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Abstract

:

High-resolution albedo has the advantage of a higher spatial scale from tens to hundreds of meters, which can fill the gaps of albedo applications from the global scale to the regional scale and can solve problems related to land use change and ecosystems. The Sentinel-2 satellite provides high-resolution observations in the visible-to-NIR bands, giving possibilities to generate a high-resolution surface albedo at 10 m. This study attempted to evaluate the performance of the four data-driven machine learning algorithms (i.e., random forest (RF), artificial neural network (ANN), k-nearest neighbor (KNN), and XGBoost (XGBT)) for the generation of a Sentinel-2 albedo over flat and rugged terrain. First, we used the RossThick-LiSparseR model and the 3D discrete anisotropic radiative transfer (DART) model to build the narrowband surface reflectance and broadband surface albedo, which acted as the training and testing datasets over flat and rugged terrain. Second, we used the training and testing datasets to drive the four machine learning models, and evaluated the performance of these machine learning models for the generation of Sentinel-2 albedo. Finally, we used the four machine learning models to generate a Sentinel-2 albedo and compared them with in situ albedos to show the models’ application potentials. The results show that these machine learning models have great performance in estimating Sentinel-2 albedos at a 10 m spatial scale. The comparison with in situ albedos shows that the random forest model outperformed the others in estimating a high-resolution surface albedo based on Sentinel-2 datasets over the flat and rugged terrain, with an RMSE smaller than 0.0308 and R2 larger than 0.9472.
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1. Introduction


Land surface albedo refers to the fraction of incident solar radiation within the 0.3–5.0 µm wavelength that is reflected by the earth’s land surface [1]. It plays an importance role in controlling the surface energy budget [2,3,4,5]. Long-term satellite-derived albedo products from a spatial scale of hundreds of meters to kilometers with regional/global coverage, e.g., the 500 m Moderate-Resolution MCD43A3 products [6], 0.5° Multi-angle Imaging SpectroRadiometer (MISR) albedo products [7], and 1000 m Global Land Surface Satellite (GLASS) albedo products [8], have been produced in recent decades. These products have been used to provide regional/global albedo observation for the understanding of climate, surface radiation, and ecology, with an accuracy of 0.02–0.05 [6,7,8,9,10]. However, for applications of albedo, such as forest management [11], farmland agricultural exploitation [12], and urban planning [13], such coarse-scale albedo products are not very suitable [11,14]. High-resolution albedo can capture more detailed information about the surface of the earth, such as the distribution of vegetation, water, snow, and ice, which can improve the accuracy of climate modeling applications [15,16]. A high-resolution surface albedo dataset is a necessity to fill in the gaps of albedo applications at the regional scale.



High-resolution (which usually refers to a space resolution of tens to hundreds of meters) satellite imageries, such as those provided by Landsat-8 at near-nadir angles [17] and Sentinel-2 with a viewing angle smaller than 20° [18], offer an excellent opportunity to estimate land surface albedo at about a 10–30 m spatial scale [11]. However, because the observation angles of fine-scale satellites are relatively small, effective observations are in short supply in a short-term period. The dilemma of insufficient multiangular observations make it challenging to retrieve surface albedo by using the kernel-driven model, which requires multiangular observations to capture surface anisotropy [19,20].



Various techniques have been proposed to estimate high-spatial-resolution-satellite-based albedo. Narrowband-to-broadband (NTB) conversion is a useful method to transfer narrowband surface reflectance spectra to broadband albedo, which avoids the consideration of atmospheric conditions [21,22]. Furthermore, it retrieves surface albedo via single angular reflectance by assuming that the surface is Lambert. Consequently, large uncertainties will appear in non-Lambert surfaces [22]. The “MODIS Concurrent” algorithm combines the near-nadir surface reflectance (SR) of the 30 m land satellite with the 500 m MODIS product to estimate 30 m surface albedo [23,24]. The method has been proved to be acceptable, and the root mean square error over different land cover types is less than 0.05 [17,23,24]. He et al. [11] used the MODIS BRDF products and the atmospheric radiative transfer process to build a lookup table (LUT) between TOA reflectance and broadband albedos, which was then applied to Landsat images to generate Landsat series albedos. This method reduced the uncertainty caused by complex atmospheric corrections and has great applicability to the retrieval of global satellite-based albedos. Lin et al. [24] also used the MODIS BRDF datasets and Sentinel-2 reflectance to generate land surface albedo at 10 m. One improvement in this method is that it can retrieve land surface albedo at 10 m by using the Google Earth Engine (GEE), which means the user can provide surface albedo over a global scale. Zhang et al. [20] improved the LUT-based direct estimation approach by coupling in situ albedo measurements with MODIS BRDF datasets to reduce the errors caused by the linear kernel-driven model in the case of solar zenith angles larger than 70°. These retrieval algorithms have already shown good performance in generating high-scale satellite-based albedos [17,23,25]. Both these algorithms did not consider serious topographic effects over rugged terrain, which made the current high-resolution albedo data have larger uncertainties over rugged terrain [26]. Lin et al. [27,28] coupled the mountain–radiation–transfer (MRT) model with the direct retrieval algorithm to build an improved direct retrieval algorithm over rugged terrain. It was shown that the improved direct retrieval algorithm has better performance in reducing the serious topographic effects on land surface albedo retrieval [28]. These methods are very effective, but they do not take into account the impact of terrain on the surface albedo, which may introduce more uncertainties in mountainous areas. In recent years, data-driven machine learning algorithms have had better performance in dealing with the probable nonlinear regression progress for remote sensing data retrieval and have been widely applied in the remote sensing field [29]. Whether machine learning models have better performance in generating land surface albedo over a larger spatial scale or some specific terrain, especially over rugged terrain, has not been evaluated before.



To meet this purpose, we attempted to assess four widely applied machine learning models (RF, ANN, KNN, and XGBT) regarding their ability to generate 10 m albedo based on Sentinel-2 observations over both flat and rugged terrain. The 500 m MODIS MCD43A1 products, the RossThick-LiSparseR model, and the DART model were used to simulate narrowband surface reflectance and broadband albedos, which were then used as the training and testing datasets on flat terrain and rugged terrain, respectively. Then, we used the training datasets to build the machine learning model and test it with the testing datasets. The performances of these four algorithms were cross-compared in terms of the algorithms running rapid, sensible parameters and absolute accuracies. Furthermore, we compared the retrieved albedo with the ground-measured albedo values at representative sites. This work will provide guidelines in the retrieval of high-resolution albedo over flat terrain and rugged terrain based on Sentinel-2 observations by using machine learning models.




2. Materials and Methods


2.1. Data


2.1.1. In Situ Observations


In situ surface albedo can be collected from the sites from radiation flux networks distributed worldwide, such as Fluxnet (which contains AmeriFlux, EuroFlux, AsiaFlux, and so on). In this study, in situ albedo measurements were mainly obtained from AmeriFlux and EuroFlux. AmeriFlux and EuroFlux are the core regionally distributed parts of Fluxnet [30]. AmeriFlux (http://ameriflux.lbl.gov/ (accessed on 20 April 2021)) was established in 1996 [31]. EuroFlux has been funded by the European Union since 1996 (http://www.europe-fluxdata.eu/ (accessed on 22 April 2021)).



In this study, 116 sites were from flat terrain, 20 sites were from rugged terrain, and 14 sites were from snow-covered areas (Table A1) (Figure 1). In situ albedos were calculated from the ratio of upward shortwave radiation to downward shortwave radiation at the local solar noon (e.g., from 11:00 to 13:00). In this paper, we used the measured values at the site to verify the satellite-retrieved albedo.




2.1.2. Sentinel-2 Data


The Sentinel-2 multispectral instrument (MSI) sensor provides multispectral data at a high resolution over the earth’s surface, with two satellites and a revisit time of 5 days [18]. Compared to previous satellites such as the Landsat series, Sentinel-2 has the advantage of a higher spatial resolution and a shorter revisit cycle [32]. The max viewing zenith angle (VZA) of Sentinel-2 is smaller than 20° [32].



In this study, we only used four 10 m visible and NIR bands (Table 1) in 2019. The surface reflectance and the observation geometry (including the solar zenith angle (SZA), solar azimuth angle (SAA), satellite viewing zenith angle (VZA), and satellite viewing azimuth angle (VAA)) of the Sentinel-2 satellite were calculated by using the SNAP software in the Python language. The 10 m land cover type datasets were downloaded from the ESA World Cover datasets [33].




2.1.3. MCD43A1 BRDF/Albedo Product


The high-quality 500 m Collection V061 daily MODIS BRDF products (MCD43A1) (https://urs.earthdata.nasa.gov/ (accessed on 4 May 2021)) were used to provide three kernel coefficients to drive the linear kernel-driven BRDF model (the Rossthick-LiSparseR model herein) for the simulation of narrowband surface reflection and broadband albedos [34]. Only the high-quality MCD43A1 data, marked with the quality flag of 0 in the MCD43A2 products, from the first seven bands were selected in this paper. To make the MCD43A1 data have representativeness, 1200 samples of MODIS BRDF data were selected from three land cover types including vegetation, soil, and snow (Figure 2), which were classified by using the same MODIS land cover products and the NDVI products as Lin et al. [27].




2.1.4. MOD09GA Product


The MOD09GA Version 6 product provides the surface spectral reflectance of the MODIS Terra satellite across the blue band to shortwave infrared bands using sinusoidal projection. In this study, seven bands of surface reflectance from the MOD09GA products were extracted from snow-covered stations to build a relationship with the site surface albedo.





2.2. Methods


The methodology in this paper was divided into three steps (Figure 3). First, the training and testing datasets for the four machine learning algorithms were generated based on two methods, including: (1) using the MCD43A1 BRDF products and the Rossthick-LiSparseR model to simulate narrowband surface and broadband albedo over the flat terrain; (2) using in situ observations and satellite-based surface reflectance at the snow-covered surface to refine the training datasets over the snow-covered surface; (3) using the DART model to simulate sloping surface reflectance and broadband albedo over the rugged terrain. Second, the training and testing datasets were used to drive the machine learning models and then to generate Sentinel-2 albedo. Third, the derived surface albedo was compared with in situ albedo observations to check the performance of these algorithms. Here, when the slope was greater than 5°, we used the rugged terrain models to retrieve the surface albedo of the Sentinel-2 image. In other cases, we used the flat terrain models to retrieve the surface albedo.



2.2.1. Training and Testing Dataset Simulation over Flat Terrain


Over flat terrain, the training and testing datasets were the first assurances to drive and validate the machine learning models. In this study, eight predictor variables were selected to produce the surface albedo (including BSA and WSA) from three main groups including narrowband spectral band reflectance at Sentinel-2 bands in 10 m, solar, and view observation geometries (i.e., SZA, VZA, and RAA), and land cover type. To produce the BSA, the local solar zenith angle (LSZA) was added apart from the former eight predictor variables.



The narrowband spectral surface reflectance and broadband albedos were simulated by using the MCD43A1 BRDF data and the RossThick-LiSparseR model [34]. Firstly, we used the MCD43A1 BRDF datasets, the MCD43A2 datasets, and the MCD12Q1 land cover type data to select the high-quality MCD43A1 BRDF datasets with representativeness generated by Qu et al. [35]. Then, we used the selected MCD43A1 data to simulate spectral surface reflectance and narrowband surface albedo across seven MODIS spectral bands using the RossThick-LiSparseR BRDF model [34,36,37,38]:
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The equation includes the following components:   R (   θ   s   ,   θ   v   , ϕ , λ )   represents the surface reflectance under specific illumination and viewing conditions, with     θ   s     representing the solar zenith angle,     θ   v     representing the viewing zenith angle,   ϕ   representing the relative azimuth angle, and λ representing the wavelength of light. The components     k   g e o     and     k   v o l     denote the geometric optical and volumetric scattering kernels, which are characterized by functions of the illumination and viewing geometry. Additionally,     f   g e o     and     f   v o l     represent the weights assigned to these two kernel functions, while     f   i s o     denotes the isotropic weight.



The seven simulated narrowband spectral surface reflectance bands were converted to four narrowband spectral surface reflectance bands of the Sentinel-2 by employing a model that utilizes band conversion coefficients. The band conversion coefficients were preferred to be built based on a linear regression approach from the MODIS satellite reflectance to Sentinel-2 reflectance (called Sentinel-2-like reflectance) coupled with the relative spectral response (RSR) function profiles of these two satellites and the high-quality ground-based spectra data, which were collected from Lin et al. [27], the China typical object spectral dataset [39], a quantitative remote sensing book [40], the Greenland spectral dataset [35], and the USGS digital spectral library [41]. Additionally, the broadband albedo was transferred from seven narrowband spectral albedos using the narrowband-to-broadband model by Liang et al. [42].



The simulated Sentinel-2 surface reflectance was generated by using the RTLSR model over a set of solar/view observation geometries (including SZA, VZA, and RAA). The SZA ranged from 0° to 80° with an interval of 4°, the VZA was in the range of 0°–12° with an interval of 6°, and the RAA was in the range of 0°–180° with an interval of 30°. The broadband albedo was simulated at the local solar zenith angle (LSZA), with the LSZA in the range of 0°–80° with an interval of 4°. Considering that both the surface reflectance and albedo were smaller than 1 and larger than 0, only the reasonable data were used to build the training, testing, and validating datasets. At the same time, we used in situ albedo recorded from 14 ground stations to refine the broadband albedo by directly using in situ albedo records to correct the broadband albedos, which were simulated by using the BRDF model in the training datasets. Generally, 80% of the surface reflectance simulations were used as training datasets and 20% of the simulations were used as testing datasets (Table 2).




2.2.2. Training and Testing Datasets Simulation over Rugged Terrain


The discrete anisotropic radiation transfer model (DART) is a three-dimensional radiation transfer model based on an efficient Monte Carlo light transfer algorithm (i.e., bidirectional path tracking), which simulates the radiation transfer of electromagnetic wave radiation from visible light to thermal infrared bands in real three-dimensional structural scenes. With the DART model, we can build a complex mountain scene and obtain high-quality surface reflectance and surface albedo. Over rugged terrain, several sets of 100 m × 100 m scenes with a resolution of 10 m were created first. The configurations of canopy structures were produced in the scene, with the LAI varying from 1 to 7 at an interval of 2; the solar zenith angle ranged from 0° to 60°, divided by 10° intervals; the viewing zenith angle varied from 0° to 30°, divided by 10° intervals; and the relative azimuth varied from 0° to 180°, divided by 45° intervals. The topographic parameters of the scenes were also considered, with the slope varying from 0° to 60° at intervals of 10°, and the aspect varied from 0° to 180° at intervals of 45°. Finally, we obtained a total of 4900 forest scenes (Figure 4). Over these scenarios, the narrowband surface reflectance broadband albedos were simulated by using the DART model. The slope, aspect, SZA, VZA, RAA, and four-band reflectance (Blue, Green, Red, and NIR) were input variables, and the BSA and WSA were target variables to train and test them with machine learning models. Detailed information of the training datasets and testing datasets is shown in Table 3.




2.2.3. Machine Learning Models


Machine learning models have been widely used in the remote sensing field. Machine learning models, such as random forest (RF) and artificial neural networks (ANN), can analyze and process large amounts of training datasets to obtain more accurate prediction results. This study utilized four machine learning models to generate land surface albedo products, including the RF, ANN, k-nearest neighbor (KNN), and XGBoost (XGBT) models. The RF model is a nonlinear model. Its principle is to build forests by creating decision trees, which can be applied to classification and regression problems [29,43,44]. It uses input data to build a large number of trees for prediction [45]. RF model has two key parameters: one is the number of decision trees (Ntree), and the other is the number of selected variables [46]. The RF model builds multiple decision trees and combines their outputs to make a final prediction. Additionally, it is robust to overfitting and can handle missing data without the need for data preprocessing. RF can also handle a large number of features and can be used for feature selection. Artificial neural networks (ANNs) can establish the nonlinear complex relationship between explanatory variables and dependent variables, and efficiently solve complex problems [47]. ANN models are nonparametric; input information is obtained from the input layer, then transferred to the middle layer, and then transferred to the output layer through the weighting process of each middle layer and activated by the excitation function, and finally output from the output layer They are more acceptable than statistical remote sensing methods [48]. ANN models can handle nonlinear relationships between inputs and outputs, and can be used for both classification and regression. They can learn from large amounts of data and can generalize well to new data. Additionally, they are robust to noisy or incomplete data and can be used for image and speech recognition. K-nearest neighbor (KNN) is one of the simplest machine learning algorithms, which does not learn from the training dataset immediately; instead, it stores the dataset and at the time of application, it performs an action on the dataset. It provides a robust approach to produce spatially contiguous predictions of attributes and is widely applied in remote sensing science [49]. KNN does not make any assumptions about the underlying distribution of the data and can adapt to any type of data, which make it easy to implement and interpret. The XGBT algorithm is an enhanced and optimized version of GBDT, which is developed from the GBDT algorithm. XGBT can be seen as an additive model. It can effectively solve the problems of regression and classification by predicting the results through accumulation [50]. XGBT can handle a large number of features and provides feature importance scores, which can be used for feature selection. Additionally, it is fast and can handle large datasets. We used the training datasets to drive the machine learning models. To determine the optimal metaparameters for all four machine learning models, we employed 10-fold cross-validation. We used Python to complete all the construction and verification of the machine learning models.




2.2.4. Sentinel-2 Albedo Retrieval by Using Machine Learning Models


The first step was to download cloud-free Sentinel-2 surface reflectance data using the Google Earth Engine (GEE). Next, we utilized the cloud probability product of Sentinel-2 to eliminate pixels that were affected by cloud cover or shadows. Additionally, we manually rechecked the surface reflectance to make sure that there were not any cloud-covered pixels over the Sentinel-2 surface reflectance. Meanwhile, we also obtained the solar–viewing geometry, including the SZA, VZA, RAA, and LSZA, from the auxiliary files. We used the surface reflectance, the solar–viewing geometry, and the land cover types as inputs for driving the machine learning models to predict the BSA and WSA.




2.2.5. Machine Learning Models’ Performance Evaluation


Three commonly used metrics, including bias, root mean square error (RMSE), and coefficient of determination (R2), were used for accuracy assessments. We assessed the accuracy of the machine learning models in two levels: algorithm-level evaluation and site-level evaluation.
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The equation includes the following components:     A l b e d o   p     is the albedo value predicted by the model,     A l b e d o   t     is the albedo value used for verification, and n is the number of albedo values.



We used the training dataset and testing dataset to validate the machine learning models and evaluate their accuracy. The broadband albedos of the training and testing datasets were used here as the reference dataset to assess the accuracy of the machine learning models. We first applied the four models to the land surface reflectance, the SZA, the VZA, and the RAA in the training and testing datasets to generate the broadband BSA and WSA (called the predicted BSA and WSA), respectively. We then further directly compared the model-derived albedo with the simulated broadband albedo in the training datasets and testing datasets. In particular, the overall accuracies of the machine learning models were assessed by using the testing datasets.



We also used the in situ observations to show the performance of the models to generate Sentinel-2 albedos. We used the measured albedo of the site to validate the machine learning model’s inversion of the Sentinel-2 albedo. Considering the effects of diffuse radiation, we transferred the Sentinel-2 BSA and WSA to blue-sky albedo (hereafter called albedo) by coupling with the sky diffuse ratio [26].






3. Results


3.1. The Performance of the Machine Learning Model


Figure 5a–d show the training accuracy of estimating the BSA by using the machine learning models (ANN, KNN, RF, and XGBT). Overall, the predicted BSA generated by the machine learning models had better agreement with the BSA in the training datasets (called the training BSA hereafter). The RF model showed better performance than the other machine learning models during the training of the BSA, with a bias of 0.001, RMSE of 0.0071, and R2 of 0.9993. The predicted BSA generated by the XGBT model showed a slightly larger uncertainty than that generated by the RF model and a smaller uncertainty than that generated by the ANN model and KNN model, with a bias of −0.0001, RMSE of 0.0075, and R2 of 0.9992. The predicted BSA generated by using the KNN model also had good agreement with the training BSA, with a bias of 0.0, RMSE of 0.0129, and R2 of 0.9976. The predicted BSA generated by using ANN model had the largest uncertainty compared to that generated by using the other three machine learning models, with a bias larger than 0.0085, RMSE larger than 0.0207, and R2 larger than 0.9942.



Figure 5e–h show the accuracy of estimating the WSA generated by using the machine learning models (ANN, KNN, RF, and XGBT) for the training datasets. Generally, all of the four machine learning models showed better performances in retrieving the WSA than in the retrieval of the BSA, which is illustrated by the smaller RMSE of the predicted WSA than the BSA. Similarly, the predicted WSA generated by using the ANN model showed larger uncertainty than that generated by the other three machine learning models, with a bias of 0.0022, RMSE of 0.009, and R2 of 0.9978. The predicted BSA generated by the KNN model also showed slightly larger uncertainty than that generated by using the RF model and XGBT model, with a bias of 0.0, RMSE of 0.0055, and R2 of 0.9991. The RF model and the XGBT model had similar performance, with a Bias of −0.0002 and 0.0, RMSE of 0.0023 and 0.0031, and R2 of 0.9998 and 0.9997, respectively.



Figure 6a–d show the accuracy of the predicted BSA when using the machine learning models (ANN, KNN, RF, and XGBT) and the testing datasets. The results show that the predicted BSAs generated by the four machine learning models matched well with the BSA in the testing datasets, with low biases and uncertainty and high R2 values. Generally, the bias varied from −0.0024 to 0.001, the RMSE ranged from 0.0098 to 0.0126, and the R2 values were all equal to 0.99. The RF model performed better than the ANN, KNN, and XGBT models, with an RMSE smaller than 0.0098. The KNN model showed slightly less confidence than the RF model, with an RMSE of 0.0106 but a larger bias than that of the RF model, at −0.0014. Larger uncertainty between the predicted BSA and testing BSA occurred in the application of the ANN model, with an RMSE larger than 0.001 (Figure 6). The predicted WSA also matched well with the WSA in the testing datasets, with the bias varying from 0.0001 to 0.0007, the RMSE varying from 0.0055 to 0.0112, and the R2 being larger than 0.9985, respectively (Figure 6e–h).



Figure 7a–d show the training accuracy of estimating the BSA when using machine learning models (ANN, KNN, RF, and XGBT) over rugged terrain. Similarly to that over flat terrain, the RF model showed better performance than the other machine learning models during the training of the BSA, with a bias of 0.0064, RMSE of 0.0064, and R2 of 0.9923. The predicted BSA generated by the XGBT model showed a slightly larger uncertainty than that generated by the RF model, with a bias of 0.0001, RMSE of 0.0076, and R2 of 0.9885. The predicted BSA generated by using the KNN and ANN models showed a larger uncertainty than the other two models, with a bias of 0.0001, RMSE of 0.0008, and R2 of 0.9868 for the KNN model, and a bias larger than 0.0022, an RMSE larger than 0.0097, and an R2 larger than 0.9816 for the ANN model.



Figure 8e–h show the training accuracy of the machine learning models (ANN, KNN, RF, and XGBT) for the generation of the Sentinel-2 WSA over rugged terrain. The predicted WSA generated by using the ANN model also showed larger uncertainty than that generated by the other three machine learning models, with a bias of −0.0012, RMSE of 0.0094, and R2 of 0.9827. The predicted BSA generated by the KNN model showed a slightly larger uncertainty than that generated by using the RF model and XGBT model, with a bias of 0.0001, RMSE of 0.0078, and R2 of 9883. The RF model and the XGBT model had similar performance, with a bias of 0.0001, RMSE values of 0.0063 and 0.0074, and R2 values of 0.9929 and 0.9898, respectively.



Figure 8a–d show the accuracy of the predicted BSA when using the machine learning models (ANN, KNN, RF, and XGBT) for the testing datasets over rugged terrain. The results show that the predicted BSAs generated by the four machine learning models matched well with the BSA in the testing datasets, with low biases and uncertainty and high R2 values. Generally, the bias varied from 0.0001 to 0.0023, the RMSE ranged from 0.0069 to 0.0096, and the R2 values were both equal to 0.978. The RF model performed better than the ANN, KNN, and XGBT models, with an RMSE smaller than 0.0069. The largest uncertainty between the predicted BSA and testing BSA occurred in the application of the ANN model, with an RMSE larger than 0.0096. The predicted WSA also matched well with the WSA in the testing datasets over rugged terrain, with the bias varying from −0.0011 to 0.0002, the RMSE varying from 0.0069 to 0.0092, and the R2 being larger than 0.9772 (Figure 8e–h).




3.2. Site-Level Comparison of the Sentinel-2 Albedos over Flat Terrain


The Sentinel-2 BSA and WSA were coupled to calculate the Sentinel-2 blue-sky albedo. The performances of these machine learning models were assessed by comparing the Sentinel-2 blue-sky albedo with in situ albedo measurements in the spatial response range of tower-based albedo observation. The results show that the Sentinel-2-based albedo generated by using the four machine learning models matched well with the in situ observations, with low biases, low uncertainty, and high R2 values (Figure 9). Generally, the ANN model had a worse performance than the other three models, with a bias of 0.0113, RMSE of 0.0335, and R2 of 0.9467. The Sentinel-2 albedo generated by using the KNN model had a bias of 0.0007, RMSE of 0.0314, and R2 value of 0.9459. The RF-model-derived Sentinel-2 albedo had great agreement with the in situ albedo, with a bias of 0.0027, RMSE of 0.0308, and R2 value of 0.9472. The XGBT-model-generated albedo had a bias of 0.0035, RMSE of 0.0313, and R2 value of 0.9462 when compared with the in situ albedo (Figure 9). Similarly to the results of the training and testing datasets, the RF model showed the best performance compared to the other three machine learning models to retrieve Sentinel-2 albedo, which is demonstrated by the smallest RMSE shown in Figure 9. Additionally, the ANN showed the worst performance compared to the other three models.



For snow-covered surfaces (Figure 10), the accuracies of the models (ANN, KNN, RF, and XGBT) were lower than those for snow-free surfaces. The RF-model-derived albedo had a higher accuracy than that of the other three models, with a bias of 0.0031, RMSE of 0.0517, and R2 values of 0.8538; the accuracy of the XGBT-model-derived Sentinel-2 albedo was slightly lower than that generated by using the RF model, with a bias of 0.0014, RMSE of 0.0534, and high R2 values (0.8528); the accuracy of the KNN model was slightly lower than the RF and XGBT models, with a bias of 0.0086, RMSE of 0.0545, and R2 values of 0.8407; and the accuracy of the ANN-model-derived Sentinel-2 albedo was slightly lower than that of the other models, with a bias of 0.0276, an RMSE of 0.055, and a high R2 of 0.8655.




3.3. Site-Level Comparison of the Sentinel-2 Albedos over Rugged Terrain


The results show that the Sentinel-2-based albedo generated by using the four machine learning models matched well with the in situ observations over rugged terrain (Figure 11). Generally, the KNN model had worse performance than the other three models, with a bias of −0.0071, RMSE of 0.0272, and R2 of 0.5871. The Sentinel-2 albedo generated by using the ANN model had a bias of −0.0009, RMSE of 0.0256, and R2 value of 0.6135. The RF-model-derived Sentinel-2 albedo had great agreement with the in situ albedo, with a bias of −0.002, RMSE of 0.0254, and R2 value of 0.6121. The XGBT-model-generated albedo had a bias of −0.0037, RMSE of 0.0262, and R2 value of 0.5898 when compared with the in situ albedo (Figure 11).



We also assessed the performance of the Sentinel-2 albedo over surfaces with different topographic slopes (Table 4). In general, the machine learning methods were very effective in retrieving the surface albedo over rugged terrain. With the increase in slope angle, the uncertainty of the Sentinel-2 albedo increased. On the surface with the slope increasing from 0° to 5°, the RF-model-derived Sentinel-2 albedo showed great agreement with the in situ albedo, with a bias of −0.0023, RMSE of 0.0229, and R2 of 0.6367. The ANN-, KNN-, and XGBT-model-derived Sentinel-2 albedo showed similar accuracy, with biases of 0.0003, −0.0062, and −0.0041; RMSE values of 0.0239, 0.0251, and 0.0247; and R2 values of 0.6204, 0.5938, and 0.5832 for the ANN, KNN, and XGBT models, respectively. When the slope varied from 5° to 10°, the ANN-model-derived Sentinel-2 albedo also showed increased uncertainty, with a bias of −0.0049, RMSE of 0.0243, and R2 of 0.7223. The RF- and XGBT-model-derived Sentinel-2 albedo showed similar accuracy, with biases of −0.0053 and −0.0061, RMSE values of 0.0252 and 0.0257, and R2 values of 0.7035 and 0.6950, respectively. The KNN model showed worse performance than the other three models, with a bias of −0.0114, RMSE of 0.0277, and R2 of 0.6896. When the slope increased to larger than 10°, the accuracy of the XGBT-model-derived albedo was slightly lower than that of the other models, with a bias of 0.0051, RMSE of 0.0297, and R2 values of 0.4044. The ANN-, KNN-, and RF-model-derived Sentinel-2 showed similar accuracy, with biases of 0.0053, 0.0015, and 0.0093; RMSE values of 0.0309, 0.0302, and 0.0306; and R2 values of 0.3897, 0.4073, and 0.4088, respectively.





4. Discussion


An accurate estimation of land surface albedo at 10 m is essential for its application over a regional scale, especially for a deep understanding of the variation in land surface albedo in the climate change process at a fine spatial scale. Machine learning models provide a robust way to map surface albedo at a finer spatial scale of 10 m, which does not entail a complex process (such as the suitability of the BRDF model in such a fine spatial scale of 10 m and atmospheric effects) in land surface albedo retrieval. Here, we made a comparison to assess the performance of four popular machine learning models to generate Sentinel-2 albedos. We compared the error source of the machine learning models and the accuracy of the machine learning models.



4.1. The Performance of High-Resolution Surface Albedo over Snow/Ice-Covered Surfaces


In Figure 12, we compare the performance of the Sentinel-2 surface albedo and MODIS surface albedo in detecting the snow/ice-covered surfaces of the Insukati glaciers over the Qinghai–Tibet Plateau. We can clearly see that the retrieved Sentinel-2 albedo fits well with the distribution of snow/ice, which is shown by the large albedo over the heavy-snow-covered surface and the smaller albedo value over the snow-free surface (Figure 12b). The Sentinel-2 albedo could also effectively describe the trajectory of the valley glaciers, understand their actual range, and accurately reflect glacier changes with high precision (Figure 12b). The MODIS albedo only roughly reflected the ground truth features of glaciers and valleys and was unable to accurately reflect small differences in ground features (Figure 12c). Additionally, the Sentinel-2 albedo could also effectively represent the true surface albedo on the shaded side of mountainous terrain. Taking into account the impact of the terrain, the surface albedo was high on the sun-facing side and low on the shaded side.



However, the accuracy of machine learning models on ice and snow surfaces still needs to be improved (Figure 10). The Theia snow collection and snow detection are more accurate than the Sen2Cor outputs (ESA level 2 product) [51]. Lidar can effectively detect snow under a canopy and has high accuracy on complex terrains [52]. The operational high-resolution snow and ice monitoring (HRSI) algorithm yielded similar performances to the computationally intensive spectral unmixing approach, while retrieving the subcanopy ground fractional snow cover [53,54]. These outperforming tools give the chance to detect snow-covered surfaces and help us to improve the accuracy of albedo retrieval algorithms over snow-covered surfaces in the future.




4.2. Sensitivity Analysis of the Machine Learning Models


The quality and the quantity of the training datasets had the largest influence on the performance of the machine learning models. The quality of the training datasets was proved by the high suitability to regress the relationship between the narrowband surface reflectance and the broadband albedo, which was analyzed by Lin et al. [27]. To assess the sensitivities of the samples to drive the machine learning model, we assessed the sensitivity of the magnitude of the samples by adding the sample datasets during the training of the machine learning models with the gradient of 500 samples. We randomly selected 200 samples to test the performance of different machine learning models. Figure 13 shows the RMSEs between the predicted albedo, which were retrieved by using the machine learning models, and the testing albedo. We can see that with the increase in the quantity of samples, the RMSE decreased. Generally, the ANN is most sensitive to the quantity of samples for the generation of the BSA and WSA, followed by KNN, RF, and XGBT. In the generation of the WSA, the KNN is most sensitive to the quantity of samples, especially when the quantity of samples is smaller than 1500. When the number of samples reaches about 3000, the influence of the samples tends to be stable.




4.3. The Differences and Shortcomings of the Machine Learning Models


The machine learning models (ANN, KNN, RF, and XGBT) had better performance to retrieve Sentinel-2 albedo at 10 m. RF was the best, followed by XGBT and KNN, and ANN was the worst. The reasons for this are as follows:



In terms of algorithm principles: ANN simulates the process of mutual connection between neurons to achieve learning and prediction. The KNN algorithm classifies data based on its nearest neighbors. RF is composed of multiple decision trees. XGBT is a gradient boosting tree algorithm. In terms of suitable scenarios: ANN is suitable for complex classification and prediction problems with large amounts of data. KNN is suitable for clear feature classification problems. RF is suitable for classification and regression problems in large-scale datasets. XGBT is suitable for datasets with many features. In terms of computing performance: ANN requires iterative training through a backpropagation algorithm, which takes a long time. KNN has a short calculation time but requires large storage space. RF can perform parallel computing to improve computational efficiency. XGBT can efficiently handle large-scale datasets. Overall, the RF model outperformed the four machine learning models because it can effectively train large datasets and has a good antinoise ability to avoid overfitting issues. KNN has the problem of sample imbalance, which may lead to poor results [55]. ANN may become trapped in a local minimum on large datasets [56]. XGBT is suitable for processing structured feature data and unstructured data, which is not a good processing ability for unstructured data [57]. However, machine learning models are black box models. We can use them to generate Sentinel-2 albedo, but we cannot explain the mechanism of these models. The SHAP (SHapley Additive exPlanations) [58] method or other alternative methods paved the way to explaining the essential output parameters of the model, which may have been used in this work to help us understand the mechanism of machine learning models.





5. Conclusions


Data-driven machine learning algorithms demonstrate better performance in dealing with probable nonlinear regression progress for remote sensing data retrieval and have been widely applied in the remote sensing field [29]. In this work, we used four widely applied machine learning models (ANN, KNN, RF, and XGBT) to generate high-scale Sentinel-2 albedo products at 10 m and first assessed the performance of the machine learning models over flat and rugged terrain. In this study, the performance of the four machine learning models to generate Sentinel-2 albedos was assessed by comparing the effectiveness of the model and the accuracy of the model-derived Sentinel-2 albedo with training, testing, and in situ datasets. The main conclusions are as follows:




	(1)

	
The RF model outperformed the ANN, KNN, and XGBT models in the simulation of Sentinel-2 albedo, demonstrated by the RMSE (smaller than 0.015) between the model-derived albedo and the simulated albedo in the training and testing datasets. Overall, the RF-model-derived Sentinel-2 albedo showed better consistency with the in situ albedo than that retrieved by using the ANN, KNN, and XGBT models, with an RMSE smaller than 0.0308. The XGBT and KNN models showed slightly worse performance than the RF model, with an RMSE of 0.0313 between the model-derived Sentinel-2 albedo and the in situ albedo. The ANN model showed worse performance than the RF, XGBT, and the KNN models, with an RMSE of 0.0335 between the model-derived Sentinel-2 albedo and the in situ albedo.




	(2)

	
Over rugged terrain, all four machine learning models also showed good performance in the retrieval of Sentinel-2 albedo, with an RMSE smaller than 0.0272 in flat terrain. The RF model also showed better performance than the XGBT, ANN, and KNN models with an RMSE of 0.0254. The XGBT, ANN, and KNN models showed worse performance than the RF model, with an RMSE lower than 0.0272.









In general, we gave a robust way to retrieve high-resolution surface albedo based on machine learning models both over flat and rugged terrain. These machine-learning-based algorithms for albedo retrieval can easily be applied on the Google Earth Engine platform, which provides the opportunity to generate land surface albedo on a global scale. We will share the algorithm and the training models with the public in the future.
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Table A1. Information of in situ.






Table A1. Information of in situ.





	Site Name
	Lat/Lon (deg/deg)
	Land Type
	Time Period





	BE-Lon
	50.5516/4.7462
	flat terrain
	2019



	BE-Vie
	50.3049/5.9981
	flat terrain
	2019



	BON
	40.0519/−88.3731
	flat terrain
	2019



	BOS
	40.125/−105.237
	flat terrain
	2019



	BUD
	47.4291/19.1822
	flat terrain
	2019



	CAB
	51.9711/4.9267
	flat terrain
	2019



	DE-Hai
	51.0792/10.4522
	flat terrain
	2019



	DE-Rur
	50.6219/6.3041
	flat terrain
	2019



	DE-Rus
	50.8659/6.4471
	flat terrain
	2019



	DK-Sor
	55.4859/11.6446
	flat terrain
	2019



	ES-Lm1
	39.9427/−5.7787
	flat terrain
	2019



	ES-Lm2
	39.9346/−5.7759
	flat terrain
	2019



	FR-Lgt
	47.3229/2.2841
	flat terrain
	2019



	IT-Sr2
	43.732/10.2909
	flat terrain
	2019



	IZA
	28.3093/−16.4993
	flat terrain
	2019



	PAY
	46.815/6.944
	flat terrain
	2019



	TAT
	36.0581/140.126
	flat terrain
	2019



	TBL
	40.125/−105.237
	flat terrain
	2019



	TOR
	58.254/26.462
	flat terrain
	2019



	US-A03
	70.4953/−149.882
	flat terrain
	2019



	US-A10
	71.3242/−156.615
	flat terrain
	2019



	US-ALQ
	46.0308/−89.6067
	flat terrain
	2019



	US-An2
	68.95/−150.21
	flat terrain
	2019



	US-An3
	68.93/−150.27
	flat terrain
	2019



	US-ARM
	36.6058/−97.4888
	flat terrain
	2019



	US-Bi1
	38.0992/−121.499
	flat terrain
	2019



	US-Bi2
	38.1091/−121.535
	flat terrain
	2019



	US-BRG
	39.2167/−86.5406
	flat terrain
	2019



	US-DFC
	43.3448/−89.7117
	flat terrain
	2019



	US-EDN
	37.6156/−122.114
	flat terrain
	2019



	US-Ha2
	42.5393/−72.1779
	flat terrain
	2019



	US-HB1
	33.3455/−79.1957
	flat terrain
	2019



	US-HB2
	33.3242/−79.244
	flat terrain
	2019



	US-HB3
	33.3482/−79.2322
	flat terrain
	2019



	US-HBK
	43.9397/−71.7181
	flat terrain
	2019



	US-Jo2
	32.5849/−106.603
	flat terrain
	2019



	US-KS3
	28.7085/−80.7427
	flat terrain
	2019



	US-Los
	46.0827/−89.9792
	flat terrain
	2019



	US-Me6
	44.3233/−121.608
	flat terrain
	2019



	US-MtB
	32.4167/−110.726
	flat terrain
	2019



	US-NC2
	35.803/−76.6685
	flat terrain
	2019



	US-NC3
	35.799/−76.656
	flat terrain
	2019



	US-NC4
	35.7879/−75.9038
	flat terrain
	2019



	US-NGB
	71.28/−156.609
	flat terrain
	2019



	US-NGC
	64.8614/−163.7008
	flat terrain
	2019



	US-NR1
	40.0329/−105.5464
	flat terrain
	2019



	US-ONA
	27.3836/−81.9509
	flat terrain
	2019



	US-PFb
	45.972/−90.3232
	flat terrain
	2019



	US-PFc
	45.9677/−90.3088
	flat terrain
	2019



	US-PFd
	45.9689/−90.301
	flat terrain
	2019



	US-PFe
	45.9793/−90.3004
	flat terrain
	2019



	US-PFg
	45.9735/−90.2723
	flat terrain
	2019



	US-PFh
	45.9557/−90.2406
	flat terrain
	2019



	US-PFi
	45.9749/−90.2327
	flat terrain
	2019



	US-PFk
	45.9149/−90.3425
	flat terrain
	2019



	US-PFm
	45.9207/−90.3099
	flat terrain
	2019



	US-PFq
	45.9272/−90.2475
	flat terrain
	2019



	US-PFr
	45.9245/−90.2475
	flat terrain
	2019



	US-PFt
	45.9197/−90.2288
	flat terrain
	2019



	US-PHM
	42.7423/−70.8301
	flat terrain
	2019



	US-Ro4
	44.6781/−93.0723
	flat terrain
	2019



	US-Ro5
	44.691/−93.0576
	flat terrain
	2019



	US-Ro6
	44.6946/−93.0578
	flat terrain
	2019



	US-Seg
	34.3623/−106.7019
	flat terrain
	2019



	US-Ses
	34.3349/−106.7442
	flat terrain
	2019



	US-Snf
	38.0402/−121.727
	flat terrain
	2019



	US-SRG
	31.7894/−110.828
	flat terrain
	2019



	US-SRM
	31.8214/−110.866
	flat terrain
	2019



	US-Syv
	46.242/−89.3477
	flat terrain
	2019



	US-Tw1
	38.1074/−121.6469
	flat terrain
	2019



	US-Tw4
	38.1027/−121.641
	flat terrain
	2019



	US-Tw5
	38.1072/−121.643
	flat terrain
	2019



	US-Uaf
	64.8663/−147.855
	flat terrain
	2019



	US-UMB
	45.5598/−84.7138
	flat terrain
	2019



	US-UMd
	45.5625/−84.6975
	flat terrain
	2019



	US-Vcm
	35.8884/−106.5321
	flat terrain
	2019



	US-Vcp
	35.8624/−106.5974
	flat terrain
	2019



	US-Vcs
	35.9193/−106.6142
	flat terrain
	2019



	US-WCr
	45.8059/−90.0799
	flat terrain
	2019



	US-Whs
	31.7438/−110.052
	flat terrain
	2019



	US-Wjs
	34.4255/−105.862
	flat terrain
	2019



	US-xAB
	45.7624/−122.33
	flat terrain
	2019



	US-xAE
	35.4106/−99.0588
	flat terrain
	2019



	US-xBA
	71.2824/−156.619
	flat terrain
	2019



	US-xBL
	39.0603/−78.0716
	flat terrain
	2019



	US-xBN
	65.154/−147.503
	flat terrain
	2019



	US-xBR
	44.0639/−71.2873
	flat terrain
	2019



	US-xCL
	33.4012/−97.57
	flat terrain
	2019



	US-xCP
	40.8155/−104.746
	flat terrain
	2019



	US-xDC
	47.1617/−99.1066
	flat terrain
	2019



	US-xDL
	32.5417/−87.8039
	flat terrain
	2019



	US-xDS
	28.125/−81.4362
	flat terrain
	2019



	US-xGR
	35.689/−83.502
	flat terrain
	2019



	US-xHA
	42.5369/−72.1727
	flat terrain
	2019



	US-xHE
	63.8757/−149.213
	flat terrain
	2019



	US-xJE
	31.1948/−84.4686
	flat terrain
	2019



	US-xKA
	39.1104/−96.613
	flat terrain
	2019



	US-xKZ
	39.1008/−96.5631
	flat terrain
	2019



	US-xMB
	38.2483/−109.388
	flat terrain
	2019



	US-xML
	37.3783/−80.5248
	flat terrain
	2019



	US-xNG
	46.7697/−100.915
	flat terrain
	2019



	US-xNQ
	40.1776/−112.452
	flat terrain
	2019



	US-xNW
	40.0543/−105.582
	flat terrain
	2019



	US-xRM
	40.2759/−105.546
	flat terrain
	2019



	US-xSB
	29.6893/−81.9934
	flat terrain
	2019



	US-xSE
	38.8901/−76.56
	flat terrain
	2019



	US-xSP
	37.0334/−119.262
	flat terrain
	2019



	US-xSR
	31.9107/−110.836
	flat terrain
	2019



	US-xST
	45.5089/−89.5864
	flat terrain
	2019



	US-xTA
	32.9505/−87.3933
	flat terrain
	2019



	US-xTE
	37.0058/−119.006
	flat terrain
	2019



	US-xTL
	68.6611/−149.37
	flat terrain
	2019



	US-xTR
	45.4937/−89.5857
	flat terrain
	2019



	US-xUK
	39.0404/−95.1922
	flat terrain
	2019



	US-xWR
	45.8205/−121.952
	flat terrain
	2019



	US-xYE
	44.9535/−110.539
	flat terrain
	2019



	Arou
	38.0473/100.4643
	rugged terrain
	2019–2021



	CH-Cha
	47.2102/8.4104
	rugged terrain
	2019



	CH-Dav
	46.8153/9.8559
	rugged terrain
	2019



	CZ-Wet
	49.0247/14.7704
	rugged terrain
	2019



	Daman
	38.8555/100.3722
	rugged terrain
	2019–2021



	Heiheyaogan
	38.827/100.4756
	rugged terrain
	2019–2021



	Huangmo
	42.1135/100.9872
	rugged terrain
	2019–2021



	Huazhaizi
	38.7659/100.3201
	rugged terrain
	2019–2021



	IT-Ren
	46.5869/11.4337
	rugged terrain
	2019



	IT-Tor
	45.8444/7.5781
	rugged terrain
	2019



	US-Me2
	44.4523/−121.5574
	rugged terrain
	2019–2020



	US-Mpj
	34.4384/−106.2377
	rugged terrain
	2019



	US-Ton
	38.4309/−120.966
	rugged terrain
	2019–2020



	US-Var
	38.4133/−120.9506
	rugged terrain
	2019–2020



	US-Vcm
	35.8884/−106.5321
	rugged terrain
	2019



	US-Wkg
	31.7365/−109.9419
	rugged terrain
	2019–2020



	Zhangye
	38.9751/100.4464
	rugged terrain
	2019–2021



	CA-NS6
	55.92/−98.96
	snow-covered
	2001–2005



	CA-SF3
	54.09/−106.01
	snow-covered
	2003–2005



	CDP
	45.29/5.676
	snow-covered
	2000–2014



	Fort_Peck
	48.3079/−105.101
	snow-covered
	2000–2008



	GVN
	−70.65/−8.25
	snow-covered
	2000–2009



	Mead_Irrigated
	41.1651/−96.4766
	snow-covered
	2001–2008



	OAS
	54.05/−106.333
	snow-covered
	2000–2010



	OBS
	54.65/−105.2
	snow-covered
	2000–2010



	OJP
	54.53/−105
	snow-covered
	2000–2010



	SAP
	43.06/141.329
	snow-covered
	2005–2015



	SNB
	37.907/−107.726
	snow-covered
	2005–2015



	SPO
	−89.983/−24.799
	snow-covered
	2000–2009



	SWA
	37.907/−107.711
	snow-covered
	2005–2015



	WFJ
	46.827/9.807
	snow-covered
	2000–2016
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Figure 1. The geographic distribution of in situ observations was used in this study. 
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Figure 2. The geographic distribution of MCD43A1 data used in this study. There are three surface types (vegetation, bare ground, snow, and ice). 
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Figure 3. The workflow of the machine learning model for Sentinel-2 albedo retrieval. 
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Figure 4. The scenes of forests on different slopes; (a) slope 10° and aspect 45°; (b) slope 20° and aspect 0°; (c) slope 30° and aspect 90°; (d) slope 40° and aspect 135°; (e) slope 50° and aspect 180°; (f) slope 60° and aspect 90°. 
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Figure 5. Evaluation of BSA estimates for training datasets over flat terrain in (a–d); (a–d) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for training datasets over flat terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT. 
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Figure 6. Evaluation of BSA estimates for testing datasets over flat terrain in (a–d); (a–d) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over flat terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT. 
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Figure 7. Evaluation of BSA estimates for training datasets over rugged terrain in (a–d); (a–d) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for training datasets over rugged terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT. 
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Figure 8. Evaluation of BSA estimates for training datasets over rugged terrain in (a–d); (a–d) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over rugged terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT. 






Figure 8. Evaluation of BSA estimates for training datasets over rugged terrain in (a–d); (a–d) denotes the result of ANN, KNN, RF, and XGBT; Evaluation of WSA estimates for testing datasets over rugged terrain in (e–h); (e–h) denotes the result of ANN, KNN, RF, and XGBT.



[image: Remotesensing 15 02684 g008]







[image: Remotesensing 15 02684 g009 550] 





Figure 9. Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites; (a) is ANN result; (b) is KNN result; (c) is RF result; (d) is XGBT result. 
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Figure 10. Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites over snow-covered terrain; (a) is ANN result; (b) is KNN result; (c) is RF result; (d) is XGBT result. 
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Figure 11. Evaluation of Sentinel-2 image estimates based on measured values at the in situ sites on rugged terrain; (a) is ANN result; (b) is KNN result; (c) is RF result; (d) is XGBT result. 
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Figure 12. Distribution of Sentinel-2 and MODIS black-sky albedo on the glacier, including (a) true-color imagery; (b) Sentinel-2 black-sky albedo; (c) MODIS black-sky albedo. 
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Figure 13. The results of RMSE in different sample quantities. (a) is BSA result; (b) is WSA result. 
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Table 1. Information on Sentinel-2 data.
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	Sentinel-2 Bands
	Central Wavelength (µm)
	Resolution (m)
	Bandwidth (nm)





	Blue (B2)
	0.490
	10
	65



	Green (B3)
	0.560
	10
	35



	Red (B4)
	0.665
	10
	30



	NIR (B8)
	0.842
	10
	115
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Table 2. The datasets used for estimating the WSA and BSA on flat terrain.
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Input Variables

	
Target Variables

	
Number of Training Datasets

	
Number of Testing Datasets






	
SZA, VZA, and RAA

	
WSA

	
1,360,355

	
270,648




	
Blue band reflectance




	
Green band reflectance




	
Red band reflectance




	
NIR band reflectance




	
SZA, VZA, RAA, and LSZA

	
BSA

	
37,820,355

	
5,562,648




	
Blue band reflectance




	
Green band reflectance




	
Red band reflectance




	
NIR band reflectance
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Table 3. The datasets used for estimating the WSA and BSA on rugged terrain.
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Input Variables

	
Target Variables

	
Number of Training Datasets

	
Number of Testing Datasets






	
Slope, aspect, SZA, VZA, and RAA

	
WSA

	
1,048,576

	
248,103




	
Blue band reflectance




	
Green band reflectance




	
Red band reflectance




	
NIR band reflectance




	
Slope, aspect, SZA, VZA, and RAA

	
BSA

	
1,048,576

	
248,103




	
Blue band reflectance




	
Green band reflectance




	
Red band reflectance




	
NIR band reflectance
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Table 4. Evaluation of the accuracy and the error statistics of comparison between Sentinel-2-estimated albedo and in situ observations on three slope surfaces.






Table 4. Evaluation of the accuracy and the error statistics of comparison between Sentinel-2-estimated albedo and in situ observations on three slope surfaces.





	
Slope

	
Model

	
Bias

	
RMSE

	
R2






	
0°–5°

	
ANN

	
0.0003

	
0.0239

	
0.6204




	
KNN

	
−0.0062

	
0.0251

	
0.5938




	
RF

	
−0.0023

	
0.0229

	
0.6367




	
XGBT

	
−0.0041

	
0.0247

	
0.5832




	
5°–10°

	
ANN

	
−0.0049

	
0.0243

	
0.7223




	
KNN

	
−0.0114

	
0.0277

	
0.6896




	
RF

	
−0.0053

	
0.0252

	
0.7035




	
XGBT

	
−0.0061

	
0.0257

	
0.695




	
>10°

	
ANN

	
0.0053

	
0.0309

	
0.3897




	
KNN

	
0.0015

	
0.0302

	
0.4073




	
RF

	
0.0093

	
0.0306

	
0.4088




	
XGBT

	
0.0051

	
0.0297

	
0.4044
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