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Abstract: High-resolution albedo has the advantage of a higher spatial scale from tens to hundreds
of meters, which can fill the gaps of albedo applications from the global scale to the regional scale
and can solve problems related to land use change and ecosystems. The Sentinel-2 satellite provides
high-resolution observations in the visible-to-NIR bands, giving possibilities to generate a high-
resolution surface albedo at 10 m. This study attempted to evaluate the performance of the four
data-driven machine learning algorithms (i.e., random forest (RF), artificial neural network (ANN),
k-nearest neighbor (KNN), and XGBoost (XGBT)) for the generation of a Sentinel-2 albedo over flat
and rugged terrain. First, we used the RossThick-LiSparseR model and the 3D discrete anisotropic
radiative transfer (DART) model to build the narrowband surface reflectance and broadband surface
albedo, which acted as the training and testing datasets over flat and rugged terrain. Second, we
used the training and testing datasets to drive the four machine learning models, and evaluated the
performance of these machine learning models for the generation of Sentinel-2 albedo. Finally, we
used the four machine learning models to generate a Sentinel-2 albedo and compared them with
in situ albedos to show the models’ application potentials. The results show that these machine
learning models have great performance in estimating Sentinel-2 albedos at a 10 m spatial scale. The
comparison with in situ albedos shows that the random forest model outperformed the others in
estimating a high-resolution surface albedo based on Sentinel-2 datasets over the flat and rugged
terrain, with an RMSE smaller than 0.0308 and R2 larger than 0.9472.

Keywords: Sentinel-2; albedo; data-driven machine learning algorithms; remote sensing

1. Introduction

Land surface albedo refers to the fraction of incident solar radiation within the
0.3–5.0 µm wavelength that is reflected by the earth’s land surface [1]. It plays an impor-
tance role in controlling the surface energy budget [2–5]. Long-term satellite-derived albedo
products from a spatial scale of hundreds of meters to kilometers with regional/global
coverage, e.g., the 500 m Moderate-Resolution MCD43A3 products [6], 0.5◦ Multi-angle
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Imaging SpectroRadiometer (MISR) albedo products [7], and 1000 m Global Land Sur-
face Satellite (GLASS) albedo products [8], have been produced in recent decades. These
products have been used to provide regional/global albedo observation for the under-
standing of climate, surface radiation, and ecology, with an accuracy of 0.02–0.05 [6–10].
However, for applications of albedo, such as forest management [11], farmland agricultural
exploitation [12], and urban planning [13], such coarse-scale albedo products are not very
suitable [11,14]. High-resolution albedo can capture more detailed information about the
surface of the earth, such as the distribution of vegetation, water, snow, and ice, which can
improve the accuracy of climate modeling applications [15,16]. A high-resolution surface
albedo dataset is a necessity to fill in the gaps of albedo applications at the regional scale.

High-resolution (which usually refers to a space resolution of tens to hundreds of
meters) satellite imageries, such as those provided by Landsat-8 at near-nadir angles [17]
and Sentinel-2 with a viewing angle smaller than 20◦ [18], offer an excellent opportunity to
estimate land surface albedo at about a 10–30 m spatial scale [11]. However, because the
observation angles of fine-scale satellites are relatively small, effective observations are in
short supply in a short-term period. The dilemma of insufficient multiangular observations
make it challenging to retrieve surface albedo by using the kernel-driven model, which
requires multiangular observations to capture surface anisotropy [19,20].

Various techniques have been proposed to estimate high-spatial-resolution-satellite-
based albedo. Narrowband-to-broadband (NTB) conversion is a useful method to transfer
narrowband surface reflectance spectra to broadband albedo, which avoids the considera-
tion of atmospheric conditions [21,22]. Furthermore, it retrieves surface albedo via single
angular reflectance by assuming that the surface is Lambert. Consequently, large uncer-
tainties will appear in non-Lambert surfaces [22]. The “MODIS Concurrent” algorithm
combines the near-nadir surface reflectance (SR) of the 30 m land satellite with the 500 m
MODIS product to estimate 30 m surface albedo [23,24]. The method has been proved
to be acceptable, and the root mean square error over different land cover types is less
than 0.05 [17,23,24]. He et al. [11] used the MODIS BRDF products and the atmospheric
radiative transfer process to build a lookup table (LUT) between TOA reflectance and
broadband albedos, which was then applied to Landsat images to generate Landsat series
albedos. This method reduced the uncertainty caused by complex atmospheric corrections
and has great applicability to the retrieval of global satellite-based albedos. Lin et al. [24]
also used the MODIS BRDF datasets and Sentinel-2 reflectance to generate land surface
albedo at 10 m. One improvement in this method is that it can retrieve land surface albedo
at 10 m by using the Google Earth Engine (GEE), which means the user can provide surface
albedo over a global scale. Zhang et al. [20] improved the LUT-based direct estimation
approach by coupling in situ albedo measurements with MODIS BRDF datasets to reduce
the errors caused by the linear kernel-driven model in the case of solar zenith angles larger
than 70◦. These retrieval algorithms have already shown good performance in generat-
ing high-scale satellite-based albedos [17,23,25]. Both these algorithms did not consider
serious topographic effects over rugged terrain, which made the current high-resolution
albedo data have larger uncertainties over rugged terrain [26]. Lin et al. [27,28] coupled the
mountain–radiation–transfer (MRT) model with the direct retrieval algorithm to build an
improved direct retrieval algorithm over rugged terrain. It was shown that the improved
direct retrieval algorithm has better performance in reducing the serious topographic effects
on land surface albedo retrieval [28]. These methods are very effective, but they do not take
into account the impact of terrain on the surface albedo, which may introduce more uncer-
tainties in mountainous areas. In recent years, data-driven machine learning algorithms
have had better performance in dealing with the probable nonlinear regression progress for
remote sensing data retrieval and have been widely applied in the remote sensing field [29].
Whether machine learning models have better performance in generating land surface
albedo over a larger spatial scale or some specific terrain, especially over rugged terrain,
has not been evaluated before.
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To meet this purpose, we attempted to assess four widely applied machine learning
models (RF, ANN, KNN, and XGBT) regarding their ability to generate 10 m albedo based
on Sentinel-2 observations over both flat and rugged terrain. The 500 m MODIS MCD43A1
products, the RossThick-LiSparseR model, and the DART model were used to simulate
narrowband surface reflectance and broadband albedos, which were then used as the
training and testing datasets on flat terrain and rugged terrain, respectively. Then, we used
the training datasets to build the machine learning model and test it with the testing datasets.
The performances of these four algorithms were cross-compared in terms of the algorithms
running rapid, sensible parameters and absolute accuracies. Furthermore, we compared
the retrieved albedo with the ground-measured albedo values at representative sites. This
work will provide guidelines in the retrieval of high-resolution albedo over flat terrain and
rugged terrain based on Sentinel-2 observations by using machine learning models.

2. Materials and Methods
2.1. Data
2.1.1. In Situ Observations

In situ surface albedo can be collected from the sites from radiation flux networks
distributed worldwide, such as Fluxnet (which contains AmeriFlux, EuroFlux, AsiaFlux,
and so on). In this study, in situ albedo measurements were mainly obtained from Amer-
iFlux and EuroFlux. AmeriFlux and EuroFlux are the core regionally distributed parts
of Fluxnet [30]. AmeriFlux (http://ameriflux.lbl.gov/ (accessed on 20 April 2021)) was
established in 1996 [31]. EuroFlux has been funded by the European Union since 1996
(http://www.europe-fluxdata.eu/ (accessed on 22 April 2021)).

In this study, 116 sites were from flat terrain, 20 sites were from rugged terrain, and
14 sites were from snow-covered areas (Table A1) (Figure 1). In situ albedos were calculated
from the ratio of upward shortwave radiation to downward shortwave radiation at the
local solar noon (e.g., from 11:00 to 13:00). In this paper, we used the measured values at
the site to verify the satellite-retrieved albedo.
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2.1.2. Sentinel-2 Data

The Sentinel-2 multispectral instrument (MSI) sensor provides multispectral data at a
high resolution over the earth’s surface, with two satellites and a revisit time of 5 days [18].
Compared to previous satellites such as the Landsat series, Sentinel-2 has the advantage of
a higher spatial resolution and a shorter revisit cycle [32]. The max viewing zenith angle
(VZA) of Sentinel-2 is smaller than 20◦ [32].

http://ameriflux.lbl.gov/
http://www.europe-fluxdata.eu/
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In this study, we only used four 10 m visible and NIR bands (Table 1) in 2019. The
surface reflectance and the observation geometry (including the solar zenith angle (SZA),
solar azimuth angle (SAA), satellite viewing zenith angle (VZA), and satellite viewing
azimuth angle (VAA)) of the Sentinel-2 satellite were calculated by using the SNAP software
in the Python language. The 10 m land cover type datasets were downloaded from the ESA
World Cover datasets [33].

Table 1. Information on Sentinel-2 data.

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) Bandwidth (nm)

Blue (B2) 0.490 10 65
Green (B3) 0.560 10 35
Red (B4) 0.665 10 30
NIR (B8) 0.842 10 115

2.1.3. MCD43A1 BRDF/Albedo Product

The high-quality 500 m Collection V061 daily MODIS BRDF products (MCD43A1)
(https://urs.earthdata.nasa.gov/ (accessed on 4 May 2021)) were used to provide three
kernel coefficients to drive the linear kernel-driven BRDF model (the Rossthick-LiSparseR
model herein) for the simulation of narrowband surface reflection and broadband albe-
dos [34]. Only the high-quality MCD43A1 data, marked with the quality flag of 0 in the
MCD43A2 products, from the first seven bands were selected in this paper. To make
the MCD43A1 data have representativeness, 1200 samples of MODIS BRDF data were
selected from three land cover types including vegetation, soil, and snow (Figure 2), which
were classified by using the same MODIS land cover products and the NDVI products as
Lin et al. [27].
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2.1.4. MOD09GA Product

The MOD09GA Version 6 product provides the surface spectral reflectance of the
MODIS Terra satellite across the blue band to shortwave infrared bands using sinusoidal
projection. In this study, seven bands of surface reflectance from the MOD09GA prod-
ucts were extracted from snow-covered stations to build a relationship with the site sur-
face albedo.

2.2. Methods

The methodology in this paper was divided into three steps (Figure 3). First, the
training and testing datasets for the four machine learning algorithms were generated based

https://urs.earthdata.nasa.gov/
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on two methods, including: (1) using the MCD43A1 BRDF products and the Rossthick-
LiSparseR model to simulate narrowband surface and broadband albedo over the flat
terrain; (2) using in situ observations and satellite-based surface reflectance at the snow-
covered surface to refine the training datasets over the snow-covered surface; (3) using the
DART model to simulate sloping surface reflectance and broadband albedo over the rugged
terrain. Second, the training and testing datasets were used to drive the machine learning
models and then to generate Sentinel-2 albedo. Third, the derived surface albedo was
compared with in situ albedo observations to check the performance of these algorithms.
Here, when the slope was greater than 5◦, we used the rugged terrain models to retrieve
the surface albedo of the Sentinel-2 image. In other cases, we used the flat terrain models to
retrieve the surface albedo.
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2.2.1. Training and Testing Dataset Simulation over Flat Terrain

Over flat terrain, the training and testing datasets were the first assurances to drive
and validate the machine learning models. In this study, eight predictor variables were
selected to produce the surface albedo (including BSA and WSA) from three main groups
including narrowband spectral band reflectance at Sentinel-2 bands in 10 m, solar, and
view observation geometries (i.e., SZA, VZA, and RAA), and land cover type. To produce
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the BSA, the local solar zenith angle (LSZA) was added apart from the former eight
predictor variables.

The narrowband spectral surface reflectance and broadband albedos were simulated
by using the MCD43A1 BRDF data and the RossThick-LiSparseR model [34]. Firstly, we
used the MCD43A1 BRDF datasets, the MCD43A2 datasets, and the MCD12Q1 land cover
type data to select the high-quality MCD43A1 BRDF datasets with representativeness
generated by Qu et al. [35]. Then, we used the selected MCD43A1 data to simulate spectral
surface reflectance and narrowband surface albedo across seven MODIS spectral bands
using the RossThick-LiSparseR BRDF model [34,36–38]:

R(θs, θv, φ, λ) = fisoθs(λ) + fvol(λ)kvol(θs, θv, φ) + fgeo(λ)Kgeo(θs, θv, φ) (1)

αws(λ) = fiso(λ)kiso(λ) + fvol(λ)kvol(λ) + fgeo(λ)kgeo(λ) (2)

αbs(θs, λ) = fiso(λ)
(

g0iso + g1isoθs
2 + g2isoθs

3
)

+ fvol(λ)
(

g0vol + g1volθs
2 + g2volθs

3
)

+ fgeo(λ)
(

g0geo + g1geoθs
2 + g2geoθs

3
) (3)

The equation includes the following components: R(θs, θv, φ, λ) represents the surface
reflectance under specific illumination and viewing conditions, with θs representing the
solar zenith angle, θv representing the viewing zenith angle, φ representing the relative
azimuth angle, and λ representing the wavelength of light. The components kgeo and
kvol denote the geometric optical and volumetric scattering kernels, which are characterized
by functions of the illumination and viewing geometry. Additionally, fgeo and fvol represent
the weights assigned to these two kernel functions, while fiso denotes the isotropic weight.

The seven simulated narrowband spectral surface reflectance bands were converted
to four narrowband spectral surface reflectance bands of the Sentinel-2 by employing a
model that utilizes band conversion coefficients. The band conversion coefficients were
preferred to be built based on a linear regression approach from the MODIS satellite
reflectance to Sentinel-2 reflectance (called Sentinel-2-like reflectance) coupled with the
relative spectral response (RSR) function profiles of these two satellites and the high-
quality ground-based spectra data, which were collected from Lin et al. [27], the China
typical object spectral dataset [39], a quantitative remote sensing book [40], the Greenland
spectral dataset [35], and the USGS digital spectral library [41]. Additionally, the broadband
albedo was transferred from seven narrowband spectral albedos using the narrowband-to-
broadband model by Liang et al. [42].

The simulated Sentinel-2 surface reflectance was generated by using the RTLSR model
over a set of solar/view observation geometries (including SZA, VZA, and RAA). The
SZA ranged from 0◦ to 80◦ with an interval of 4◦, the VZA was in the range of 0◦–12◦ with
an interval of 6◦, and the RAA was in the range of 0◦–180◦ with an interval of 30◦. The
broadband albedo was simulated at the local solar zenith angle (LSZA), with the LSZA in
the range of 0◦–80◦ with an interval of 4◦. Considering that both the surface reflectance and
albedo were smaller than 1 and larger than 0, only the reasonable data were used to build
the training, testing, and validating datasets. At the same time, we used in situ albedo
recorded from 14 ground stations to refine the broadband albedo by directly using in situ
albedo records to correct the broadband albedos, which were simulated by using the BRDF
model in the training datasets. Generally, 80% of the surface reflectance simulations were
used as training datasets and 20% of the simulations were used as testing datasets (Table 2).
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Table 2. The datasets used for estimating the WSA and BSA on flat terrain.

Input Variables Target Variables Number of
Training Datasets

Number of
Testing Datasets

SZA, VZA, and RAA

WSA 1,360,355 270,648
Blue band reflectance
Green band reflectance
Red band reflectance
NIR band reflectance

SZA, VZA, RAA, and LSZA

BSA 37,820,355 5,562,648
Blue band reflectance
Green band reflectance
Red band reflectance
NIR band reflectance

2.2.2. Training and Testing Datasets Simulation over Rugged Terrain

The discrete anisotropic radiation transfer model (DART) is a three-dimensional radia-
tion transfer model based on an efficient Monte Carlo light transfer algorithm (i.e., bidi-
rectional path tracking), which simulates the radiation transfer of electromagnetic wave
radiation from visible light to thermal infrared bands in real three-dimensional struc-
tural scenes. With the DART model, we can build a complex mountain scene and obtain
high-quality surface reflectance and surface albedo. Over rugged terrain, several sets of
100 m × 100 m scenes with a resolution of 10 m were created first. The configurations of
canopy structures were produced in the scene, with the LAI varying from 1 to 7 at an inter-
val of 2; the solar zenith angle ranged from 0◦ to 60◦, divided by 10◦ intervals; the viewing
zenith angle varied from 0◦ to 30◦, divided by 10◦ intervals; and the relative azimuth
varied from 0◦ to 180◦, divided by 45◦ intervals. The topographic parameters of the scenes
were also considered, with the slope varying from 0◦ to 60◦ at intervals of 10◦, and the
aspect varied from 0◦ to 180◦ at intervals of 45◦. Finally, we obtained a total of 4900 forest
scenes (Figure 4). Over these scenarios, the narrowband surface reflectance broadband
albedos were simulated by using the DART model. The slope, aspect, SZA, VZA, RAA, and
four-band reflectance (Blue, Green, Red, and NIR) were input variables, and the BSA and
WSA were target variables to train and test them with machine learning models. Detailed
information of the training datasets and testing datasets is shown in Table 3.
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Table 3. The datasets used for estimating the WSA and BSA on rugged terrain.

Input Variables Target Variables Number of
Training Datasets

Number of
Testing Datasets

Slope, aspect, SZA, VZA, and RAA

WSA 1,048,576 248,103
Blue band reflectance
Green band reflectance
Red band reflectance
NIR band reflectance

Slope, aspect, SZA, VZA, and RAA

BSA 1,048,576 248,103
Blue band reflectance
Green band reflectance
Red band reflectance
NIR band reflectance

2.2.3. Machine Learning Models

Machine learning models have been widely used in the remote sensing field. Machine
learning models, such as random forest (RF) and artificial neural networks (ANN), can
analyze and process large amounts of training datasets to obtain more accurate prediction
results. This study utilized four machine learning models to generate land surface albedo
products, including the RF, ANN, k-nearest neighbor (KNN), and XGBoost (XGBT) models.
The RF model is a nonlinear model. Its principle is to build forests by creating decision
trees, which can be applied to classification and regression problems [29,43,44]. It uses
input data to build a large number of trees for prediction [45]. RF model has two key
parameters: one is the number of decision trees (Ntree), and the other is the number of
selected variables [46]. The RF model builds multiple decision trees and combines their
outputs to make a final prediction. Additionally, it is robust to overfitting and can handle
missing data without the need for data preprocessing. RF can also handle a large number
of features and can be used for feature selection. Artificial neural networks (ANNs) can
establish the nonlinear complex relationship between explanatory variables and dependent
variables, and efficiently solve complex problems [47]. ANN models are nonparametric;
input information is obtained from the input layer, then transferred to the middle layer, and
then transferred to the output layer through the weighting process of each middle layer
and activated by the excitation function, and finally output from the output layer They are
more acceptable than statistical remote sensing methods [48]. ANN models can handle
nonlinear relationships between inputs and outputs, and can be used for both classification
and regression. They can learn from large amounts of data and can generalize well to
new data. Additionally, they are robust to noisy or incomplete data and can be used for
image and speech recognition. K-nearest neighbor (KNN) is one of the simplest machine
learning algorithms, which does not learn from the training dataset immediately; instead,
it stores the dataset and at the time of application, it performs an action on the dataset. It
provides a robust approach to produce spatially contiguous predictions of attributes and is
widely applied in remote sensing science [49]. KNN does not make any assumptions about
the underlying distribution of the data and can adapt to any type of data, which make
it easy to implement and interpret. The XGBT algorithm is an enhanced and optimized
version of GBDT, which is developed from the GBDT algorithm. XGBT can be seen as
an additive model. It can effectively solve the problems of regression and classification
by predicting the results through accumulation [50]. XGBT can handle a large number of
features and provides feature importance scores, which can be used for feature selection.
Additionally, it is fast and can handle large datasets. We used the training datasets to
drive the machine learning models. To determine the optimal metaparameters for all
four machine learning models, we employed 10-fold cross-validation. We used Python to
complete all the construction and verification of the machine learning models.
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2.2.4. Sentinel-2 Albedo Retrieval by Using Machine Learning Models

The first step was to download cloud-free Sentinel-2 surface reflectance data using the
Google Earth Engine (GEE). Next, we utilized the cloud probability product of Sentinel-2 to
eliminate pixels that were affected by cloud cover or shadows. Additionally, we manually
rechecked the surface reflectance to make sure that there were not any cloud-covered pixels
over the Sentinel-2 surface reflectance. Meanwhile, we also obtained the solar–viewing
geometry, including the SZA, VZA, RAA, and LSZA, from the auxiliary files. We used
the surface reflectance, the solar–viewing geometry, and the land cover types as inputs for
driving the machine learning models to predict the BSA and WSA.

2.2.5. Machine Learning Models’ Performance Evaluation

Three commonly used metrics, including bias, root mean square error (RMSE), and
coefficient of determination (R2), were used for accuracy assessments. We assessed the
accuracy of the machine learning models in two levels: algorithm-level evaluation and
site-level evaluation.

Bias = Albedop − Albedot (4)

R2 =
∑n

i=1

(
Albedop(i)−

−
Albedop(i)

)(
Albedot(i)−

−
Albedot(i)

)
∑n

i=1

(
Albedop(i)−

−
Albedop(i)

)2

∑n
i=1

(
Albedot(i)−

−
Albedot(i)

) (5)

RMSE =

√
∑n

i=1
(

Albedop(i)− Albedot(i)
)2

n
(6)

The equation includes the following components: Albedop is the albedo value pre-
dicted by the model, Albedot is the albedo value used for verification, and n is the number
of albedo values.

We used the training dataset and testing dataset to validate the machine learning
models and evaluate their accuracy. The broadband albedos of the training and testing
datasets were used here as the reference dataset to assess the accuracy of the machine
learning models. We first applied the four models to the land surface reflectance, the SZA,
the VZA, and the RAA in the training and testing datasets to generate the broadband
BSA and WSA (called the predicted BSA and WSA), respectively. We then further directly
compared the model-derived albedo with the simulated broadband albedo in the training
datasets and testing datasets. In particular, the overall accuracies of the machine learning
models were assessed by using the testing datasets.

We also used the in situ observations to show the performance of the models to
generate Sentinel-2 albedos. We used the measured albedo of the site to validate the
machine learning model’s inversion of the Sentinel-2 albedo. Considering the effects of
diffuse radiation, we transferred the Sentinel-2 BSA and WSA to blue-sky albedo (hereafter
called albedo) by coupling with the sky diffuse ratio [26].

3. Results
3.1. The Performance of the Machine Learning Model

Figure 5a–d show the training accuracy of estimating the BSA by using the machine
learning models (ANN, KNN, RF, and XGBT). Overall, the predicted BSA generated by
the machine learning models had better agreement with the BSA in the training datasets
(called the training BSA hereafter). The RF model showed better performance than the
other machine learning models during the training of the BSA, with a bias of 0.001, RMSE
of 0.0071, and R2 of 0.9993. The predicted BSA generated by the XGBT model showed a
slightly larger uncertainty than that generated by the RF model and a smaller uncertainty
than that generated by the ANN model and KNN model, with a bias of −0.0001, RMSE of
0.0075, and R2 of 0.9992. The predicted BSA generated by using the KNN model also had
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good agreement with the training BSA, with a bias of 0.0, RMSE of 0.0129, and R2 of 0.9976.
The predicted BSA generated by using ANN model had the largest uncertainty compared
to that generated by using the other three machine learning models, with a bias larger than
0.0085, RMSE larger than 0.0207, and R2 larger than 0.9942.
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Figure 5e–h show the accuracy of estimating the WSA generated by using the machine
learning models (ANN, KNN, RF, and XGBT) for the training datasets. Generally, all of the
four machine learning models showed better performances in retrieving the WSA than in
the retrieval of the BSA, which is illustrated by the smaller RMSE of the predicted WSA
than the BSA. Similarly, the predicted WSA generated by using the ANN model showed
larger uncertainty than that generated by the other three machine learning models, with a
bias of 0.0022, RMSE of 0.009, and R2 of 0.9978. The predicted BSA generated by the KNN
model also showed slightly larger uncertainty than that generated by using the RF model
and XGBT model, with a bias of 0.0, RMSE of 0.0055, and R2 of 0.9991. The RF model and
the XGBT model had similar performance, with a Bias of −0.0002 and 0.0, RMSE of 0.0023
and 0.0031, and R2 of 0.9998 and 0.9997, respectively.

Figure 6a–d show the accuracy of the predicted BSA when using the machine learning
models (ANN, KNN, RF, and XGBT) and the testing datasets. The results show that the
predicted BSAs generated by the four machine learning models matched well with the
BSA in the testing datasets, with low biases and uncertainty and high R2 values. Generally,
the bias varied from −0.0024 to 0.001, the RMSE ranged from 0.0098 to 0.0126, and the
R2 values were all equal to 0.99. The RF model performed better than the ANN, KNN,
and XGBT models, with an RMSE smaller than 0.0098. The KNN model showed slightly
less confidence than the RF model, with an RMSE of 0.0106 but a larger bias than that of
the RF model, at −0.0014. Larger uncertainty between the predicted BSA and testing BSA
occurred in the application of the ANN model, with an RMSE larger than 0.001 (Figure 6).
The predicted WSA also matched well with the WSA in the testing datasets, with the bias
varying from 0.0001 to 0.0007, the RMSE varying from 0.0055 to 0.0112, and the R2 being
larger than 0.9985, respectively (Figure 6e–h).



Remote Sens. 2023, 15, 2684 11 of 23

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

RF model, at −0.0014. Larger uncertainty between the predicted BSA and testing BSA oc-
curred in the application of the ANN model, with an RMSE larger than 0.001 (Figure 6). 
The predicted WSA also matched well with the WSA in the testing datasets, with the bias 
varying from 0.0001 to 0.0007, the RMSE varying from 0.0055 to 0.0112, and the R2 being 
larger than 0.9985, respectively (Figure 6e–h). 

 
Figure 6. Evaluation of BSA estimates for testing datasets over flat terrain in (a–d); (a–d) denotes the 
result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over flat 
terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT. 

Figure 7a–d show the training accuracy of estimating the BSA when using machine 
learning models (ANN, KNN, RF, and XGBT) over rugged terrain. Similarly to that over 
flat terrain, the RF model showed better performance than the other machine learning 
models during the training of the BSA, with a bias of 0.0064, RMSE of 0.0064, and R2 of 
0.9923. The predicted BSA generated by the XGBT model showed a slightly larger uncer-
tainty than that generated by the RF model, with a bias of 0.0001, RMSE of 0.0076, and R2 
of 0.9885. The predicted BSA generated by using the KNN and ANN models showed a 
larger uncertainty than the other two models, with a bias of 0.0001, RMSE of 0.0008, and 
R2 of 0.9868 for the KNN model, and a bias larger than 0.0022, an RMSE larger than 0.0097, 
and an R2 larger than 0.9816 for the ANN model. 

Figure 6. Evaluation of BSA estimates for testing datasets over flat terrain in (a–d); (a–d) denotes
the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over flat
terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT.

Figure 7a–d show the training accuracy of estimating the BSA when using machine
learning models (ANN, KNN, RF, and XGBT) over rugged terrain. Similarly to that over flat
terrain, the RF model showed better performance than the other machine learning models
during the training of the BSA, with a bias of 0.0064, RMSE of 0.0064, and R2 of 0.9923. The
predicted BSA generated by the XGBT model showed a slightly larger uncertainty than that
generated by the RF model, with a bias of 0.0001, RMSE of 0.0076, and R2 of 0.9885. The
predicted BSA generated by using the KNN and ANN models showed a larger uncertainty
than the other two models, with a bias of 0.0001, RMSE of 0.0008, and R2 of 0.9868 for the
KNN model, and a bias larger than 0.0022, an RMSE larger than 0.0097, and an R2 larger
than 0.9816 for the ANN model.
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Figure 8e–h show the training accuracy of the machine learning models (ANN, KNN,
RF, and XGBT) for the generation of the Sentinel-2 WSA over rugged terrain. The predicted
WSA generated by using the ANN model also showed larger uncertainty than that gener-
ated by the other three machine learning models, with a bias of −0.0012, RMSE of 0.0094,
and R2 of 0.9827. The predicted BSA generated by the KNN model showed a slightly
larger uncertainty than that generated by using the RF model and XGBT model, with a
bias of 0.0001, RMSE of 0.0078, and R2 of 9883. The RF model and the XGBT model had
similar performance, with a bias of 0.0001, RMSE values of 0.0063 and 0.0074, and R2 values
of 0.9929 and 0.9898, respectively.
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Figure 8a–d show the accuracy of the predicted BSA when using the machine learning
models (ANN, KNN, RF, and XGBT) for the testing datasets over rugged terrain. The results
show that the predicted BSAs generated by the four machine learning models matched
well with the BSA in the testing datasets, with low biases and uncertainty and high R2

values. Generally, the bias varied from 0.0001 to 0.0023, the RMSE ranged from 0.0069 to
0.0096, and the R2 values were both equal to 0.978. The RF model performed better than the
ANN, KNN, and XGBT models, with an RMSE smaller than 0.0069. The largest uncertainty
between the predicted BSA and testing BSA occurred in the application of the ANN model,
with an RMSE larger than 0.0096. The predicted WSA also matched well with the WSA in
the testing datasets over rugged terrain, with the bias varying from −0.0011 to 0.0002, the
RMSE varying from 0.0069 to 0.0092, and the R2 being larger than 0.9772 (Figure 8e–h).

3.2. Site-Level Comparison of the Sentinel-2 Albedos over Flat Terrain

The Sentinel-2 BSA and WSA were coupled to calculate the Sentinel-2 blue-sky albedo.
The performances of these machine learning models were assessed by comparing the
Sentinel-2 blue-sky albedo with in situ albedo measurements in the spatial response range
of tower-based albedo observation. The results show that the Sentinel-2-based albedo
generated by using the four machine learning models matched well with the in situ
observations, with low biases, low uncertainty, and high R2 values (Figure 9). Generally,
the ANN model had a worse performance than the other three models, with a bias of 0.0113,
RMSE of 0.0335, and R2 of 0.9467. The Sentinel-2 albedo generated by using the KNN
model had a bias of 0.0007, RMSE of 0.0314, and R2 value of 0.9459. The RF-model-derived
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Sentinel-2 albedo had great agreement with the in situ albedo, with a bias of 0.0027, RMSE
of 0.0308, and R2 value of 0.9472. The XGBT-model-generated albedo had a bias of 0.0035,
RMSE of 0.0313, and R2 value of 0.9462 when compared with the in situ albedo (Figure 9).
Similarly to the results of the training and testing datasets, the RF model showed the best
performance compared to the other three machine learning models to retrieve Sentinel-2
albedo, which is demonstrated by the smallest RMSE shown in Figure 9. Additionally, the
ANN showed the worst performance compared to the other three models.
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For snow-covered surfaces (Figure 10), the accuracies of the models (ANN, KNN, RF,
and XGBT) were lower than those for snow-free surfaces. The RF-model-derived albedo
had a higher accuracy than that of the other three models, with a bias of 0.0031, RMSE
of 0.0517, and R2 values of 0.8538; the accuracy of the XGBT-model-derived Sentinel-2
albedo was slightly lower than that generated by using the RF model, with a bias of 0.0014,
RMSE of 0.0534, and high R2 values (0.8528); the accuracy of the KNN model was slightly
lower than the RF and XGBT models, with a bias of 0.0086, RMSE of 0.0545, and R2 values
of 0.8407; and the accuracy of the ANN-model-derived Sentinel-2 albedo was slightly
lower than that of the other models, with a bias of 0.0276, an RMSE of 0.055, and a high R2

of 0.8655.

3.3. Site-Level Comparison of the Sentinel-2 Albedos over Rugged Terrain

The results show that the Sentinel-2-based albedo generated by using the four machine
learning models matched well with the in situ observations over rugged terrain (Figure 11).
Generally, the KNN model had worse performance than the other three models, with a
bias of −0.0071, RMSE of 0.0272, and R2 of 0.5871. The Sentinel-2 albedo generated by
using the ANN model had a bias of −0.0009, RMSE of 0.0256, and R2 value of 0.6135. The
RF-model-derived Sentinel-2 albedo had great agreement with the in situ albedo, with a
bias of −0.002, RMSE of 0.0254, and R2 value of 0.6121. The XGBT-model-generated albedo
had a bias of −0.0037, RMSE of 0.0262, and R2 value of 0.5898 when compared with the in
situ albedo (Figure 11).
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We also assessed the performance of the Sentinel-2 albedo over surfaces with different
topographic slopes (Table 4). In general, the machine learning methods were very effective
in retrieving the surface albedo over rugged terrain. With the increase in slope angle, the
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uncertainty of the Sentinel-2 albedo increased. On the surface with the slope increasing
from 0◦ to 5◦, the RF-model-derived Sentinel-2 albedo showed great agreement with the
in situ albedo, with a bias of −0.0023, RMSE of 0.0229, and R2 of 0.6367. The ANN-,
KNN-, and XGBT-model-derived Sentinel-2 albedo showed similar accuracy, with biases of
0.0003, −0.0062, and −0.0041; RMSE values of 0.0239, 0.0251, and 0.0247; and R2 values
of 0.6204, 0.5938, and 0.5832 for the ANN, KNN, and XGBT models, respectively. When
the slope varied from 5◦ to 10◦, the ANN-model-derived Sentinel-2 albedo also showed
increased uncertainty, with a bias of −0.0049, RMSE of 0.0243, and R2 of 0.7223. The RF- and
XGBT-model-derived Sentinel-2 albedo showed similar accuracy, with biases of −0.0053
and −0.0061, RMSE values of 0.0252 and 0.0257, and R2 values of 0.7035 and 0.6950,
respectively. The KNN model showed worse performance than the other three models,
with a bias of −0.0114, RMSE of 0.0277, and R2 of 0.6896. When the slope increased to
larger than 10◦, the accuracy of the XGBT-model-derived albedo was slightly lower than
that of the other models, with a bias of 0.0051, RMSE of 0.0297, and R2 values of 0.4044.
The ANN-, KNN-, and RF-model-derived Sentinel-2 showed similar accuracy, with biases
of 0.0053, 0.0015, and 0.0093; RMSE values of 0.0309, 0.0302, and 0.0306; and R2 values
of 0.3897, 0.4073, and 0.4088, respectively.

Table 4. Evaluation of the accuracy and the error statistics of comparison between Sentinel-2-
estimated albedo and in situ observations on three slope surfaces.

Slope Model Bias RMSE R2

0◦–5◦

ANN 0.0003 0.0239 0.6204
KNN −0.0062 0.0251 0.5938

RF −0.0023 0.0229 0.6367
XGBT −0.0041 0.0247 0.5832

5◦–10◦

ANN −0.0049 0.0243 0.7223
KNN −0.0114 0.0277 0.6896

RF −0.0053 0.0252 0.7035
XGBT −0.0061 0.0257 0.695

>10◦

ANN 0.0053 0.0309 0.3897
KNN 0.0015 0.0302 0.4073

RF 0.0093 0.0306 0.4088
XGBT 0.0051 0.0297 0.4044

4. Discussion

An accurate estimation of land surface albedo at 10 m is essential for its application
over a regional scale, especially for a deep understanding of the variation in land surface
albedo in the climate change process at a fine spatial scale. Machine learning models
provide a robust way to map surface albedo at a finer spatial scale of 10 m, which does not
entail a complex process (such as the suitability of the BRDF model in such a fine spatial
scale of 10 m and atmospheric effects) in land surface albedo retrieval. Here, we made a
comparison to assess the performance of four popular machine learning models to generate
Sentinel-2 albedos. We compared the error source of the machine learning models and the
accuracy of the machine learning models.

4.1. The Performance of High-Resolution Surface Albedo over Snow/Ice-Covered Surfaces

In Figure 12, we compare the performance of the Sentinel-2 surface albedo and MODIS
surface albedo in detecting the snow/ice-covered surfaces of the Insukati glaciers over
the Qinghai–Tibet Plateau. We can clearly see that the retrieved Sentinel-2 albedo fits
well with the distribution of snow/ice, which is shown by the large albedo over the
heavy-snow-covered surface and the smaller albedo value over the snow-free surface
(Figure 12b). The Sentinel-2 albedo could also effectively describe the trajectory of the
valley glaciers, understand their actual range, and accurately reflect glacier changes with
high precision (Figure 12b). The MODIS albedo only roughly reflected the ground truth
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features of glaciers and valleys and was unable to accurately reflect small differences in
ground features (Figure 12c). Additionally, the Sentinel-2 albedo could also effectively
represent the true surface albedo on the shaded side of mountainous terrain. Taking into
account the impact of the terrain, the surface albedo was high on the sun-facing side and
low on the shaded side.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 12. Distribution of Sentinel-2 and MODIS black-sky albedo on the glacier, including (a) true-
color imagery; (b) Sentinel-2 black-sky albedo; (c) MODIS black-sky albedo. 

However, the accuracy of machine learning models on ice and snow surfaces still 
needs to be improved (Figure 10). The Theia snow collection and snow detection are more 
accurate than the Sen2Cor outputs (ESA level 2 product) [51]. Lidar can effectively detect 
snow under a canopy and has high accuracy on complex terrains [52]. The operational 
high-resolution snow and ice monitoring (HRSI) algorithm yielded similar performances 
to the computationally intensive spectral unmixing approach, while retrieving the sub-
canopy ground fractional snow cover [53,54]. These outperforming tools give the chance 
to detect snow-covered surfaces and help us to improve the accuracy of albedo retrieval 
algorithms over snow-covered surfaces in the future. 

4.2. Sensitivity Analysis of the Machine Learning Models 
The quality and the quantity of the training datasets had the largest influence on the 

performance of the machine learning models. The quality of the training datasets was 
proved by the high suitability to regress the relationship between the narrowband surface 
reflectance and the broadband albedo, which was analyzed by Lin et al. [27]. To assess the 
sensitivities of the samples to drive the machine learning model, we assessed the sensitiv-
ity of the magnitude of the samples by adding the sample datasets during the training of 
the machine learning models with the gradient of 500 samples. We randomly selected 200 
samples to test the performance of different machine learning models. Figure 13 shows 
the RMSEs between the predicted albedo, which were retrieved by using the machine 
learning models, and the testing albedo. We can see that with the increase in the quantity 
of samples, the RMSE decreased. Generally, the ANN is most sensitive to the quantity of 
samples for the generation of the BSA and WSA, followed by KNN, RF, and XGBT. In the 
generation of the WSA, the KNN is most sensitive to the quantity of samples, especially 
when the quantity of samples is smaller than 1500. When the number of samples reaches 
about 3000, the influence of the samples tends to be stable. 

Figure 12. Distribution of Sentinel-2 and MODIS black-sky albedo on the glacier, including (a) true-
color imagery; (b) Sentinel-2 black-sky albedo; (c) MODIS black-sky albedo.

However, the accuracy of machine learning models on ice and snow surfaces still
needs to be improved (Figure 10). The Theia snow collection and snow detection are more
accurate than the Sen2Cor outputs (ESA level 2 product) [51]. Lidar can effectively detect
snow under a canopy and has high accuracy on complex terrains [52]. The operational
high-resolution snow and ice monitoring (HRSI) algorithm yielded similar performances to
the computationally intensive spectral unmixing approach, while retrieving the subcanopy
ground fractional snow cover [53,54]. These outperforming tools give the chance to detect
snow-covered surfaces and help us to improve the accuracy of albedo retrieval algorithms
over snow-covered surfaces in the future.

4.2. Sensitivity Analysis of the Machine Learning Models

The quality and the quantity of the training datasets had the largest influence on the
performance of the machine learning models. The quality of the training datasets was
proved by the high suitability to regress the relationship between the narrowband surface
reflectance and the broadband albedo, which was analyzed by Lin et al. [27]. To assess the
sensitivities of the samples to drive the machine learning model, we assessed the sensitivity
of the magnitude of the samples by adding the sample datasets during the training of
the machine learning models with the gradient of 500 samples. We randomly selected
200 samples to test the performance of different machine learning models. Figure 13 shows
the RMSEs between the predicted albedo, which were retrieved by using the machine
learning models, and the testing albedo. We can see that with the increase in the quantity
of samples, the RMSE decreased. Generally, the ANN is most sensitive to the quantity of
samples for the generation of the BSA and WSA, followed by KNN, RF, and XGBT. In the
generation of the WSA, the KNN is most sensitive to the quantity of samples, especially
when the quantity of samples is smaller than 1500. When the number of samples reaches
about 3000, the influence of the samples tends to be stable.
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4.3. The Differences and Shortcomings of the Machine Learning Models

The machine learning models (ANN, KNN, RF, and XGBT) had better performance
to retrieve Sentinel-2 albedo at 10 m. RF was the best, followed by XGBT and KNN, and
ANN was the worst. The reasons for this are as follows:

In terms of algorithm principles: ANN simulates the process of mutual connection
between neurons to achieve learning and prediction. The KNN algorithm classifies data
based on its nearest neighbors. RF is composed of multiple decision trees. XGBT is
a gradient boosting tree algorithm. In terms of suitable scenarios: ANN is suitable for
complex classification and prediction problems with large amounts of data. KNN is suitable
for clear feature classification problems. RF is suitable for classification and regression
problems in large-scale datasets. XGBT is suitable for datasets with many features. In terms
of computing performance: ANN requires iterative training through a backpropagation
algorithm, which takes a long time. KNN has a short calculation time but requires large
storage space. RF can perform parallel computing to improve computational efficiency.
XGBT can efficiently handle large-scale datasets. Overall, the RF model outperformed the
four machine learning models because it can effectively train large datasets and has a good
antinoise ability to avoid overfitting issues. KNN has the problem of sample imbalance,
which may lead to poor results [55]. ANN may become trapped in a local minimum on
large datasets [56]. XGBT is suitable for processing structured feature data and unstructured
data, which is not a good processing ability for unstructured data [57]. However, machine
learning models are black box models. We can use them to generate Sentinel-2 albedo,
but we cannot explain the mechanism of these models. The SHAP (SHapley Additive
exPlanations) [58] method or other alternative methods paved the way to explaining the
essential output parameters of the model, which may have been used in this work to help
us understand the mechanism of machine learning models.

5. Conclusions

Data-driven machine learning algorithms demonstrate better performance in dealing
with probable nonlinear regression progress for remote sensing data retrieval and have been
widely applied in the remote sensing field [29]. In this work, we used four widely applied
machine learning models (ANN, KNN, RF, and XGBT) to generate high-scale Sentinel-2
albedo products at 10 m and first assessed the performance of the machine learning models
over flat and rugged terrain. In this study, the performance of the four machine learning
models to generate Sentinel-2 albedos was assessed by comparing the effectiveness of the
model and the accuracy of the model-derived Sentinel-2 albedo with training, testing, and
in situ datasets. The main conclusions are as follows:

(1) The RF model outperformed the ANN, KNN, and XGBT models in the simulation of
Sentinel-2 albedo, demonstrated by the RMSE (smaller than 0.015) between the model-
derived albedo and the simulated albedo in the training and testing datasets. Overall,
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the RF-model-derived Sentinel-2 albedo showed better consistency with the in situ
albedo than that retrieved by using the ANN, KNN, and XGBT models, with an RMSE
smaller than 0.0308. The XGBT and KNN models showed slightly worse performance
than the RF model, with an RMSE of 0.0313 between the model-derived Sentinel-2
albedo and the in situ albedo. The ANN model showed worse performance than the
RF, XGBT, and the KNN models, with an RMSE of 0.0335 between the model-derived
Sentinel-2 albedo and the in situ albedo.

(2) Over rugged terrain, all four machine learning models also showed good performance
in the retrieval of Sentinel-2 albedo, with an RMSE smaller than 0.0272 in flat terrain.
The RF model also showed better performance than the XGBT, ANN, and KNN
models with an RMSE of 0.0254. The XGBT, ANN, and KNN models showed worse
performance than the RF model, with an RMSE lower than 0.0272.

In general, we gave a robust way to retrieve high-resolution surface albedo based on
machine learning models both over flat and rugged terrain. These machine-learning-based
algorithms for albedo retrieval can easily be applied on the Google Earth Engine platform,
which provides the opportunity to generate land surface albedo on a global scale. We will
share the algorithm and the training models with the public in the future.
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Appendix A

Table A1. Information of in situ.

Site Name Lat/Lon (deg/deg) Land Type Time Period

BE-Lon 50.5516/4.7462 flat terrain 2019
BE-Vie 50.3049/5.9981 flat terrain 2019
BON 40.0519/−88.3731 flat terrain 2019
BOS 40.125/−105.237 flat terrain 2019
BUD 47.4291/19.1822 flat terrain 2019
CAB 51.9711/4.9267 flat terrain 2019

DE-Hai 51.0792/10.4522 flat terrain 2019
DE-Rur 50.6219/6.3041 flat terrain 2019
DE-Rus 50.8659/6.4471 flat terrain 2019
DK-Sor 55.4859/11.6446 flat terrain 2019
ES-Lm1 39.9427/−5.7787 flat terrain 2019
ES-Lm2 39.9346/−5.7759 flat terrain 2019
FR-Lgt 47.3229/2.2841 flat terrain 2019
IT-Sr2 43.732/10.2909 flat terrain 2019
IZA 28.3093/−16.4993 flat terrain 2019
PAY 46.815/6.944 flat terrain 2019
TAT 36.0581/140.126 flat terrain 2019
TBL 40.125/−105.237 flat terrain 2019
TOR 58.254/26.462 flat terrain 2019

US-A03 70.4953/−149.882 flat terrain 2019
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Table A1. Cont.

Site Name Lat/Lon (deg/deg) Land Type Time Period

US-A10 71.3242/−156.615 flat terrain 2019
US-ALQ 46.0308/−89.6067 flat terrain 2019
US-An2 68.95/−150.21 flat terrain 2019
US-An3 68.93/−150.27 flat terrain 2019

US-ARM 36.6058/−97.4888 flat terrain 2019
US-Bi1 38.0992/−121.499 flat terrain 2019
US-Bi2 38.1091/−121.535 flat terrain 2019

US-BRG 39.2167/−86.5406 flat terrain 2019
US-DFC 43.3448/−89.7117 flat terrain 2019
US-EDN 37.6156/−122.114 flat terrain 2019
US-Ha2 42.5393/−72.1779 flat terrain 2019
US-HB1 33.3455/−79.1957 flat terrain 2019
US-HB2 33.3242/−79.244 flat terrain 2019
US-HB3 33.3482/−79.2322 flat terrain 2019
US-HBK 43.9397/−71.7181 flat terrain 2019
US-Jo2 32.5849/−106.603 flat terrain 2019
US-KS3 28.7085/−80.7427 flat terrain 2019
US-Los 46.0827/−89.9792 flat terrain 2019
US-Me6 44.3233/−121.608 flat terrain 2019
US-MtB 32.4167/−110.726 flat terrain 2019
US-NC2 35.803/−76.6685 flat terrain 2019
US-NC3 35.799/−76.656 flat terrain 2019
US-NC4 35.7879/−75.9038 flat terrain 2019
US-NGB 71.28/−156.609 flat terrain 2019
US-NGC 64.8614/−163.7008 flat terrain 2019
US-NR1 40.0329/−105.5464 flat terrain 2019
US-ONA 27.3836/−81.9509 flat terrain 2019
US-PFb 45.972/−90.3232 flat terrain 2019
US-PFc 45.9677/−90.3088 flat terrain 2019
US-PFd 45.9689/−90.301 flat terrain 2019
US-PFe 45.9793/−90.3004 flat terrain 2019
US-PFg 45.9735/−90.2723 flat terrain 2019
US-PFh 45.9557/−90.2406 flat terrain 2019
US-PFi 45.9749/−90.2327 flat terrain 2019
US-PFk 45.9149/−90.3425 flat terrain 2019
US-PFm 45.9207/−90.3099 flat terrain 2019
US-PFq 45.9272/−90.2475 flat terrain 2019
US-PFr 45.9245/−90.2475 flat terrain 2019
US-PFt 45.9197/−90.2288 flat terrain 2019

US-PHM 42.7423/−70.8301 flat terrain 2019
US-Ro4 44.6781/−93.0723 flat terrain 2019
US-Ro5 44.691/−93.0576 flat terrain 2019
US-Ro6 44.6946/−93.0578 flat terrain 2019
US-Seg 34.3623/−106.7019 flat terrain 2019
US-Ses 34.3349/−106.7442 flat terrain 2019
US-Snf 38.0402/−121.727 flat terrain 2019

US-SRG 31.7894/−110.828 flat terrain 2019
US-SRM 31.8214/−110.866 flat terrain 2019
US-Syv 46.242/−89.3477 flat terrain 2019
US-Tw1 38.1074/−121.6469 flat terrain 2019
US-Tw4 38.1027/−121.641 flat terrain 2019
US-Tw5 38.1072/−121.643 flat terrain 2019
US-Uaf 64.8663/−147.855 flat terrain 2019

US-UMB 45.5598/−84.7138 flat terrain 2019
US-UMd 45.5625/−84.6975 flat terrain 2019
US-Vcm 35.8884/−106.5321 flat terrain 2019
US-Vcp 35.8624/−106.5974 flat terrain 2019
US-Vcs 35.9193/−106.6142 flat terrain 2019
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Table A1. Cont.

Site Name Lat/Lon (deg/deg) Land Type Time Period

US-WCr 45.8059/−90.0799 flat terrain 2019
US-Whs 31.7438/−110.052 flat terrain 2019
US-Wjs 34.4255/−105.862 flat terrain 2019
US-xAB 45.7624/−122.33 flat terrain 2019
US-xAE 35.4106/−99.0588 flat terrain 2019
US-xBA 71.2824/−156.619 flat terrain 2019
US-xBL 39.0603/−78.0716 flat terrain 2019
US-xBN 65.154/−147.503 flat terrain 2019
US-xBR 44.0639/−71.2873 flat terrain 2019
US-xCL 33.4012/−97.57 flat terrain 2019
US-xCP 40.8155/−104.746 flat terrain 2019
US-xDC 47.1617/−99.1066 flat terrain 2019
US-xDL 32.5417/−87.8039 flat terrain 2019
US-xDS 28.125/−81.4362 flat terrain 2019
US-xGR 35.689/−83.502 flat terrain 2019
US-xHA 42.5369/−72.1727 flat terrain 2019
US-xHE 63.8757/−149.213 flat terrain 2019
US-xJE 31.1948/−84.4686 flat terrain 2019

US-xKA 39.1104/−96.613 flat terrain 2019
US-xKZ 39.1008/−96.5631 flat terrain 2019
US-xMB 38.2483/−109.388 flat terrain 2019
US-xML 37.3783/−80.5248 flat terrain 2019
US-xNG 46.7697/−100.915 flat terrain 2019
US-xNQ 40.1776/−112.452 flat terrain 2019
US-xNW 40.0543/−105.582 flat terrain 2019
US-xRM 40.2759/−105.546 flat terrain 2019
US-xSB 29.6893/−81.9934 flat terrain 2019
US-xSE 38.8901/−76.56 flat terrain 2019
US-xSP 37.0334/−119.262 flat terrain 2019
US-xSR 31.9107/−110.836 flat terrain 2019
US-xST 45.5089/−89.5864 flat terrain 2019
US-xTA 32.9505/−87.3933 flat terrain 2019
US-xTE 37.0058/−119.006 flat terrain 2019
US-xTL 68.6611/−149.37 flat terrain 2019
US-xTR 45.4937/−89.5857 flat terrain 2019
US-xUK 39.0404/−95.1922 flat terrain 2019
US-xWR 45.8205/−121.952 flat terrain 2019
US-xYE 44.9535/−110.539 flat terrain 2019

Arou 38.0473/100.4643 rugged terrain 2019–2021
CH-Cha 47.2102/8.4104 rugged terrain 2019
CH-Dav 46.8153/9.8559 rugged terrain 2019
CZ-Wet 49.0247/14.7704 rugged terrain 2019
Daman 38.8555/100.3722 rugged terrain 2019–2021

Heiheyaogan 38.827/100.4756 rugged terrain 2019–2021
Huangmo 42.1135/100.9872 rugged terrain 2019–2021
Huazhaizi 38.7659/100.3201 rugged terrain 2019–2021

IT-Ren 46.5869/11.4337 rugged terrain 2019
IT-Tor 45.8444/7.5781 rugged terrain 2019

US-Me2 44.4523/−121.5574 rugged terrain 2019–2020
US-Mpj 34.4384/−106.2377 rugged terrain 2019
US-Ton 38.4309/−120.966 rugged terrain 2019–2020
US-Var 38.4133/−120.9506 rugged terrain 2019–2020

US-Vcm 35.8884/−106.5321 rugged terrain 2019
US-Wkg 31.7365/−109.9419 rugged terrain 2019–2020
Zhangye 38.9751/100.4464 rugged terrain 2019–2021
CA-NS6 55.92/−98.96 snow-covered 2001–2005
CA-SF3 54.09/−106.01 snow-covered 2003–2005

CDP 45.29/5.676 snow-covered 2000–2014
Fort_Peck 48.3079/−105.101 snow-covered 2000–2008
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Table A1. Cont.

Site Name Lat/Lon (deg/deg) Land Type Time Period

GVN −70.65/−8.25 snow-covered 2000–2009
Mead_Irrigated 41.1651/−96.4766 snow-covered 2001–2008

OAS 54.05/−106.333 snow-covered 2000–2010
OBS 54.65/−105.2 snow-covered 2000–2010
OJP 54.53/−105 snow-covered 2000–2010
SAP 43.06/141.329 snow-covered 2005–2015
SNB 37.907/−107.726 snow-covered 2005–2015
SPO −89.983/−24.799 snow-covered 2000–2009
SWA 37.907/−107.711 snow-covered 2005–2015
WFJ 46.827/9.807 snow-covered 2000–2016
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