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Abstract: Desertification, a current serious global environmental problem, has caused ecosystems
and the environment to degrade. The total area of desertified land is about 1.72 million km2 in
China, which is extensively affected by desertification. Estimating land desertification risks is the
top priority for the sustainable development of arid and semi-arid lands in China. In this study, the
Mediterranean Desertification and Land Use (MEDALUS) model was used to assess the sensitivity
of land desertification in China. Based on multi-source remote sensing data, this study integrated
natural and human factors, calculated the land desertification sensitivity index by overlaying four
indicators (soil quality, vegetation quality, climate quality, and management quality), and explored
the driving forces of desertification using a principal component and correlation analysis. It was
found that the spatial distribution of desertification sensitivity areas in China shows a distribution
pattern of gradually decreasing from northwest to southeast, and the areas with very high and high
desertification sensitivities were about 620,629 km2 and 2,384,410 km2, respectively, which accounts
for about 31.84% of the total area of the country. The very high and high desertification sensitivity
areas were mainly concentrated in the desert region of northwest China. The principal component and
correlation analysis of the sub-indicators in the MEDALUS model indicated that erosion protection,
drought resistance, and land use were the main drivers of desertification in China. Furthermore, the
aridity index, soil pH, plant coverage, soil texture, precipitation, soil depth, and evapotranspiration
were the secondary drivers of desertification in China. Moreover, the desertification sensitivity caused
by drought resistance, erosion protection, and land use was higher in the North China Plain region
and Guanzhong Basin. The results of the quantitative analysis of the driving forces of desertification
based on mathematical statistical methods in this study provide a reference for a comprehensive
strategy to combat desertification in China and offer new ideas for the assessment of desertification
sensitivity at macroscopic scales.

Keywords: desertification; sensitivity assessment; driving force; remote sensing; MEDALUS

1. Introduction

Desertification, a pressing environmental issue affecting the earth [1–3], results in
the degradation and depletion of natural resource systems, consequently impeding social
stability and economic growth [4,5]. It is estimated that desertification reduces food pro-
duction for at least 40% of the world’s land and affects approximately 1.4 billion people
globally, with the majority of effects occurring in developing countries [6]. China, as a large
developing country, is extensively affected by desertification, with a total desertified land
area of about 1.72 million km2, accounting for 17.93% of its territory area [2], and the
economic loss caused by desertification is about USD 6.8 billion per year [7]. Given the
gravity of the desertification issue in China, the pursuit of scientific and precise monitoring
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of land degradation processes, prompt efficient evaluation of desertification hazards, iden-
tification of underlying causes, and implementation of early warning systems rank among
the top priorities for promoting sustainable development, safeguarding biodiversity, and
preserving cultivable resources in China [8].

Traditional desertification monitoring and assessment mainly analyze current situation
and spatial distributions of land desertification by means of field surveys and image interpre-
tation [9,10]. While remote sensing technology has incomparable advantages in desertification
monitoring, such as large-scale monitoring and long timeliness [11,12], researchers have
extensively explored methods of desertification monitoring and assessment using remote
sensing since the 1980s, and many research advances have been made [8,13–20]. The main
desertification monitoring methods are divided into three categories: visual interpretation [13],
spectral hybrid analysis [14,15], and automatic extraction based on remote sensing informa-
tion [16]. Desertification assessment techniques have developed from single vegetation index
evaluation [8,17] to comprehensive evaluation combining multi-disciplinary and multiple
remote sensing indexes [18–20]. However, to date, land desertification assessment in China is
regionally conducted, and most assessments are small-scale focused, with nationwide assess-
ment is still lacking. Moreover, it is difficult to quantitatively analyze the driving forces of
land desertification considering the combined effects of natural and human factors [21,22]. In
this study, we adopted the Mediterranean Desertification and Land Use (MEDALUS) model,
which is relatively mature in application, and integrate natural and human factors to assess
the sensitivity of land desertification in the entire China in an attempt to discover the spatial
distribution characteristics of areas with high risk of land desertification in China and to
explore the driving mechanisms in areas with increased risk of desertification.

MEDALUS was first proposed by Kosmas et al., (1999) [23] and tested in the Mediter-
ranean region. Subsequently, a large number of researchers have used this model to assess
desertification in small-scale areas, with good results [6,24–27]. The model was then gradu-
ally refined and expanded to large spatial areas and even used in the assessment of global
desertification [28]. In this study, we used the MEDALUS model to assess the land deserti-
fication in China by considering both natural and human factors, and we also made some
improvements to the model. First, we selected evapotranspiration and soil pH assessment
indicators based on the unique natural environment of China. Second, we refined the deser-
tification sensitivity grade to facilitate the government in implementing countermeasures
to address the different levels of desertification risk. Finally, we quantitatively analyze
the driving forces of the selected indicators in the desertification process to further refine
the model. This paper provides a reference and scientific basis for the management of
desertification in China and provides new references and ideas for quantitative analysis of
the driving forces of desertification on a large scale.

2. Study Area and Data
2.1. Study Area

China has a land area of about 9.6 million km2 and a total desertified land area of
about 1.72 million km2, dominated by varying degrees of desertification, with sandy land
types including mobile dunes, semi-mobile dunes, semi-fixed dunes, fixed dunes, and the
Gobi [2]. There are eight deserts and four sandy areas in northern China (Figure 1), and
the desertified land forms a discontinuous belt from northeast China through to north
and northwest China [4]. China has a wide variety of climate types, including a tropical
monsoon climate, subtropical monsoon climate, temperate monsoon climate, highland
mountain climate, temperate continental climate, and tropical rainforest climate, with
uneven precipitation distribution. Arid and semi-arid areas are mainly located in north and
northwest China, where the risk of desertification is high. In addition, the population of
China is about 1.39 billion, which means it is the most populous country in the world, and
dramatic human activities (overcultivation, overgrazing, urbanization, and land pollution)
lead to serious desertification [29]. Therefore, timely monitoring and assessment of land
desertification sensitivity in China is crucial.
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Figure 1. Study area overview. The map includes the types of deserts in China and the specific
locations of the eight major deserts and four major sandy land areas. The data set was provided
by the Environmental and Ecological Science Data Center for West China, National Natural Science
Foundation of China (http://westdcwestgis.ac.cn, accessed on 2 February 2022). Review Number:
GS (2020) 4619.

2.2. Data and Pre-Processing

The improved MEDALUS model in this study requires data for soil, vegetation,
climate, and management. The soil data included soil pH, rock fragments, terrain slope,
soil texture, and soil depth, with the terrain slope data being generated via the Digital
Elevation Model (DME) [30]. The vegetation data included drought resistance, fire risk,
erosion protection, and plant cover. Drought resistance, fire risk, and erosion protection
data were generated via reclassification of land cover classification products [28]. The
climate data included evapotranspiration, precipitation, and aridity index. The aridity
index was generated via processing precipitation and evapotranspiration (Equation (1)) [31].
The management data included population density and land use. The data sources and
their time and spatial resolutions are detailed in Table 1.

AI = P/ETP (1)

where AI is the aridity index; P is the annual precipitation; and ETP is the
annual evapotranspiration.

http://westdcwestgis.ac.cn
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Table 1. Data details and sources.

Data Time Resolution (Year) Spatial Resolution (m) Source

Soil pH
Rock fragments

Soil texture
Soil depth

2010–2018 1000 http://data.tpdc.ac.cn/zh-hans/,
accessed on 3 March 2022.

DEM 2008 250 http://www.gscloud.cn, accessed on
6 March 2022.

Surface cover products
Plant coverage 2020 1000

https://www.resdc.cn/Datalist1.aspx?
FieldTyepID=1,3, accessed on

6 March 2022.
Precipitation

Evapotranspiration 2018–2020 1000 http://data.tpdc.ac.cn/zh-hans/,
accessed on 11 March 2022.

Population density 2020 1000
https://www.worldpop.org/geodata/

summary?id=29798, accessed on
11 March 2022.

For the above data, we aggregated them to the Chinese regional scale using ArcGIS.
The spatial resolution of the DEM data was 250 m, and we resampled them to a resolution
of 1 km using the bilinear interpolation method that is more suitable for resampling DEM
data [32]. Soil pH, rock fragments, soil texture, and soil depth were continuously updated
to 2018 [33,34]. The precipitation data and evapotranspiration data were continuously
updated into monthly data sets [35–39]. After generating yearly data using ArcGIS, the
average values for 2018–2020 were used to eliminate the effects of a possible extreme
climate in a particular year.

3. Method

In response to the complex multi-factorial interactions in the process of desertification,
the original MEDALUS model selects key indicators that have an impact on desertification
from four aspects: soil quality, vegetation quality, climate quality, and management qual-
ity [23]. The contribution of each sub-indicator to desertification is expressed quantitatively
as weight values, which are often set as a value between 1.0 and 2.0 [40]. The MEDALUS
model shows great flexibility, reliability, and comprehensiveness in indicator selection and
framework construction, and can adapt to a wide range of spatial scales and different data
sources. Suitable indicators can be selected according to the natural environment of the
study area [28]. The reasons for the sub-indicators chosen for this study will be elaborated
in Sections 3.1–3.4.

Compared to the original MEDALUS model, this study makes the following im-
provements: (1) evapotranspiration data were added to the climate quality index and
slope direction data were removed. The reason is that under large-scale coarse resolution
monitoring, subtle changes in topographic slope orientation are difficult to show in the
assessment results. However, the vegetation covers and landscapes throughout China are
various, from tropical rainforest in the south to shrub and desert in the northwest, and
the evapotranspiration varies greatly, which makes evapotranspiration more suitable than
slope orientation for large-scale desertification assessment. (2) The parent material data in
soil quality was replaced with soil pH data. The reason for this is that land salinization, as
a desertification phenomenon, is serious in semi-arid and arid land in China, and soil pH is
an important indicator of the degree of land salinization; in addition, parent material data
available for collection were updated more than ten years ago and do not reflect the current
soil parent material conditions [8]. Furthermore, in terms of analysis methods, according to
the results of the desertification risk assessment, the land in China is subdivided into eight
grades, which enables the government to take management measures to cope with different
levels of desertification risk. We further tested the stability within the MEDALUS model
and analyzed the driving force of the selected indicators in the process of desertification.

http://data.tpdc.ac.cn/zh-hans/
http://www.gscloud.cn
https://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3
https://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3
http://data.tpdc.ac.cn/zh-hans/
https://www.worldpop.org/geodata/summary?id=29798
https://www.worldpop.org/geodata/summary?id=29798
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In this study, we first classified the selected sub-indicators (soil pH, rock fragments,
terrain slope, soil depth, plant coverage, evapotranspiration, precipitation, aridity in-
dex, and population density) based on the Jenks natural breaks classification method
(Equation (2)) [41] and combined it with the MEDALUS model. The Jenks natural breaks
classification method is a clustering algorithm for map classification which naturally classi-
fies indicators based on their numerical distribution characteristics so that the difference
between indicators of the same category is minimized and the difference between different
categories is maximized. Compared to similar algorithms, such as k-means and hierar-
chical clustering, the Jenks natural breaks classification method has several advantages.
It can adaptively determine the number of categories and is less affected by outliers or
individual data points. Additionally, this classification method provides clear and inter-
pretable results that can help to illustrate the characteristics and distribution of the data.
As a result, for the purpose of map classification in this study, the Jenks natural breaks
method was deemed more suitable [41–43]. The rest of the sub-indicators (soil texture,
drought resistance, fire risk, erosion protection, and land use) were classified according to
the MEDALUS model classification method. After the classification, the indicators were
assigned weights according to the MEDALUS model. Then, the soil quality index, vegeta-
tion quality index, climate quality index, and management quality index were calculated
separately (Equation (3)) [28]. The geometric mean of the four quality indexes of soil, vege-
tation, climate, and management was calculated to generate the desertification sensitivity
index (Equation (4)) [28]. Finally, the desertification sensitivity index was classified into
risk levels using the Jenks natural breaks classification method, followed by an analysis
of the driving forces behind the desertification process. The specific process is shown in
Figure 2.

SSDmn =
n

∑
k=1

A[k]2 − (∑n
k=1 A[k])2

n − m + 1
(2)

where SSD is the variance of each classified category; m and n are the m-th and n-th
elements; A is the assigned category; and k is the k-th element in category A.

Quality_xij =
(
variable_1ij·variable_2ij·variable_3ij· · · · ·variable_nij

)1/nij (3)

where ij is the row and column of a single elementary pixel of each variable; n is the number
of active variables for each elementary unit; and x is the four qualities referring to soil,
climate, vegetation, and management.

DSIij =
(
SQIij · VQIij · CQIij · MQIij

)1/4 (4)

where ij is the row and column of a single elementary pixel of each quality; DSI is the
desertification sensitive index; SQI is the soil quality index; VQI is the vegetation quality
index; CQI is the climate quality index; and MQI is the management quality index.

3.1. Soil Quality Index

Soil maintains biological productivity and is essential for the survival of various plants
and animals in the ecosystem [44]. In this study, five sub-indexes (soil pH, rock fragments,
terrain slope, soil texture, and soil depth) were selected to assess soil quality, including
the chemical and physical properties of the soil, and the water retention and fertility of
the soil [26,45]. This study classified and assigned weights to these five indicators based
on the Jenks natural breaks classification method and the MEDALUS model (Table 2); the
classification results are shown in Figure 3.



Remote Sens. 2023, 15, 2674 6 of 24
Remote Sens. 2023, 15, 2674 6 of 26 
 

 

 
Figure 2. Flowchart of land desertification sensitivity assessment in China, modified from Ferrara 
et al. [28]. 

𝑆𝑆𝐷 =   𝐴[𝑘] − ∑   𝐴[𝑘]𝑛 −𝑚 + 1  (2) 

where 𝑆𝑆𝐷 is the variance of each classified category; 𝑚 and 𝑛 are the m-th and n-th el-
ements; 𝐴 is the assigned category; and 𝑘 is the k-th element in category 𝐴. Quality_𝑥 = variable_1 ∙ variable_2 ∙ variable_3 ∙ ⋯ ∙ variable_𝑛 /  (3) 

where 𝑖𝑗 is the row and column of a single elementary pixel of each variable; 𝑛 is the 
number of active variables for each elementary unit; and 𝑥 is the four qualities referring 
to soil, climate, vegetation, and management. 𝐷𝑆𝐼 = 𝑆𝑄𝐼 ⋅ 𝑉𝑄𝐼 ⋅ 𝐶𝑄𝐼 ⋅ 𝑀𝑄𝐼 /  (4) 

where 𝑖𝑗 is the row and column of a single elementary pixel of each quality; 𝐷𝑆𝐼 is the 
desertification sensitive index; 𝑆𝑄𝐼 is the soil quality index; 𝑉𝑄𝐼 is the vegetation quality 
index; 𝐶𝑄𝐼 is the climate quality index; and 𝑀𝑄𝐼 is the management quality index. 

  

Figure 2. Flowchart of land desertification sensitivity assessment in China, modified from
Ferrara et al. [28].

Table 2. Classes and corresponding weights of soil sub-indexes [25,28,29].

Index Class Weight

Soil pH (SP)
<6.5 1.0
6.5–7 1.5
≥7 2.0

Rock fragments (RF)

≥50% 1.0
40–50% 1.1
30–40% 1.3
20–30% 1.5
10–20% 1.7
<10% 2.0

Terrain slope (TS)

<3% 1.0
3–6% 1.1

6–12% 1.2
12–18% 1.3
18–24% 1.4
24–30% 1.5
30–36% 1.7
≥36% 2.0
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Table 2. Cont.

Index Class Weight

Soil texture (ST)

CL; L; SCL; SL; LS 1.0
SiCL; SiL; SC 1.2

C; SiC; Si 1.6
S 2.0

Soil depth (SD)
≥60 cm 1.0

30–60 cm 1.5
<30 cm 2.0

L: loam, SCL: sandy clay loam, SL: sandy loam, LS: loamy sand, CL: clay loam, SC: sandy clay, SiL: silty loam,
SiCL: silty clay loam, Si: silt, C: clay, SiC: silty clay, S: sand.
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on the MEDALUS model, four indicators (drought resistance, fire risk, erosion protection, 
and plant cover) were chosen to assess the quality of the vegetation cover. Based on the 
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Drought 
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lakes, reservoirs, permanent glacial snow, ocean 
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towns, rural settlements, public transport construction land, 
swampy land 
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Figure 3. Soil quality sub-index classification results. (a) The result after classifying and assigning
weights to soil pH; (b) the result after classifying and assigning weights to rock fragments; (c) the
result after classifying and assigning weights to terrain slope; (d) the result after classifying and
assigning weights to soil texture; (e) the result after classifying and assigning weights to soil depth.

3.2. Vegetation Quality Index

Vegetation plays an important role in climate regulation, soil and water conservation,
and wind and sand control, etc. It reduces runoff by promoting water infiltration and
reduces soil erosion by improving soil structure and strengthening soil cohesion [46]. Based
on the MEDALUS model, four indicators (drought resistance, fire risk, erosion protection,
and plant cover) were chosen to assess the quality of the vegetation cover. Based on the
Jenks natural breaks classification method and MEDALUS model, these four indicators
were classified and assigned weights (Table 3); the classification results are shown in
Figure 4.
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Table 3. Classes and corresponding weights of vegetation sub-indexes [28].

Index Class Weight

Drought
resistance (DR)

wooded land, shrub land, other wooded land, rivers and canals, lakes, reservoirs,
permanent glacial snow, ocean 1.0

towns, rural settlements, public transport construction land, swampy land 1.1
open forest land, sea shoals, mudflats 1.2

paddy field 1.4
dry land 1.5
grassland 1.6

sandy land, Gobi, saline land, bare land, bare rocky gravel land, other unused land 2.0

Fire risk (FR)

permanent glacial snow, sandy land, Gobi, saline land, bare land, bare rocky gravel land,
other unused land, ocean 1.0

other forest land, rivers and canals, lakes, reservoirs, sea shoals, mudflats, marshlands 1.1
towns, rural settlements, public transport construction land 1.2

forested land, shrub land, grassland 1.3
paddy field, dry land 1.4

open forest land 1.7

Erosion
protection (EP)

wooded land, shrub land, other wooded land, permanent glacial snow, ocean 1.0
towns, rural settlements, public transport construction land 1.1

rivers and canals, lakes, reservoirs, sea shoals, mudflats, marshlands 1.2
paddy fields, open forest land 1.4

dry land, grassland 1.7
sandy land, Gobi, saline land, bare land, bare rocky gravel land, other unused land 2.0

Plant cover (PC)

≥0.80 1.0
0.72–0.80 1.1
0.62–0.72 1.2
0.5–0.62 1.3

0.38–0.50 1.4
0.26–0.38 1.5
0.18–0.26 1.6
0.13–0.18 1.7
0.11–0.13 1.8
0.10–0.11 1.9

<0.10 2.0

3.3. Climate Quality Index

Three indicators (evapotranspiration, precipitation, and aridity index) were chosen to
assess the climate quality. The evapotranspiration, precipitation, and aridity indexes are
important indicators in ecology: evapotranspiration is a channel for surface energy and
water interaction and provides a scientific basis for drought monitoring [47]; precipitation
determines runoff and soil water content [48]; and the aridity index is also an important
basis for desertification processes. This study classified and assigned weights to these three
indexes based on the Jenks natural breaks classification method and MEDALUS model
(Table 4); the classification results are shown in Figure 5.
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Figure 4. Vegetation quality sub-index classification results. (a) The result after classifying and
assigning weights to drought resistance; (b) the result after classifying and assigning weights to fire
risk; (c) the result after classifying and assigning weights to erosion protection; (d) the result after
classifying and assigning weights to plant cover.

Table 4. Classes and corresponding weights of climate sub-indexes [25,28].

Index Class Weight

Evapotranspiration (ETP, mm)

<700 1.00
700–750 1.05
750–825 1.15
825–925 1.25
925–1025 1.35

1025–1125 1.50
1125–1275 1.65
1275–1400 1.80
≥1400 2.00

Precipitation (PRE, mm)

≥650 1.00
570–650 1.05
490–570 1.15
440–490 1.25
390–440 1.35
345–390 1.50
310–345 1.65
280–310 1.80

<280 2.00
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Table 4. Cont.

Index Class Weight

Aridity index (AI)

≥1 1.00
0.75–1 1.05

0.65–0.75 1.15
0.5–0.65 1.25
0.35–0.5 1.35
0.2–0.35 1.45
0.1–0.2 1.55

0.03–0.1 1.75
<0.03 2.00
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3.4. Management Quality Index

When population pressure exceeds the carrying capacity of the land, large-scale
deforestation, endless grazing, and improper land use can increase the sensitivity of the
land to desertification [49]. In this study, two indicators, land use and population density,
were chosen to assess management quality, and they were classified and assigned weights
based on the Jenks natural breaks classification method and MEDALUS model (Table 5);
the classification results are shown in Figure 6.
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Table 5. Classes and corresponding weights of management sub-indexes [6,28].

Index Class Weight

Land use (LU)

shrubland, other woodland, permanent glacial
snow, ocean 1.0

forested land, towns, rural settlements, public
transport construction land 1.1

rivers and canals, lakes, and reservoirs 1.2
open forest land, sea shoals, mudflat, marshland 1.3

paddy fields 1.6
dry land 1.7
grassland 1.8

sandy land, Gobi, saline land, bare land, bare
rocky gravel land, other unused land 2.0

Population density (POP,
inhabitants/km2)

<4 1.0
4–30 1.1
30–80 1.2

80–170 1.3
170–300 1.4
300–500 1.5
500–850 1.6

850–1400 1.7
1400–2000 1.8
2000–2700 1.9
≥2700 2.0
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3.5. Desertification Sensitivity Index

The desertification sensitivity index is a comprehensive index generated by the geo-
metric mean of the soil quality index, vegetation quality index, climate quality index, and
management quality index (Equation (4)). In this study, we classified the desertification
sensitivity index into 8 grades based on the Jenks natural breaks classification method
and described the desertification risk of different grades based on the MEDALUS model
improved by Ferrara et al., (2020) [28] (Table 6).

Table 6. Desertification sensitivity classification and its corresponding level [28].

Level
of Sensitivity

Sensitivity
Grade Sensitivity Score Short Description

Very low 1 1.00 ≤ DSI < 1.226 Very low risk of desertification, with a perfect balance of natural and human factors.

Low 2 1.226 ≤ DSI < 1.294 Low risk of desertification, except in cases of major climate change or
serious mismanagement.

Medium
3 1.294 ≤ DSI < 1.363 Medium risk of desertification, with a relative balance between natural and human

activities, with the possibility of land desertification if there is an imbalance in
one aspect.

4 1.363 ≤ DSI < 1.423
5 1.423 ≤ DSI < 1.477

High 6 1.477 ≤ DSI < 1.537 High risk of desertification; imbalance between natural and anthropogenic activities
has occurred, and local areas have seen desertification trends.7 1.537 ≤ DSI < 1.622

Very high 8 1.622 ≤ DSI

Very high risk of desertification (including desertified landscapes); serious
imbalance between natural and human activities; has experienced desertification,
rock desertification, salinization, or there is an obvious desertification process that

poses a threat to the environment of the surrounding area.

4. Results

The spatial distributions of the soil, vegetation, climate, and management quality
indexes are shown in Figure 7; the desertification sensitivity index and graded spatial
distribution of desertification sensitivity are shown in Figure 8; and the area of each grade
and its percentage are shown in Table 7 (excluding the South China Sea Islands). A larger
value of the desertification sensitivity index indicates higher desertification sensitivity
(Figure 8a), and a high grade in Figure 8b indicates a higher desertification risk.

4.1. Soil, Vegetation, Climate, and Management Quality Indexes

From Figure 7a, the soil quality gradually improved from northwest to southeast
China, with regions of poor soil quality mainly concentrated in the desert belt of northwest
China (eight deserts and four sandy lands), such as the Taklamakan Desert (the largest
desert in China) and the Horqin Sandy Land (the largest sandy in China). However, the
Hulunbuir Sandy Land had slightly better soil quality compared to other deserts and
sandy lands. Comparing the five sub-indicators of soil quality in Figure 3 revealed that
soil pH, soil depth, and soil texture were “strong factors” affecting soil quality, while rock
fragments were a “weak factor”, and terrain slope had almost no effect. It can be seen
from Figure 7b that vegetation quality in southern China was significantly higher than
that in the north, with vegetation quality in the east being significantly higher than that
in the west. Specifically, vegetation quality in the northwest was the lowest. Comparing
the four sub-indicators of vegetation quality in Figure 4 revealed that drought resistance,
erosion protection, and plant cover were “strong factors” affecting vegetation quality,
while fire risk had almost no effect. From Figure 7c, it can be observed that regions with
harsh climate conditions were mainly distributed in the desert regions of northwest China,
such as the Taklamakan Desert. Comparing the three sub-indicators of climate quality in
Figure 5 revealed that the aridity index, precipitation, and evapotranspiration were all
“strong factors” affecting climate quality, with the drought index had a greater impact on
climate quality. From Figure 7d, the regions with poor management quality in China were
mainly dominated by the Hebei, Henan, and Shandong provinces. Comparing the two
sub-indicators of management quality in Figure 6 revealed that land use was a “strong
factor” affecting management quality, while population density was a “weak factor”.
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4.2. Desertification Sensitivity Index

From Figure 8a, China’s desertification susceptibility showed a spatial distribution
pattern of a higher sensitivity in northwestern than in northeastern and southern China.
Through the classification of desertification sensitivity levels and the statistics of the area
of each level, it is found that the areas with a very low desertification sensitivity (grade 1)
covered about 1,100,547.14 km2, accounting for about 11.66% of the total area of the country,
mainly concentrated in southern China and northeastern China (Table 7, Figure 8b). The areas
with low desertification sensitivity (grade 2) covered about 1,004,806.87 km2, accounting for
about 10.65% of the total area of the country, which were distributed in regions surrounding
the areas with very low desertification sensitivity (Table 7, Figure 8b). The areas with medium
sensitivity to desertification (grades 3–5) covered about 4,326,269.33 km2, accounting for about
45.86% of the total surface area of the country, with the highest percentage mainly distributed
in the Qinghai–Tibet Plateau and Inner Mongolia Plateau (Table 7, Figure 8b). The areas with
high desertification sensitivity (grades 6 and 7) covered about 2,384,409.72 km2, accounting
for about 25.27% of the total area of the country, mainly concentrated in central and northern
China, and in the peripheral areas of various deserts and sandy areas (Table 7, Figure 8b). In
addition, the North China Plain area adjacent to the provinces of southern Hebei, northern
Henan, and western Shandong, and the Guanzhong Basin adjacent to the central Shaanxi
and southern Shanxi provinces showed a high sensitivity to desertification; the areas with
extremely high desertification sensitivity (grade 8) covered about 620,628.79 km2, accounting
for about 6.58% of the total area of the country, mainly concentrated in the northwest desert
belt, with the eight deserts and the sandy land and Gobi in the four major sandy land areas
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being representative of the areas with an extremely high desertification sensitivity (Table 7,
Figure 8b). In summary, the spatial distribution of desertification sensitivity in China showed
a distribution pattern of high in the northwest and low in the southeast. Although the overall
desertification sensitivity in China was medium–low, accounting for 68.16% of the country
area, the percentage of high and very high desertification was 31.84%, and it was mainly
concentrated in the northwest desert belt, showing a distribution pattern of low in the desert
periphery and high in the interior desert and nested together.
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Table 7. Area and percentage of each desertification sensitivity grade.

Level of Sensitivity Sensitivity Grade Area (km2) Percent (%)

Very low 1 1,100,547.14 11.66
Low 2 1,004,806.87 10.65

Medium
3 857,317.06 9.09
4 1,510,479.81 16.01
5 1,958,472.46 20.75

High 6 1,509,278.78 15.99
7 875,130.94 9.27

Very high 8 620,628.79 6.58

4.3. Analysis of Desertification Drivers

Firstly, sufficient uniform sampling points (a total of 11,924) were obtained in the
Chinese region by creating 10 × 10 km fishing nets, dividing the sample points into five
groups according to the five levels (very low, low, medium, high, and very high deserti-
fication sensitivity) classified in Table 7, and ranking the components according to their
percentage of the total component variance after dimensionality reduction and extract-
ing three principal components to obtain the principal components (Figure 9). Figure 9
showed that the three principal components explained 72.6% of the total variance, the
similar sample points showed extremely strong clustering, and the clustering results of
the sample points were highly consistent with the division of the desertification sensitivity
index, except for some outliers, which indicated the internal stability of the MEDALUS
model. Secondly, based on the extracted sample points, a principal component loadings
map (Figure 10) was generated considering principal components 1 and 2 (explaining 61.2%
of the variance), and a correlation heat map (Figure 11) was generated based on Pearson
correlation analysis [50], which led to the identification of the overall desertification drivers
in China. It was found that the magnitude of the driving force of the four key indicators on
desertification sensitivity was in the order of VQI (0.84) > SQI (0.77) > CQI (0.73) > MQI
(0.65), which suggested that vegetation quality was the main driver of land desertification
in the country, with soil quality and climate quality as secondary drivers and management
quality as a relatively weak driver. In response to this situation, in terms of sand prevention
and control projects in China, the government or relevant departments can take measures
to improve the vegetation quality index by reverting farmland back to forests or grasslands
and controlling grazing activity, supplemented with improved soil quality and paying
attention to climate change, etc., to mitigate the risk of land desertification in China.

The magnitude of the 14 sub-indicators driving desertification in China was in the
following order: EP (0.84) > DR (0.83) > LU (0.82) > AI (0.73) > SP (0.70) > PC (0.65) >
ST (0.54) > PRE (0.51) > SD (0.47) > ETP (0.24) > RF (0.089); population density (−0.23),
terrain slope (−0.26), and fire risk (−0.39) showed negative correlations with desertification
sensitivity. This indicates that erosion protection, drought resistance, and land use are the
main drivers of desertification in China; aridity index, soil pH, vegetation cover, soil texture,
precipitation, soil depth, and evapotranspiration are the secondary drivers of desertification
in China; and soil debris content has almost no driving effect on desertification trends
in China. Erosion protection, drought resistance, and land use have become the main
drivers of China’s desertification process, which is closely related to the existence of a large
number of native deserts and the Gobi in northwest China. The aridity index, precipitation,
and evapotranspiration have become secondary drivers of China’s desertification process,
indicating that the overall climatic environment of China is poor, especially in northwest
China, which is deep in the hinterland of Eurasia, with little water vapor from the ocean
and annual precipitation below 160 mm, forming one of the harshest arid zones in the
world [51]. Soil pH was a secondary driver of the desertification process in China, which
confirms, to some extent, that the current salinization of semi-arid and arid land in China
is serious [8]. Based on the above research results, the spread of primary deserts should
be focused on in the process of land desertification control in China. Since climate has
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a lagging effect on desertification, the monitoring of China’s climatic environment is also
a priority in the control of land desertification in China; it is also necessary to pay more
attention to the problem of soil salinization.
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to desertification; VH indicates the sample points with very high sensitivity to desertification.
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Figure 11. Heat map of desertification correlation in China. DSI, desertification sensitivity index;
SQI, soil quality index; VQI, vegetation quality index; CQI, climate quality index; MQI, management
quality index; TS, terrain slop; SP, soil pH; SD, soil depth; RF, rock fragments; ST, soil texture; FR,
fire risk; DR, drought resistance; EP, erosion protection; PC, plant cover; AI, aridity index; PRE,
precipitation; ETP, evapotranspiration; POP, population density; LU, land use. p < 0.05 is a slightly
significant correlation; p < 0.01 is a significant correlation; p < 0.001 is a very significant correlation.

5. Discussion
5.1. Discussion of the Reliability and Pros and Cons of the MEDALUS Model

The regions with a high and very high desertification sensitivity assessed in this
paper were mainly concentrated in the desert belt of northwest China, including Xinjiang,
Gansu, Qinghai, inner Mongolia, and other provinces, which is consistent with the previous
results [19,51]. Guo et al., (2020) [51] calculated the land desertification sensitivity index
in the arid zone of northwest China based on a spatial distance model and found that the
highly sensitive areas were mainly distributed in most areas of the Junggar Basin, Tarim
Basin, and Inner Mongolia Plateau, including the Taklamakan Desert, Badain Jaran Desert,
and Tengger Desert hinterland. Xu et al., (2019) [19] constructed the Land Desertification
Sensitivity Index (LDSI) to assess desertification in northern China and found that the highly
sensitive areas were mainly distributed in the eastern part of the Horqin steppe, Qaidam
Basin, Tarim Basin, and Junggar Basin. Although the methods used in this study differ
from those of previous research, the assessed desertification-sensitive areas in northern
China were highly consistent, which further confirmed the rationality of the MEDALUS
model in desertification sensitivity assessments in China and the reliability of our results.

In comparison with similar models for assessing desertification sensitivity, such as
the spatial distance model [51] and LDSI assessment method [19], the MEDALUS model
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has a broader applicability to different types of desertification areas, and it is especially
advantageous in large-scale assessments. This model is capable of integrating various
factors that contribute to desertification, including natural and human factors, leading to
more accurate assessment results, which is why it was chosen for this study. However,
the MEDALUS model also has some limitations. Firstly, the model’s complexity is high,
since it needs to consider a range of factors and collect a large amount of data for numerous
calculations, which makes it costly to apply and implement. Secondly, the model’s target-
ing is relatively weak as it is applicable to different types of desertification assessments.
However, the specific influencing factors of desertification in different regions may differ
and vary. Therefore, fieldwork verification would improve the model’s accuracy.

5.2. Discussion of Localized Highly Sensitive Areas

This study found that the junction areas among Hebei Province, northern Henan
Province, western Shandong Province, central Shaanxi Province, and southern Shanxi
Province, showed a high sensitivity to desertification (Figure 8b). Since the newly dis-
covered, highly sensitive areas are close to the capital city of China (Beijing), once the
desertification level is elevated, wind and sand disasters will directly influence Beijing,
causing serious impacts on the residents’ living health, the ecological environment, and
economic development. In this study, we identified and extracted two regions (Figure 12)
outside the northwest desert belt. Despite their different landscape types (region A is
predominantly plains, while region B is predominantly basin), both regions were charac-
terized by dryland land use and exhibited a high risk of desertification. To investigate
the driving forces of desertification in these two regions, we randomly selected 1000 uni-
formly distributed sample points in each region and generated correlation heat maps
(Figures 13 and 14). Through this quantitative analysis, we aimed to identify the key factors
contributing to desertification in these two areas.

Remote Sens. 2023, 15, 2674 20 of 26 
 

 

However, the specific influencing factors of desertification in different regions may differ 
and vary. Therefore, fieldwork verification would improve the model’s accuracy. 

5.2. Discussion of Localized Highly Sensitive Areas 
This study found that the junction areas among Hebei Province, northern Henan 

Province, western Shandong Province, central Shaanxi Province, and southern Shanxi 
Province, showed a high sensitivity to desertification (Figure 8b). Since the newly discov-
ered, highly sensitive areas are close to the capital city of China (Beijing), once the deser-
tification level is elevated, wind and sand disasters will directly influence Beijing, causing 
serious impacts on the residents’ living health, the ecological environment, and economic 
development. In this study, we identified and extracted two regions (Figure 12) outside 
the northwest desert belt. Despite their different landscape types (region A is predomi-
nantly plains, while region B is predominantly basin), both regions were characterized by 
dryland land use and exhibited a high risk of desertification. To investigate the driving 
forces of desertification in these two regions, we randomly selected 1000 uniformly dis-
tributed sample points in each region and generated correlation heat maps (Figures 13 
and 14). Through this quantitative analysis, we aimed to identify the key factors contrib-
uting to desertification in these two areas. 

 
Figure 12. Localized areas of high desertification sensitivity. Figure 12. Localized areas of high desertification sensitivity.



Remote Sens. 2023, 15, 2674 19 of 24
Remote Sens. 2023, 15, 2674 21 of 26 
 

 

 
Figure 13. Heat map of desertification correlation in region A in Figure 12. DSI, desertification sen-
sitivity index; SQI, soil quality index; VQI, vegetation quality index; CQI, climate quality index; 
MQI, management quality index; TS, terrain slope; SP, soil pH; SD, soil depth; RF, rock fragments; 
ST, soil texture; FR, fire risk; DR, drought resistance; EP, erosion protection; PC, plant cover; AI, 
aridity index; PRE, precipitation; ETP, evapotranspiration; POP, population density; LU, land use. 
p < 0.05 is a slightly significant correlation; p < 0.01 is a significant correlation; p < 0.001 is a very 
significant correlation. 

 

Figure 13. Heat map of desertification correlation in region A in Figure 12. DSI, desertification sensi-
tivity index; SQI, soil quality index; VQI, vegetation quality index; CQI, climate quality index; MQI,
management quality index; TS, terrain slope; SP, soil pH; SD, soil depth; RF, rock fragments; ST, soil
texture; FR, fire risk; DR, drought resistance; EP, erosion protection; PC, plant cover; AI, aridity index;
PRE, precipitation; ETP, evapotranspiration; POP, population density; LU, land use. p < 0.05 is a slightly
significant correlation; p < 0.01 is a significant correlation; p < 0.001 is a very significant correlation.

From Figure 13, it can be seen that the four main indicators drove desertification in
region A (MQI (0.91) = VQI (0.91) > SQI (0.31) > CQI (0.0062)). The management quality
index and vegetation quality index were the main drivers of desertification in region A,
soil quality index was the secondary driver, and climate quality had almost no driving
effect on region A; these results indicate that poor quality of vegetation due to poor human
management may be the main reason for the high sensitivity to desertification in region
A. Among the 14 sub-indicators, drought resistance (0.91), erosion protection (0.91), and
land use (0.90) were the main drivers of region A. From Figure 14, the four main indicators
driving desertification in region B were VQI (0.87) > MQI (0.86) > CQI (0.20) > SQI (0.14),
which shows that vegetation quality and management quality were the main drivers
of desertification in region B, and climate quality and soil quality were the secondary
drivers. Among the 14 sub-indicators, erosion protection (0.87), land use (0.84), and
drought resistance (0.84) were the main drivers of region B. In this paper, the junction areas
of southern Hebei Province, north-central Henan Province and western Shandong Province,
central Shaanxi Province, and south-central Shanxi Province were considered densely
populated, and the land use type was mostly dry farmland, with excessive cultivation and
irregular use of chemical fertilizers leading to soil erosion and severe salinization of the
land. In addition, extracting groundwater for agricultural irrigation leads to a decrease in
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groundwater level and soil moisture content, exacerbating the risk of soil desertification.
Hence, the susceptibilities to desertification in region A and region B were high. In addition,
both region A and region B are close to the ancient Yellow River path, and the erosion
phenomenon may be the source of sand in both places. However, in China, government
policies have mostly focused on controlling wind and sand in the northwest region, while
overlooking desertification in other areas. To address the high risk of desertification in
regions A and B, relevant policies should be formulated to avoid over-exploitation of
natural resources, ensure a balanced industrial structure, reasonably allocate agricultural
and forestry resources, control the development of agricultural resources, and promote
the conversion of farmland to forests in the affected areas. For densely populated areas
that are highly sensitive to desertification, the government should also consider reasonable
diversion and the implementation of ecological migration policies to promote coordinated
and sustainable development of the environment and society.
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MQI, management quality index; TS, terrain slope; SP, soil pH; SD, soil depth; RF, rock fragments; 
ST, soil texture; FR, fire risk; DR, drought resistance; EP, erosion protection; PC, plant cover; AI, 
aridity index; PRE, precipitation; ETP, evapotranspiration; POP, population density; LU, land use. 
p < 0.05 is a slightly significant correlation; p < 0.01 is a significant correlation; p < 0.001 is a very 
significant correlation. 

 
Figure 14. Heat map of desertification correlation in region B in Figure 12. DSI, desertification sensi-
tivity index; SQI, soil quality index; VQI, vegetation quality index; CQI, climate quality index; MQI,
management quality index; TS, terrain slope; SP, soil pH; SD, soil depth; RF, rock fragments; ST, soil
texture; FR, fire risk; DR, drought resistance; EP, erosion protection; PC, plant cover; AI, aridity index;
PRE, precipitation; ETP, evapotranspiration; POP, population density; LU, land use. p < 0.05 is a slightly
significant correlation; p < 0.01 is a significant correlation; p < 0.001 is a very significant correlation.

5.3. Recommendations Related to Land Desertification Control and Restoration in China

Humans are the victims of land desertification, and, to a certain extent, they also play
a role in triggering land desertification. Within the context of harmony between humans
and nature, the environmental problem of land desertification in China is still serious;
therefore, based on the results of this paper, the following suggestions are proposed for the
future prevention and control of desertification.
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(1) In our study, among the four major indicators, vegetation quality was the main driver
of land desertification in China. In this regard, in the process of desertification control
in China, we can improve vegetation cover and establish a green barrier to stop
the expansion of desertification by strengthening policies such as grazing bans and
grazing rotation. Among the 14 sub-indicators, erosion protection, drought resistance,
and land use were the main drivers of desertification, which can be reduced by
reducing land erosion, improving land drought resistance, and strengthening the
control over land use.

(2) For native deserts and the Gobi (grade 8), the focus of desertification control should be
to establish artificial wind and sand forests to stop the spread of desertification to sur-
rounding areas. For non-native deserts and Gobi regions with a high sensitivity (grade
6 and 7), the degradation of land, soil, and vegetation caused by human abuse of land,
overgrazing, and overirrigation should be strictly controlled to prevent the expansion
of desertification. For regions with medium and low sensitivities to desertification
(grades 1–5), the local governance prevention model should be maintained.

Although this paper provides reference values and a scientific basis for targeted and
deep-rooted strategies to combat desertification in China, there are still shortcomings. The
northern regions of China are mostly grazing areas, and the study did not include the con-
version of livestock into livestock pressure in the assessment index. In the future, the impact
of grazing pressure on desertification sensitivity in northern China can be quantitatively
assessed by field counting livestock populations. Furthermore, it is crucial to consider
the impact of socio-economic development on desertification, and future versions of the
MEDALUS model should incorporate the relevant indicators. While fire risk, population
density, and topographic slope can influence desertification sensitivity, their relative effects
were relatively minor. Therefore, the inclusion of these parameters as sub-indicators in the
MEDALUS model requires further investigation.

6. Conclusions

Based on the multi-source remote sensing data and the improved MEDALUS model,
this study assessed the desertification sensitivity in China and analyzed the driving forces
of desertification and drew the following conclusions.

(1) The spatial distribution of desertification sensitivity in China showed a gradually de-
creasing distribution pattern from northwest to southeast, and the desertification sen-
sitivity was generally at a medium–low level, with an area of about 6,431,623.34 km2,
accounting for about 68.16% of the national land area, mainly distributed in the eastern
and southern regions of China. The areas with a very high desertification sensitivity
covered about 620,628.79 km2, and the areas with a high sensitivity to desertification
covered 2,384,409.72 km2, they accounting for 31.84% of the national land area, mainly
concentrated in the desert belt of northwest China and showing a nested distribution
pattern of a low periphery and high interior.

(2) The four key indicators for desertification sensitivity were ranked as follows: VQI
(0.84) > SQI (0.77) > CQI (0.73) > MQI (0.65). This indicates that vegetation quality was
the main driver of land desertification in China, while soil quality and climate quality
were secondary drivers. The ranking of the 14 sub-indicators driving desertification
was as follows: EP (0.84) > DR (0.83) > LU (0.82) > AI (0.73) > SP (0.70) > PC (0.65)
> ST (0.54) > PRE (0.51) > SD (0.47) > ETP (0.24) > RF (0.089) > POP (−0.23) > TS
(−0.26) > FR (−0.39). Thus, erosion protection, drought resistance, and land use were
the primary drivers of desertification in China, while aridity index, soil pH, vegetation
cover, soil texture, precipitation, soil depth, and evapotranspiration were secondary
drivers. Soil debris content, on the other hand, had little to no effect on the trend of
desertification in China.

(3) Mainly driven by the sub-indicators of drought resistance, erosion protection, and
land use, the desertification sensitivity was higher in the North China Plain region
adjacent to the capital city of Beijing than across three provinces, namely, southern
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Hebei province, north-central Henan province, and western Shandong province,
as well as the Guanzhong Basin region adjacent to central Shaanxi province and
south-central Shanxi province.
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