, the GNSS-R dual antenna was used for the first time to estimate soil
moisture based on the LSTM neural network model. The applicability of the LSTM model
for GNSS-R soil moisture retrieval was verified, and the retrieved soil moisture agreed
well with the field data. Compared with the in situ probe, the STD of the multi-satellite
model was 0.013, which became 0.012 and 0.007 after distinguishing between high and low
degrees of roughness, respectively. Moreover, with respect to the single-satellite model, the
retrieval results of PRN13, PRN20, and PRN32 were better (R > 0.9), the STD was 0.011,
0.012, and 0.007, respectively, and the temporal resolution was higher than the average
of the hourly data obtained by the multi-satellite model. All of the results show that the
LSTM model fused with radiometer can reasonably estimate soil moistur compared with
the traditional model, it has good noise immunity.

Soil moisture accuracy can be affected by the crosstalk between direct and reflected
signals, surface roughness, and vegetation [36]. Assuming that the hourly change of soil
moisture is not evident, hourly averaging of reflectivity data will weaken the influences of
some environmental factors. However, at the same time, it will also reduce the temporal
resolution of the output results. Furthermore, the sampling interval of the radiometer
data used here was 6 h, which was quite different from the sampling interval of the GNSS
reflectivity data. The matching of the data had to be done according to the nearest-time
principle, which limited the correction effect to some extent. In future, we will explore
the possibility of using auxiliary data with a higher matching frequency to modify the
model, as well as exploring the impact of vegetation and roughness on the model, in order
to further improve its accuracy.
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