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Abstract: When navigating ships in cold regions, sea ice concentration plays a crucial role in determining
a ship’s navigability. However, automatically extracting the sea ice concentration and floe size distribu-
tion remains challenging, due to the difficulty in detecting all the ice floes from the images captured in
complex polar environments, particularly those that include both ships and sea ice. In this paper, we
propose using the YOLACT network to address this issue. Cameras installed on the ship collect images
during transit and an image dataset is constructed to train a model that can intelligently identify all the
targets in the image and remove any noisy targets. To overcome the challenge of identifying seemingly
connected ice floes, the non-maximum suppression (NMS) in YOLACT is improved. Binarization is
then applied to process the detection results, with the aim of obtaining an accurate sea ice concentration.
We present a color map and histogram of the associated floe size distribution based on the ice size. The
speed of calculating the sea ice density of each image reaches 21 FPS and the results show that sea
ice concentration and floe size distribution can be accurately measured. We provide a case study to
demonstrate the effectiveness of the proposed approach.

Keywords: deep learning; ice floe identification; image processing; floe size distribution; ice
concentration; YOLACT

1. Introduction

With the increasing exploration and exploitation of hydrocarbons in ice-covered wa-
ters, more attention is being paid to marine operations impacted by ice [1]. The greatest
challenge to Arctic navigation is sea ice, which covers approximately 7% of the world’s
oceans [2]. Sea ice concentration and floe size distribution are the key parameters that
significantly impact navigability. In cold regions, sea ice comes in various sizes, ranging
from meters to kilometers in size, and an icebreaker traveling through an area of high sea
ice concentration or large floe size must consider whether the ice conditions can support
safe passage. Therefore, real-time monitoring and an identification of the size and shape
of floes contribute to automatically detecting hazardous conditions [3,4] and the auxiliary
decision making for ship navigation in cold regions. Additionally, this floe size distribution
is crucial in forming a digital ice field. In numerical simulations of ice loads in a broken ice
field [5–11], the floe size distribution in the digital ice field is approximately estimated based
on the ice tank test. If computer vision is used to measure the actual floe size distribution
of the broken ice field, the accuracy of the numerical simulations will improve.

However, the retrieval of sea ice information from observational data sets is still limited
due to noise from the complex polar environment and a lack of efficient equipment and
algorithms for processing cold region images. Therefore, the development of technology for
high-resolution field observations and estimations of ice floe size distribution is necessary
and meaningful.
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Using optical images taken by ship-based cameras is one of the best ways to observe
the sea ice conditions in cold regions. Digital image processing techniques can reduce
uncertainties in the environment and suppress errors regarding objects, obtaining more
reliable information on the sea ice conditions [12]. In ice-covered regions, cameras are
commonly used as sensors to characterize these ice conditions [13,14]. Ship-based ob-
servations and remote sensing are currently the main methods used to obtain images of
ice-covered regions. Lu and Li [15] attached cameras to a ship to take photos and obtain the
ice concentration and floe size. Zhang and Skjetne [16] installed cameras on an unmanned
aerial vehicle (UAV) to collect data on sea ice and measure the ice statistics and properties.

Remote sensing is a crucial tool used in polar sea ice research [17–19]. Synthetic-
aperture radar (SAR) imaging plays an essential role in sea ice data analysis, as it is not
restricted by environmental factors, enabling the data to be continuously collected in
all weather conditions and through the polar night [20]. However, using satellite high-
resolution optical instruments incurs high application costs and cannot distinguish open
water from pond ice and persistent cloud cover [21]. To address this, Yan et al. [22] used
convolutional neural networks (CNN) to extract the sea ice concentration from Global
Navigation Satellite Signal Reflectometry (GNSS-R) data and Zhu et al. [23] used machine
learning to classify sea ice with GNSS-R data. Meanwhile, sea ice photography conducted
with digital cameras is widely used to determine the actual ice conditions encountered
by a ship or aircraft [24,25]. Optical sensors are not suitable for use in the dark and harsh
weather; however, shipborne photography is cost-effective, automated, and easy to operate,
making it a common method used for scientific expeditions in the polar regions.

When retrieving ice statistics from obtained images, the method of digital image
processing determines the quality of the ice information. In an actual ice-covered envi-
ronment, ice floes usually touch each other closely, making it challenging to identify their
borders from optical images. Several researchers have tried to mitigate this issue through a
boundary detection of the individual ice floes and an ice floe analysis [16,17,26]. Extracting
these ice floes from images is also a significant challenge. Zhang et al. [26] used threshold
segmentation to divide the image into “object area” and “background area,” which could
identify the sea ice. However, the threshold needs to be adjusted when processing images
captured in different light conditions [27] and the illumination affects the result. There are
many deep learning methods that can be used to identify sea ice, such as YOLO proposed
by Redmon et al. [28], which can automatically identify the class and location information
of ice. YOLACT, proposed by Bolya et al. [29], is a deep convolutional neural network and
can recognize different classes at the pixel level.

To calculate the sea ice concentration of the bow area, images captured by a camera
in an outward-looking orientation are used. These images typically contain sea ice, water,
and ships, making it necessary to distinguish between these three objects and extract the
ice. To accomplish this, sea ice images are collected and used to create a dataset for training
the YOLACT network. The trained instance segmentation model can distinguish the sea
ice and remove the water and ships from the images. Once the mask of sea ice has been
extracted, the number of sea ice pixels can be calculated. The real area of the sea ice is
proportional to the number of pixels, which can be calculated according to the ratio between
the pixel distance and the actual distance. With the acquisition of the real area, the floe size
distribution and ice concentration can be calculated from the resulting data.

2. Description of YOLACT Network

First, we utilize the YOLACT network to calculate the sea ice concentration, drawing
on previous knowledge of the network and our observations of the sea ice. Next, we detail
the construction of the dataset used for the sea ice identification, as well as the process of
the model training and testing. Finally, we explain the method used for calculating the
ice concentration.
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2.1. Model Description

The YOLACT network, proposed by Bolya et al. [29], is an instance segmentation
network. Unlike other methods of sea ice identification, YOLACT is a deep learning method
that can identify multiple objects in a complex environment. It can detect images taken in
different lighting conditions and identify objects other than sea ice. Figure 1 illustrates the
YOLACT network, which, similar to other networks, utilizes the multi-scale feature map
and Feature Pyramid Network (FPN) technique proposed by Zhao et al. [30]. The backbone
extracts features and transfers feature information to the prediction network through the
feature pyramid. The network divides complex detection tasks into two parallel processes
to speed up the detection. One branch uses ProtoNet to generate a prototype mask and the
other approach uses the prediction header to process the position and show the coefficients,
which are filtered by the NMS. In this paper, we adjust the NMS in the network to fit
the task of sea ice identification, as the common parameters of NMS can lead to missed
detections when detecting images with a high sea ice concentration. The obtained result is
linearly combined with the original mask to yield the segmentation of each instance.
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Figure 1. YOLACT framework diagram.

2.2. Dataset for Training Model

To ensure that the trained model can be applied to different environments, it is im-
portant not only to select a suitable model, but also to choose images captured in various
situations as datasets, such as model ice in an ice tank, sea ice in open water, and images
containing both ice breakers and ice in one picture.

The images of the model ice were obtained from the multifunctional ice basin of
the Marine Technology Group at Aalto University. The camera captured the model ice
images, which usually covered a large area, from the passage above the ice basin. To
enhance the applicability of the trained model, we varied the illumination conditions and
shooting angles of the camera, as shown in Figure 2. This diversified the dataset to include
various detection scenarios, making the trained model suitable for images captured not only
from a suitable illumination environment, but also from complex environments and even
open water.
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Figure 2. Images captured from a complicated environment. (a) Image taken against light. (b) Image
taken with a shooting angle.

During the model testing, we were not required to obtain the ice concentration for the
entire ice basin, as this is typically limited to a small area of interest, such as the ice–structure
interaction region near the bow. Globally extracting a segmentation of the model ice and
background from a whole ice basin image may cause the loss of some ice information,
especially when an image suffers from non-uniform illumination or shadow problems.
Moreover, sea ice images usually contain multiple ice floes that are closely connected, as
shown in Figure 2a, and some parts of floe boundaries can become weaker than others. This
problem becomes more challenging with an increasing picture-shooting range. Decreasing
the shooting range, however, can result in a loss of information, reducing the amount of
valid data for the training set and slowing down the model convergence speed. Moreover,
it can enhance noise and affect the segmentation for the detection set. Therefore, we needed
to ensure that the images contained sufficient information for creating a good training set
and adjust the parameters during the training to minimize the information loss. To make
the trained model better suited for sea ice detection, we also included some images of
crushing ice fields in the dataset, as illustrated in Figure 3.
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To classify the ice, ice breakers, and water in the images, the samples were grouped
into two classes: ice and ship, while the water was considered as the background of the
image. The purpose of this classification was to determine whether the trained model
could differentiate the sea ice and ice breakers from the water, which would enable the
mapping of the quantitative sea ice concentration. During all the tests, 80% of the dataset
was allocated for training and 20% for validation.
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2.3. Model Training and Testing

In this experiment, the YOLACT model used the ResNet50 network and was trained
for 40,000 iterations with an initial learning rate of 0.01. The decay was set to occur at
the 20,000th, 30,000th, and 35,000th iterations, respectively, with a decay rate of 10% of
the current learning rate. Additionally, because the images of the sea ice were taken from
high angles, the image size was enhanced to 1000 (normally set to 500). The “image size”
parameter refers to the size of the input image into the neural network. The actual size
of the images taken from the ice basin could be up to 1200 and the large shooting range
captured a significant amount of sea ice. If we continued to set the image size to 550, the
small size of ice blocks in the images may not have been clear enough to train the model.
For the instance segmentation of sea ice, the main evaluation metric used was average
precision (AP). To determine whether an object was accurately segmented, the Intersection
over Union (IoU) threshold could be used to express the similarity coefficient between
the two sets of data. In instance segmentation, IoU represents the overlap area between
the predicted sea ice mask Mp and the real sea ice mask MGT, divided by the union area
between them, as follows:

IoU =
Mp ∩MGT

Mp ∪MGT
(1)

To assess the accuracy of the segmentation predictions, we used a threshold. If we
set the IoU threshold t to be high during the image detection, we could achieve a higher
prediction accuracy. In this paper, we varied the IoU thresholds from 0.50 to 0.95, with a
step size of 0.05, to obtain an accurate object segmentation.

We counted the detected ice to obtain the number of true positives (TP), false positives
(FP), and false negatives (FN). In this study, TP refers to the sea ice that the model correctly
identified as ice, FP refers to the water or other objects (excluding ice) that the model
mistakenly identified as ice, and FN refers to the sea ice that the model mistakenly identified
as water or other objects (excluding ice). We calculated the precision (P) and recall (R) using
the following equations:

P(t) =
TP(t)

TP(t) + FP(t)
(2)

R(t) =
TP(t)

TP(t) + FN(t)
=

TP(t)
GT

(3)

where t is the variable used for the different thresholds of IoU. P represents the accuracy
of the sea ice predictions, that is, the model’s ability to identify sea ice. R represents the
percentage of the predicted sea ice among all the sea ice in the image, that is, the model’s
ability to find all the sea ice. A good instance segmentation model should have both a
high precision and high recall. The average IoU and precision of the trained model were
calculated to be 90.38% and 89.15%, respectively. Because of the large number of ice blocks
in images, the detection speed was lower than the mean speed for detecting other objects
with YOLACT, at 1.7 frames per second (FPS).

After detecting the ice using the trained model, the mask of the ice blocks could be
extracted, which was used to calculate the ice area. The algorithm for the sea ice mask
extraction is given in Algorithm 1.

2.4. Calculation of Ice Area

During ice breaking, some crushed ice may overturn and end up on the surface of
other floes, as shown in Figure 4b, which was detected from Figure 4a. As the model could
detect any ice floes in the image, the floes on top of one another would be detected in the
results. When calculating the area of all the masks directly, the overlapped area of the
ice floes would cause the ice concentration to be overestimated. In practical applications,
when icebreakers are breaking the ice, a lot of ice will overturn, and small pieces of ice
will often end up on top of larger floes, making it difficult to accurately calculate the
ice concentration.
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Algorithm 1. Ice Pixel Extraction

Input: sea ice image
Start algorithm:
1: WP← sea ice image
2: SEGMENTATION←an empty list to store the result of instance segmentation
3: MODEL←the trained model from YOALCT
4: C←the confidence threshold
5: I←the IoU threshold
6: DETECTION←the detection result of the sea ice image by using MODEL
7: For each detected mask m in DETECTION do
8: If confidence of m > C and IoU of m > I do
9: WP←WP with m
10: SEGMENTATION←the box, class, and mask
11: End for
12: Return WP and SEGMENTATION
Output: sea ice segmentation
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To solve this problem, we used binarization after the ice floe identification. Binarization
is an image processing method that classifies all the pixels of an image according to their
grayscale values. Pixels with a grayscale value above a certain threshold are displayed
as white and those below the threshold are black. However, the output of the detection
is a mask overlaid on the original image, which cannot be directly processed through
binarization. To address this, we extracted the mask from the detection result of a new
image that consisted of all zero tensors, as shown in Figure 4c. We then converted it into a
binarized image, according to the grayscale of each pixel. This allowed us to eliminate the
area of an ice floe on top of another, as shown in Figure 4d, and accurately measure the ice
concentration by counting the white pixels in this image.

After applying area correction using this method, we calculated the number of pixels
belonging to different objects. The number of white pixels represents the area of the ice floes,
while the number of black pixels represents the area of the water. Using this information,
we collected and labeled all the ice pieces, as shown in Figure 5. To visualize the sizes more
effectively, we defined the size of each ice piece as the number of pixels it occupied. We
labeled the ice pieces in different colors, based on the following equation:

Color(p) =

{
0,

Colormap([ size(i)
max(size(ICE)) ]),

i f
i f

p /∈ ICE
p ∈ ice(i)

(4)

where p is the pixel, ICE = {ice(1), ice(2), ice(3), . . . } is a set of detected ice pieces, Colormap
is an RGB color bar from blue to red, ice(i)∈ICE, size(i) is the pixel number of ice(i), and
size(ICE) is the pixel number of each ice piece in ICE. The smaller ice pieces are blue and the
larger ice pieces are red. The area of the ice was calculated using Algorithm 2. Additionally,
we conducted a test using 100 images to calculate the running time of Algorithms 1 and 2,
including a sea ice instance segmentation and calculation of the sea ice concentration. Finally,
we found that the speed was 21 FPS, which supports the requirements of real-time detection.
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Algorithm 2. Ice Area Calculation

Input: ice segmentation
Start algorithm:
1: PIECES←ice segmentation
2: AREA←an empty list to store area of each ice
3: BW←empty black image
4: for each piece ∈ PIECES do
5: piece←binarization of each mask
6: AREA←area of piece
7: end for
8: INDENX←the number of sorted AREA
9: for i ∈ INDENX do
10: COLOR←get color by Equation (4)
11: pixel of the piece[i]←COLOR
12: BW←BW with colored piece
13: end for
14: IDENTIFICATION←labeled region in BW
15: FLOE←labeled regions in IDENTIFICATION with large sizes
16: BRUSH←labeled regions in IDENTIFICATION with small sizes
17: DISTRIBUTION←floe size distribution
18: return FLOE, BRASH, DISTRIBUTION
Output: floe size distribution

3. Sensitivity Analysis on Annotation and NMS Parameters

When building a dataset and testing the trained model, we found that the sea ice
segmentation could be affected by different annotations in the dataset and different settings
of the NMS parameter. In this section, we will elaborate on the reasons for this condition
and analyze the sensitivity to different annotations and NMS parameters.

3.1. Annotation of Ice Blocks

When collecting ice images, it is necessary to label the ice blocks in these images to
inform the computer what constitutes ice, so that it can identify and learn the characteristics
of the ice via deep learning. In a previous study [31], YOLACT was used to detect wedge
ice and identify circumferential cracks. However, the last dataset used only labeled some
wedge-shaped ice, as depicted in Figure 6a, and did not capture many small ice pieces or
the ice around the images. To address this issue, we attempted to use the neural network
for identifying the unmarked model ice through a semi-supervised learning approach.
Given the large number of ice blocks in each image and the adequate quantity of images,
we deemed the dataset to be sufficiently large.
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However, when using the model to identify the model ice, a significant amount of
model ice could not be segmented due to the network characteristics of YOLACT. The
convolution layer outputted a feature vector through the full connection layer, which may
have had shape features aligned with the model ice boundaries. The detection result
was mostly ice that had a similar shape to the labeled ice in the training set, as shown
in Figure 6b. Ice blocks of other shapes could not be identified and the mask could not
cover the ice completely. In the previous task, detecting wedge-shaped ice and extracting
circumferential cracks was sufficient to meet the task requirements. However, the task of
this study was to calculate the ice concentration and floe size distribution; therefore, all the
ice blocks must be detected, regardless of their shape. Hence, the data set was not suitable
for this task.

Based on this experience, we relabeled the model ice to eliminate the above-mentioned
issues. We mainly relabeled the ice that was not labeled in the previous labeling process,
as shown in Figure 7. In the new data set, we labeled model ice of different shapes to
create various training samples. This approach ensured that the model could identify ice of
different shapes.
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After conducting multiple training tests, we created an instance segmentation dataset
specific to sea ice image processing. This dataset could be used to train various models to
achieve different functions and the trained model could also be utilized for detecting ice in
tanks and open water.

3.2. Recommendation for NMS Parameters

Based on the images captured from the ice tank and open water, ice blocks tend to be
in close contact in areas with a high ice concentration. This is in contrast to other object
instance segmentation tasks, such as identifying people or cars, where objects generally do
not make such close contact. The original YOLACT network can effectively segment the
objects in images with generic parameters.

Non-maximum suppression (NMS) acts like a high-pass filter in the YOLACT network,
as shown in Figure 1. It filters out boxes with a lower confidence by first sorting all the
prediction boxes B in the same class, then selecting the prediction box with the highest score
S to calculate the IoU with the other prediction boxes in the same class. It then deletes any
boxes larger than the threshold until all the boxes are considered. However, when an object
is occluded, as illustrated in Figure 8, the three dashed boxes represent three objects of the
same class, while the solid wireframe is a box that frames all three objects together. Despite
having the largest IoU threshold M, the NMS selects the solid wireframe with an IoU value
of 0.9 as the first box to be retained. If the IoU threshold of the other boxes and this box
is greater than the selected threshold, the NMS will delete the three dashed boxes with
accurate positioning but low classification scores, resulting in an inaccurate box selection.
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Figure 8. An example of NMS.

As the instance segmentation of ice blocks differs from other object detections and
instance segmentations, the NMS threshold determines the number of ice blocks that can
be identified. In other words, if two ice blocks highly overlap, they can only be detected
by setting a large NMS threshold to ensure that the box with a lower confidence score is
not suppressed.

YOLACT proposed a new method called Fast-NMS to enhance the speed of detection.
The ROI position can be obtained by adding the position offset to the anchor position. As
per the above analysis, NMS is a commonly used filtering algorithm if the ROI overlaps.
Matrix simplification is used to reduce the time in Fast-NMS; however, some accuracy has
to be sacrificed. For example, let us suppose there are five ice ROIs—B1, B2, B3, B4, and
B5, respectively. Next, the IoU between them is obtained through a matrix operation. The
hypothetical results are shown in Table 1. In the next step, the lower triangle and diagonal
elements of the matrix are deleted to obtain the key parameters presented in Table 2.

Table 1. IoU of 5 ROIs.

B1 B2 B3 B4 B5

B1 1 0.8 0.1 0.2 0.3

B2 0.8 1 0.6 0.4 0.1

B3 0.1 0.6 1 0.6 0.2

B4 0.2 0.4 0.6 1 0.4

B5 0.3 0.1 0.2 0.4 1

Table 2. Remaining IoUs after removing the small values.

B1 B2 B3 B4 B5

B1 - 0.8 0.1 0.2 0.3

B2 - - 0.6 0.4 0.1

B3 - - - 0.6 0.2

B4 - - - - 0.4

B5 - - - - -

Each of these elements satisfies the condition that the row number is less than the
column number. Next, the maximum value for each column is taken and the result is
(-, 0.8, 0.6, 0.6, and 0.4). Assuming a threshold of 0.5, any two ROIs with an IoU greater
than 0.5 should discard the one with a low confidence. According to the maximum value,
the columns corresponding to B2, B3, and B4 exceed the threshold; therefore, these three
ROIs will be removed in this step.
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This is because, as the row number of each element is less than the column number
and the sequence numbers are arranged in descending order from high to low confidence,
any element greater than the threshold indicates that the ROI corresponding to this column
overlaps with the ROI with a higher confidence; therefore, it needs to be removed.

As stated above, B3 is retained because it overlaps too much with B2 (the IoU is 0.6);
however, there is a situation where B3 and B2 are the bounding boxes of ice that are closely
contacted. There will be some ice that cannot be detected using this method, as shown in
Figure 9a. To address this issue, we use traditional NMS instead of Fast-NMS to build a
more suitable network for the ice instance segmentation. In the traditional NMS algorithm,
we set the number of examples to consider for NMS as 200, which means that the bounding
boxes of the top 200 IoU will be considered. Because the number of ice blocks in the image
is usually large, a threshold of 0.01 is set to remove the bounding box with a confidence
less than the threshold. Additionally, we set another NMS threshold of 0.5 to filter out the
boxes with an IoU overlap less than this threshold. With these parameters, the algorithm
can identify the ice in the ice tank well, as shown in Figure 9b.
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4. Case Study

In this section, we will select an image captured on an icebreaker sailing through a
cold region, process this image using the methods introduced in the previous section, and
calculate the sea ice concentration and floe distribution.

4.1. Extract the Mask of Ice

Usually, the camera is placed at the bow of the ship and shoots in the forward direction
of the ship at an angle of approximately 45◦, as shown in Figure 10. The sea ice detection
algorithm is applied to the image to obtain the mask of the sea ice, which is then converted
into a binary format. The number of pixels per mask is calculated to determine the size of
the ice floe, and the sum of the pixels for all the masks represents the area of the ice floe in
the region that is measured.

When measuring the sea ice concentration in the bow region, the camera must be
positioned at a certain angle to capture an image that includes the bow area. To accurately
calculate the sea ice concentration, the pixels corresponding to the bow area in the image
need to be removed. Additionally, the model must be able to identify different types of
ships in the image. To accomplish this, we augment the dataset by adding the training
data from ships sailing in cold regions and combine them with the original dataset. The
pretraining model we use is based on the model ice. A new model is then trained, which
can identify both ships and ice simultaneously.
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Figure 10. Image taken with the ship in Antarctica [32].

Figure 10 was detected with the new model, as shown in Figure 11. The sea ice in
the bow region is accurately identified. However, due to the shooting angle, the mask of
the sea ice detected in the distance is incomplete. The shooting angle not only affects the
detection accuracy, but also causes the amount of sea ice detected in the distance to be
less than its actual value. In practice, it is difficult to avoid the shooting angle, as this is
necessary to ensure that the image contains a large enough area.
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Figure 11. Instance segmentation of Figure 10.

4.2. Geometric Calibration

When sailing in polar regions, navigation observations are captured by camera lenses
with outward-looking orientations. These cameras take pictures of the bow and shoulder
areas; however, to capture a larger area of sea ice around the ship, they are set at a wide
angle instead of vertical shooting. However, this can result in inadequate identification
results for calculating the size distribution statistics. The calculated area of the ice floes
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in the far range of the image may be smaller than the actual area, introducing errors into
further analyses.

According to [15,16], the field of view and shooting angle of the camera can be mea-
sured by a sensor and this distortion can be orthorectified. However, in Figure 10, the
actual parameters of the camera are not measured. Therefore, we estimate the shooting
angle and field of view based on the statistical similarities between the size distributions
of the near and far ranges of the image. In Figure 10, the shooting angle is approximately
45◦ and the field of view is 46◦. Using this information, we can orthorectify the overall
segmentation image and illustrate the algorithm specifically.

As shown in Figure 11, some ice floes at the far range of the image may not be identified
due to distortion. Therefore, a geometric calibration should be performed on the original
sea ice image before the ice instance segmentation (Algorithm 1). In this paper, a perspective
transformation is used for the geometric calibration, which is a form of projective mapping
that projects the picture onto a new viewing plane. Perspective transformation is used to
transform objects into straight lines from an original picture, as objects that are straight
lines may appear as slashes in the picture. The picture is transformed from the focal plane
to the orthorectification plane through a linear transformation and translation, with the
transformation equation being as follows:X

Y
Z

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

x
y
z

 (5)

where (X, Y, Z) is the coordinate of the focal plane and the transformation matrix is:a11 a12 a13
a21 a22 a23
a31 a32 a33

.

The transformation matrix can be divided into four parts:
[

a11 a12
a21 a22

]
, which denotes

the linear transformation, [a31 a32], which denotes the translation, and [a13 a23]T, which
leads the perspective. The coordinate of the corresponding point in the transformed picture
is (X′, Y′, Z′). Because we are processing a two-dimensional image, we assume Z′ = 1 and
divide the transformed image coordinates by Z′, reducing the image from three dimensions
to two dimensions. Then, we can obtain the following equation:

X′ = X
Z

Y′ = Y
Z

Z′ = Z
Z

(6)


X′ = a11x+a12y+a13

a31x+a32y+a33

Y′ = a21x+a22y+a23
a31x+a32y+a33

Z′ = 1

(7)

Generally, to calculate X′ and Y′, we assume a33 = 1, which yields:{
a11x + a12y + a13 − a31xX′ − a32X′y = X′

a21x + a22y + a23 − a31xY′ − a32yY′ = Y′
(8)

Therefore, given the several points corresponding to the transformation, the transfor-
mation equation can be obtained. We choose four points of the original picture, such as
(x0,y0), (x1,y1), (x2,y2), and (x3,y3). Furthermore, we set four target points as the vertices of



Remote Sens. 2023, 15, 2663 14 of 18

the transformed picture: (X0
′,Y0

′), (X1
′,Y1

′), (X2
′,Y2

′), and (X3
′,Y3

′). By substituting these
points into Equation (8), we can obtain:

x0 y0 1 0 0 0 −x0X′0 −y0X′0
0 0 0 x0 y0 1 −x0Y′0 −y0Y′0
x1 y1 1 0 0 0 −x1X′1 −y1X′1
0 0 0 x1 y1 1 −x1Y′1 −y1Y′1
x2 y2 1 0 0 0 −x2X′2 −y2X′2
0 0 0 x2 y2 1 −x2Y′2 −y2Y′2
x3 y3 1 0 0 0 −x3X′3 −y3X′3
0 0 0 x3 y3 1 −x3Y′3 −y3Y′3





a11
a12
a13
a21
a22
a23
a31
a32


=



X′0
Y′0
X′1
Y′1
X′2
Y′2
X′3
Y′3


(9)

The relationship between (x, y) and (X, Y) can be found on the basis of [16]. By
substituting the relation equations into (9), the transformed matrix can be obtained.

Once we obtain the transformation matrix, we can perform the perspective transfor-
mation on every pixel in the image using Equation (5), as shown in Figure 12.
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Figure 12. Result after orthorectification.

If we compare Figures 10 and 12, it is clear that the perspective transformation trans-
forms the distorted image into a ”bird’s-eye view” of the ice field, as illustrated in Figure 13.
The view of the ice field has changed from a perspective shot from the ship to a vertical
shot over the ice field. The ice in the far range of the picture has been enlarged, while the
ice in the close range of the picture has been reduced.
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4.3. Sea Ice Concentration and Floe Size Distribution

According to [16], a brash ice threshold parameter is used to distinguish brash ice from
ice floes based on the area of the identified ice. Brash ice is considered to be floating ice
fragments no more than 2 m across; thus, ice pieces larger than the threshold are considered
to be ice floes, while smaller pieces are considered to be brash ice.
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After inputting the picture following the perspective transformation, we obtain the ice
floe and brash ice size distributions, as shown in Figure 14. The color of the ice ranges from
blue to red according to the area of the ice blocks, with the brash ice shown in dark blue,
smaller floes in light blue, and larger floes in red.
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Using the masks of the ice blocks, we can determine the pixel count of the mask and
calculate the ice concentration using the equation:

concentration =
∑ area(m)

area(P)
m ∈ MASK (10)

where MASK = {m(1), m(2), m(3), . . . } is a set of detected masks and area(P) is the pixel
number of the whole picture. However, after the perspective transformation is applied to
the original picture, the size of the picture changes. Therefore, we calculate the pixel number
of Figure 14 as the new area(P). In Figure 14, there are 87 ice floes and 1 ship identified. The
percentages of coverage are 9.34% of brash ice, 45.12% of ice floes, and 45.53% of water. As
the height of shooting the picture is unknown, the actual size of the ice can be calculated
based on the number of pixels in the detected sea ice. The ice-floe-distributing histogram is
yielded and shown in Figure 15.
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5. Discussion

The method used in this paper took into account the different objects and illuminations
in images. Instance segmentation was first used to calculate the ice concentration and size
distribution. Shipboard oblique photography is an unavoidable challenge when measuring
sea ice. Although possible collisions with ice floes during ice breaking may affect the ice
definition, our method is still suitable for regions with low ice concentrations, such as the
marginal ice zone. Collisions only occur in regions with heavy ice conditions.

Due to the reflection of light sources on the water and ice, the bright characteristics of
light may cause water to be identified as ice floes with threshold segmentation. To train a
suitable instance segmentation model to accurately detect sea ice, a dataset of this sea ice
was constructed. The dataset contained images of model ice in the ice tank and images of
ships sailing through cold regions with varying lighting conditions, allowing the computer
to accurately identify the real sea ice. All shapes of the ice and ships in the images were
labeled, enabling the model to learn sufficient features. The instance segmentation model
trained with this dataset can meet many working conditions in the process of analyzing
sea ice images.

6. Conclusions

Compared to remote sensing, images obtained from navigation observations have a
higher resolution. Various image processing methods can be applied to these images to
obtain important sea ice information, such as sea ice concentration and size distribution in
the forward area, which can improve ship handling safety.

To identify the sea ice from images containing both ice and ships and derive the
ice concentration, we proposed an algorithm using instance segmentation based on the
YOLACT network. In the network, the NMS threshold was adjusted to detect the closely
connected ice in high-concentration broken ice fields. The masks outputted from YOLACT
were binary, in order to remove the masks of ice blocks that were covered by others, so that
the accuracy of the floe size could be calculated. We used perspective transformation in a
geometric orthorectification to correct for the situation where ice blocks appeared big when
near and small when far and obtained an acceptable sea ice concentration.

The developed methods provided valuable ice information that can be used to improve
our understanding of the sea ice in polar regions and navigation safety. However, it is
necessary to collect more image data to extend the dataset and quantitatively validate the
present method of calculating ice concentration. Images from different working conditions
are also needed to provide a basis for comparison with this study and this will be addressed
in future research.

Author Contributions: Resources and project administration, L.Z.; software and writing original
draft preparation, J.C.; validation, S.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Key Technologies Research and Development Program, grant
number 2022YFE0107000 and National Natural Science Foundation of China, grant number 52171259.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: We would like to thank the anonymous reviewers for their constructive and
valuable suggestions on the earlier drafts of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, L.; Riska, K.; Ji, C.Y. Simulating transverse icebreaking process considering both crushing and bending failures. Mar. Struct.

2017, 54, 167–187. [CrossRef]
2. Wadhams, P. Ice in the Ocean; CRC Press: Boca Raton, FL, USA, 2000.

https://doi.org/10.1016/j.marstruc.2017.04.004


Remote Sens. 2023, 15, 2663 17 of 18

3. Keinonen, A.J. Ice Management for Floating Ice Offshore Operations. In Proceedings of the Offshore Technology Conference,
Houston, TX, USA, 5–8 May 2008; pp. 690–704.

4. Hamilton, J.; Holub, C.; Blunt, J.; Mitchell, D.; Kokkinis, T. Ice management for support of arctic floating operations. In Proceedings
of the OTC Arctic Technology Conference, Houston, TX, USA, 7–9 February 2011; pp. 615–626.

5. Jin, Q.; Zhang, J.N.; Zhang, L.; Tian, Y.K. Research on the construction of ship’s numerical brash ice field and calculation method
of ice resistance. J. Ship Mech. 2021, 25, 879–890.

6. Xie, C.; Zhou, L.; Ding, S.F.; Liu, R.W.; Zheng, S.J. Experimental and numerical investigation on self-propulsion performance of
polar merchant ship in brash ice channel. Ocean. Eng. 2023, 269, 113424. [CrossRef]

7. Kim, J.H.; Kim, Y. Numerical simulation on the ice-induced fatigue damage of ship structural members in broken ice fields. Mar.
Struct. 2019, 66, 83–105. [CrossRef]

8. Jeong, S.Y.; Jang, J.; Kim, C.H.; Yum, J.G.; Kang, K.J. A study of ship resistance characteristics for ice-strengthened vessel by
broken ice channel width and size of broken ice pieces. J. Soc. Nav. Archit. Korea 2018, 55, 22–27. [CrossRef]

9. Luo, W.Z.; Jiang, D.P.; Wu, T.C.; Guo, C.Y.; Wang, C.; Deng, R.; Dai, S.S. Numerical simulation of an ice-strengthened bulk carrier
in brash ice channel. Ocean. Eng. 2020, 196, 106830. [CrossRef]

10. Xue, Y.Z.; Liu, R.W.; Li, Z.; Han, D.F. A review for numerical simulation methods of ship–ice interaction. Ocean. Eng. 2020,
215, 107853. [CrossRef]

11. Wang, C.; Hu, X.H.; Tian, T.P.; Guo, C.Y.; Wang, C.H. Numerical simulation of ice loads on a ship in broken ice fields using an
elastic ice model. Int. J. Nav. Archit. Ocean. Eng. 2020, 12, 414–427. [CrossRef]

12. Haugen, J.; Imsland, L.; Løset, S.; Skjetne, R. Ice observer system for ice management operations. In Proceedings of the
Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011; p. 1120.

13. Lu, P.; Li, Z.J.; Zhang, Z.H.; Dong, X.L. Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay.
J. Geophys. Res. Ocean. 2008, 113, C02011. [CrossRef]

14. Zhang, Q.; Skjetne, R.; Løset, S.; Marchenko, A. Digital image processing for sea ice observations in support to Arctic DP
operations. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil,
1–6 July 2012; Volume 44939, pp. 555–561.

15. Lu, P.; Li, Z.J. A method of obtaining ice concentration and floe size from shipboard oblique sea ice images. IEEE Trans. Geosci.
Remote Sens. 2010, 48, 2771–2780.

16. Zhang, Q.; Skjetne, R. Image processing for identification of sea ice floes and the floe size distributions. IEEE Trans. Geosci. Remote
Sens. 2014, 53, 2913–2924. [CrossRef]

17. Makynen, M.P.; Cheng, B.; Simila, M.H.; Vihma, T.; Hallikainen, M.T. Comparisons between SAR backscattering coefficient
and results of a thermodynamic snow/ice model for the Baltic Sea land-fast sea ice. IEEE Trans. Geosci. Remote Sens. 2007, 45,
1131–1141. [CrossRef]

18. Kurtz, N.T.; Markus, T.; Cavalieri, D.J.; Krabill, W.; Sonntag, J.G.; Miller, J. Comparison of ICESat data with airborne laser altimeter
measurements over Arctic sea ice. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1913–1924. [CrossRef]

19. Yu, P.; Clausi, D.A.; Howell, S.E. Fusing AMSR-E and QuikSCAT imagery for improved sea ice recognition. IEEE Trans. Geosci.
Remote Sens. 2009, 47, 1980–1989. [CrossRef]

20. Awange, J.L.; Kiema, J.B.K. Microwave remote sensing. In Environmental Geoinformatics; Springer: Berlin/Heidelberg, Germany,
2013; pp. 133–144.

21. Inoue, J.; Curry, J.A.; Maslanik, J.A. Application of Aerosondes to melt-pond observations over Arctic sea ice. J. Atmos. Ocean.
Technol. 2008, 25, 327–334. [CrossRef]

22. Yan, Q.Y.; Huang, W.M. Sea ice sensing from GNSS-R data using convolutional neural networks. IEEE Geosci. Remote Sens. Lett.
2018, 15, 1510–1514. [CrossRef]

23. Zhu, Y.; Tao, T.; Li, J.; Yu, K.; Wang, L.; Qu, X.; Li, S.; Semmling, M.; Wickert, J. Spaceborne GNSS-R for Sea Ice Classification
Using Machine Learning Classifiers. Remote Sens. 2021, 13, 4577. [CrossRef]

24. Worby, A.P.; Allison, I.; Dirita, V. A Technique for Making Ship-Based Observations of Antarctic Sea Ice Thickness and Characteristics;
Antarctic CRC: Boca Raton, FL, USA, 1999.

25. Lu, P.; Li, Z.J.; Dong, X.L.; Zhang, Z.H.; Chen, Z. Sea ice thickness and concentration in Arctic obtaining from remote sensing
images. Chin. J. Polar Sci. 2004, 15, 91–97.

26. Zhang, Q.; van der Werff, S.; Metrikin, I.; Løset, S.; Skjetne, R. Image processing for the analysis of an evolving broken-ice field in
model testing. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro,
Brazil, 1–6 July 2012; Volume 44939, pp. 597–605.

27. Lu, W.J.; Zhang, Q.; Lubbad, R.; Løset, S.; Skjetne, R. A Shipborne Measurement System to Acquire Sea Ice Thickness and
Concentration at Engineering Scale. Polar Remote Sens. 2016, 1, 1–12.

28. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

29. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++: Better Real-time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 44, 1108–1121. [CrossRef]

https://doi.org/10.1007/s13131-013-0377-2
https://doi.org/10.1016/j.marstruc.2019.03.002
https://doi.org/10.3744/SNAK.2018.55.1.22
https://doi.org/10.1016/j.oceaneng.2019.106830
https://doi.org/10.1016/j.oceaneng.2020.107853
https://doi.org/10.1016/j.ijnaoe.2020.03.001
https://doi.org/10.1029/2006JC003965
https://doi.org/10.1109/TGRS.2014.2366640
https://doi.org/10.1109/TGRS.2007.893735
https://doi.org/10.1109/TGRS.2008.916639
https://doi.org/10.1109/TGRS.2009.2013632
https://doi.org/10.1175/2007JTECHA955.1
https://doi.org/10.1109/LGRS.2018.2852143
https://doi.org/10.3390/rs13224577
https://doi.org/10.1109/TPAMI.2020.3014297


Remote Sens. 2023, 15, 2663 18 of 18

30. Zhao, Q.J.; Sheng, T.; Wang, Y.T.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H.B. M2det: A single-shot object detector based on multi-level
feature pyramid network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 29–31 January
2019; Volume 33, pp. 9259–9266.

31. Cai, J.Y.; Ding, S.F.; Zhang, Q.; Liu, R.W.; Zeng, D.H.; Zhou, L. Broken ice circumferential crack estimation via image techniques.
Ocean. Eng. 2022, 259, 111735. [CrossRef]

32. Available online: https://www.pinterest.com.au/pin/310959549242558457/ (accessed on 12 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.oceaneng.2022.111735
https://www.pinterest.com.au/pin/310959549242558457/

	Introduction 
	Description of YOLACT Network 
	Model Description 
	Dataset for Training Model 
	Model Training and Testing 
	Calculation of Ice Area 

	Sensitivity Analysis on Annotation and NMS Parameters 
	Annotation of Ice Blocks 
	Recommendation for NMS Parameters 

	Case Study 
	Extract the Mask of Ice 
	Geometric Calibration 
	Sea Ice Concentration and Floe Size Distribution 

	Discussion 
	Conclusions 
	References

