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Abstract: With the continuous development of three-dimensional city modeling, traditional close-
range photogrammetry is limited by complex processing procedures and incomplete 3D depth
information, making it unable to meet high-precision modeling requirements. In contrast, the
integration of light detection and ranging and cameras in mobile measurement systems provides a
new and highly effective solution. Currently, integrated mobile measurement systems commonly
require cameras, lasers, position and orientation system and inertial measurement units; thus, the
hardware cost is relatively expensive, and the system integration is complex. Therefore, in this paper,
we propose a ground mobile measurement system only composed of a LiDAR and a GoPro camera,
providing a more convenient and reliable way to automatically obtain 3D point cloud data with
spectral information. The automatic point cloud coloring based on video images mainly includes
four aspects: (1) Establishing models for radial distortion and tangential distortion to correct video
images. (2) Establishing a registration method based on normalized Zernike moments to obtain
the exterior orientation elements. The error of the result is only 0.5–1 pixel, which is far higher
than registration based on a collinearity equation. (3) Establishing relative orientation based on
essential matrix decomposition and nonlinear optimization. This involves uniformly using the
speeded-up robust features algorithm with distance restriction and random sample consensus to
select corresponding points. The vertical parallax of the stereo image pair model is less than one
pixel, indicating that the accuracy is high. (4) A point cloud coloring method based on Gaussian
distribution with central region restriction is adopted. Only pixels within the central region are
considered valid for coloring. Then, the point cloud is colored based on the mean of the Gaussian
distribution of the color set. In the colored point cloud, the textures of the buildings are clear, and
targets such as windows, grass, trees, and vehicles can be clearly distinguished. Overall, the result
meets the accuracy requirements of applications such as tunnel detection, street-view modeling and
3D urban modeling.

Keywords: camera calibration; registration; normalized Zernike moments; corresponding point
matching; essential matrix; relative orientation; absolute orientation; point cloud coloring

1. Introduction

Over the past 20 years, light detection and ranging (LiDAR) technology has rapidly
developed. As an active remote sensing technology, LiDAR uses active laser pulse signals
to quickly and accurately obtain information about the distance, location, reflectance, and
other characteristics of surrounding objects by emitting laser pulses and receiving the
reflected signals from objects [1]. However, a laser point cloud is unable to acquire spectral
information of target objects and have a single color, which is not conducive to processing
and understanding. Conversely, optical images can obtain rich spectral information and
texture details of the land surface, which enables rapid identification of surface features
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and have better visual effects. Point cloud and optical images have complementary repre-
sentations of target objects. By registering and fusing three-dimensional (3D) point cloud
data with two-dimensional (2D) image data [2], a colored point cloud with rich texture
details can be obtained, enhancing the ability to discriminate between different objects.
This can be widely applied in various remote sensing fields such as 3D urban modeling,
smart city, urban planning, resource utilization, environmental monitoring and disaster
assessment.

The current mobile measurement systems are mainly divided into two types: airborne
and vehicle-mounted, which integrate multiple devices such as LiDAR, cameras, Global
Positioning System (GPS), and Inertial Measurement Unit (IMU). Although these systems
have relatively high measurement accuracy, they are costly and complex. Therefore, in this
article we establish an automatic point cloud coloring method for an integrated system
of LiDAR and GoPro. The aim is to automatically color the point cloud based on video
imagery in the absence of position and orientation system (POS) and IMU. During the
experimental process, we mainly encountered three key issues:

(1) Due to the significant deformation and motion blur in video images, as well as the
existence of trailing phenomena, the video images contained blurred pixels. Therefore,
we need to address the issue of reliable selection of corresponding points between
adjacent images for relative orientation.

(2) The ground mobile LiDAR system without a POS is a loosely coupled integrated
system. To achieve automatic colorization of point cloud data and video images, a
specific and effective registration strategy is required.

(3) During the point cloud coloring process, a 3D point corresponded to multiple video
images. Obtaining a uniform and realistic color is the third key issue that this article
needs to address.

Based on the three key issues mentioned above, we will briefly describe the methods
and processes in the introduction.

1.1. Selecting Reliable Corresponding Points

GoPro cameras are not professional surveying cameras. When used for mobile mea-
surements, nonlinear distortion, motion blur, edge blurring, and other phenomena can
often occur in the video images. Therefore, we first calibrate the GoPro camera to compen-
sate for non-linear distortions. Typically, a distortion model is introduced into the central
projection imaging equation, and correction coefficients are calculated based on control
points or other methods to correct the image [3]. Brown [4] first proposed the famous
Brown model in 1971, which includes radial and tangential distortion, both of which are
nonlinear. Melen and Balchen [5] subsequently proposed an additional parameter to com-
pensate for linear distortion caused by the horizontal and vertical axes of the image not
being perpendicular, although this type of distortion is generally negligible [6]. Fraser [7]
proposed another type of distortion, called prism distortion, which is mainly caused by
poor camera lens design and manufacturing, and which can be compensated for by adding
a linear factor after the radial and tangential distortion models [8]. Based on the above
models, Gao et al. [9] proposed a tangential distortion that accounts for higher-order and
cross-order terms, which is suitable for more complex optical distortions. Among these
types of distortions, radial and tangential distortions have a much greater impact than
other distortions [10,11]. Therefore, in this article we use radial and tangential distortion
models to correct the GoPro action camera based on chessboard images extracted from
video streams, effectively reducing the nonlinear distortion of the image.

After calibration, the video images may still have problems such as trailing and
edge blur, which greatly affect the matching of corresponding points. Therefore, we uni-
formly adopt the method of feature matching [12] for the selection of corresponding points.
Currently, common methods for feature point extraction include the Moravec operator,
Harris [13] operator, Forstner operator, scale-invariant feature transform (SIFT) [14] algo-
rithm, speeded-up robust features (SURF) [15] algorithm and oriented FAST and rotated
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BRIEF (ORB) [16] algorithms. Although the Moravec operator has a relatively simple
feature extraction process, its performance in extracting edges and noise is poor, and it
requires manual setting of empirical values. The Forstner operator has high accuracy and
fast computation speed, but the algorithm is complex and difficult to implement, requiring
continuous experimentation to determine the range of interest and threshold values [17].
Harris is a signal-based point feature extraction operator [18] with higher accuracy and
reliability in extracting various corner points [19]. The SIFT algorithm is a feature-based
matching method with strong matching ability [20], stable features, and invariance to
rotation, scale, and brightness. However, it is susceptible to external noise and has a
slower running speed. The SURF algorithm improves the method of feature extraction
and description by using techniques such as integral images and box filters [21]. It can
convert the convolution operation of the image and template into several addition and
subtraction operations [22], making it more efficient, with a detection speed of more than
three times that of the SIFT algorithm. The ORB algorithm uses oriented FAST [23] for
feature extraction to solve the speed problem and rotated BRIEF [24] for feature description
to solve the problem of spatial redundancy in feature description. Therefore, the ORB
algorithm has both speed and accuracy, and is relatively stable. However, the speed of the
ORB algorithm is relatively slow, and it is not robust enough for rotation and scale changes.
Based on the above analysis, this article attempts to use the SURF matching algorithm with
distance restriction and random sample consensus (RANSAC). SURF is used for rough
matching of the corresponding points, then deleting points with excessively long lines
connecting corresponding points. Finally, RANSAC is used to eliminate mismatches to
achieve precise matching of corresponding points. After these three steps, corresponding
points with high accuracy and located in the central region can be filtered out.

1.2. Registration Strategy

The video stream can be captured and sliced into multiple sequential images. There-
fore, this article focuses on the problem of automatic registration between multiple sequen-
tial images and point clouds. Since there is no POS and IMU, it is challenging to obtain
the exterior orientation elements of each image quickly and accurately. Currently, there
are many research methods for the registration of point clouds and multiple images, but
most of them are based on direct registration of an image-based 3D point cloud. Song and
Liu [25] proposed a method of generating an image-based 3D point cloud from sequential
images and obtaining accurate exterior orientation elements of each image by registering
the image-based 3D point cloud with a LiDAR point cloud. Liu et al. [26] further studied
this approach by using the 3D-SIFT algorithm to extract feature points from both the LiDAR
point cloud and the image-based 3D point cloud, achieving precise registration of the two
types of point clouds using the scaling iterative closest point (SICP) algorithm. Obviously,
generating an image-based point cloud is a feasible solution, but it requires high-quality
image data. In the above-mentioned methods, digital cameras are usually used. In this
study, the video images captured by the GoPro camera often suffer from large boundary
deformation, unstable interior orientation elements, and blurred pixels. Therefore, prob-
lems such as multiple holes and deformation occurred in the image-based point cloud, as
shown in Figure 1. It is apparent that the quality of the 3D point cloud generated from the
sequential images is poor. Therefore, it is not recommended to use point cloud registration
for colorization between these 3D point clouds. Ultimately, we decided to adopt a 1-to-N
registration strategy, which means first registering the point cloud with the first image
to obtain the exterior orientation elements of the first image. Then, by using relative and
absolute orientation, the exterior orientation elements of the remaining sequential images
can be obtained.
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Figure 1. Image-based 3D point cloud.

1.2.1. Obtain the Exterior Orientation Elements of the First Image

It is clear that achieving high-precision automatic registration of a point cloud and the
first image has become a key issue. In recent years, scholars have focused more on feature-
based registration methods for such problems. Generally, these methods require projecting
the point cloud onto a 2D plane to generate an intensity image or a depth image, extracting
effective stable and distinguishable feature points from the image, and performing feature
matching by calculating the similarity between features [27]. Feature-based registration
methods convert the analysis of the entire image into the analysis of a certain feature of the
image, simplifying the process and having good invariance to grayscale changes and image
occlusions. Fang [28] used different projection methods to project point cloud data and
generated a point cloud intensity image. Then, using the SIFT algorithm to extract feature
points, the automatic registration between the point cloud intensity image and optical image
was achieved. Safdarinezhad et al. [29] used the point cloud intensity and depth to generate
an optical consistent LiDAR product (OCLP) and completed automatic registration with
high-resolution satellite images using the SIFT feature extraction method. Pyeon et al. [30]
used a method based on point cloud intensity images and RANSAC algorithms to perform
rough matching and then using the nearest point iterative (ICP) matching, greatly improved
on the efficiency of the algorithm. Ding et al. [31] used constraints based on point and
line feature to achieve automatic registration of point cloud intensity images and aerial
images. Fan et al. [32] extracted corner points of windows and doors from point cloud
intensity images and optical images and used the correlation coefficient method to achieve
automatic matching of feature points. In the methods above, the conversion of point cloud
to image data results in loss of accuracy and requires the point cloud data to be relatively
flat with minimal noise. Therefore, in this paper we propose a registration method based
on normalized Zernike moments, which is also a point feature-based registration method.
Low-order Zernike moments are mainly used to describe the overall shape characteristics
of the image [33], while high-order Zernike moments are mainly used to reflect texture
details and other information of the image [34]. Normalized Zernike moments can reflect
features in multiple dimensions [35], achieving good results even for low-quality images
captured by a GoPro action camera and point cloud intensity images.

1.2.2. Obtain the Exterior Orientation Elements of Sequential Images

After completing the registration of the first image and the point cloud, relative and
absolute orientation are required to transfer the exterior orientation elements for the rest
of the sequential images. Relative orientation refers to using an algorithm to calculate
the rotation matrix and displacement vector between the right and left image pairs [36]
based on several corresponding points in the stereo image pairs, so that the coincident rays
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intersect [37]. According to this principle, if a continuous relative orientation is performed,
the relative positional relationship between all stereo image pairs can be obtained. In
traditional photogrammetry, continuous relative orientation is based on initial assumptions,
typically assuming the initial values of the three angle elements of the rotation matrix are
zero, the first component of the baseline vector is one, and the other two components are
replaced with small values, assuming the stereo image pairs are taken under approximately
vertical photography conditions [38]. However, in digital close-range photogrammetry,
multi-baseline convergence photography is mainly used, such as the GoPro camera used
in this paper. Moreover, we obtain video images by capturing video streams. At this
time, the relationship between the left and right images in the stereo image pair may be
a rotation at any angle, and the forms of angle elements and displacement vectors are
complex and diverse. Therefore, traditional relative orientation methods pose difficulty
for obtaining correct results [39]. To address this problem, many methods have been
proposed. Zhou et al. [40] proposed a hybrid genetic algorithm and used unit quaternions
to represent the matrix, which quickly converges without given initial values. Li et al. [41]
proposed a normalized eight-point algorithm to calculate the essential matrix and used the
Gauss-Newton iteration method to solve the two standard orthogonal matrices produced
by decomposing the essential matrix; this improves the accuracy of relative orientation.
Therefore, this article intends to use a method based on essential matrix decomposition
and nonlinear optimization for relative orientation. Specifically, the essential matrix is first
calculated, and its initial value is obtained by performing singular value decomposition [42].
Then, nonlinear optimization is used to obtain an accurate solution.

The stereo model obtained from relative orientation is based on the image-space
coordinate system, and its scale is arbitrary. To determine the true position of the stereo
model in the point cloud coordinate system, the final step is to determine the transformation
relationship between the image-space coordinate system and the point cloud coordinate
system, that is, absolute orientation.

1.3. Realistic and Accurate Point Cloud Coloring Method

In the process of coloring the point cloud, a LiDAR point often corresponds to multiple
video images. Due to the low quality of the video images used in this paper, problems such
as blurry pixels, trailing images and significant deformation exist, making it challenging
to perform point cloud coloring that is both realistic and uniform. Vechersky et al. [43]
proposed that the color set corresponding to each 3D point follows a Gaussian distribution
model. Specifically, the mean and covariance of the weighted Gaussian distribution of the
color set are estimated, and the mean value is assigned to the color of the 3D point. Based
on this, this paper proposes a Gaussian distribution point cloud coloring method with
center area restriction. In simple terms, assuming the color set corresponding to the 3D
points follows a Gaussian distribution. Meanwhile, the position information of pixels is
statistically analyzed, and only pixels within the central area of the image are selected as
valid pixels for coloring. This effectively avoids the phenomenon of blurred edge pixels.

Given the above issues, the chapter arrangement of this article is as follows: Section 1
introduces the current research status of the registration between the point cloud and
images. Section 2 briefly introduces the ground mobile LiDAR system and the data used
in the experiment. Section 3 focuses on the point cloud coloring method based on video
images without POS, and Section 3.1 discusses how to handle the problem of nonlinear
distortion of GoPro cameras, mainly using radial and tangential distortion models for
correction. The principle of automatic registration based on normalized Zernike moments
is described in Section 3.2, from Zernike polynomials to Zernike moments and then to
the derivation of normalized Zernike moments. In Section 3.3, we explain how to achieve
automatic registration of the point cloud and sequential images, including the selection of
the corresponding point matching method, relative orientation based on essential matrix
decomposition and nonlinear optimization, and absolute orientation. A detailed description
of the steps and strategies for coloring a point cloud is provided in Section 3.4. Section 4
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presents experimental results and analysis. Section 5 gives the discussion about the results.
Section 6 summarizes and gives prospects for future work. In summary, the general
workflow of the article is shown in Figure 2.
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2. System and Data

As shown in Figure 3, we establish a simple ground mobile measurement system
integrating a LiDAR and a GoPro camera. Regarding the position where the action camera
is fixed, if we take the center of the LiDAR as the origin, the horizontal direction as the y-axis,
the vertical direction as the z-axis, and the x-axis perpendicular to the paper and pointing
outward, the coordinates of the GoPro camera lens center in the illustrated coordinate
system are (20, 145.142, 201.825) in centimeters, and the orientation of the lens field of view
(FOV) center is parallel to the y-axis and perpendicular to the x-axis.
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The center axis of the LiDAR transmitter is fixed and inclined at an angle of 32.5◦

to the horizontal ground. During the system’s movement, the LiDAR transmitter will
continuously rotate along this central axis. At the same time, the GoPro action camera will
also rotate around the camera mount to obtain sufficient data for point cloud coloring. The
initial point cloud and some captured video images are shown in Figure 4.
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3. Methods
3.1. Camera Calibration

The GoPro camera conforms to the pinhole camera model. According to the principle
of the pinhole imaging model, the transformation relationship and its abbreviated form
between the image pixel coordinate system and the camera coordinate system is shown
as follows:

λ

x
y
1

 =


f

dx 0 cx

0 f
dy cy

0 0 1


Xc

Yc
Zc

 (1)

k
→
Xc = R

→
Xw + T (2)

where:

p = (x, y): the pixel coordinate of point P in the image plane
cx, cy: the coordinate of the principal axis in the pixel coordinate system
f : the camera focal length
dx, dy: the pixel dimensions
λ: the scaling factor
Xc, Yc, Zc: the coordinate of point P in the camera coordinate system
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Considering that there exists a 3D similarity transformation between the camera coor-
dinate system and the world coordinate system, the transformation formula in abbreviated
form are as follows:

k

Xc
Yc
Zc

 = R

Xw
Yw
Zw

+ T (3)

k
→
Xc = R

→
Xw + T (4)

where:

R: the rotation matrix,
T: the translation matrix,
Xw, Yw, Zw: the world coordinate of point P in space
k: the scaling factor between the two coordinate systems

When shooting with a GoPro action camera, significant nonlinear distortion may occur.
Figure 5a shows partial images of the chessboard images captured from the video stream.
The degree of distortion around the chessboard is still significant, indicating a substantial
level of distortion. Figure 5c displays video images where the edges of the straight-line
houses are all curved, indicating a significant amount of deformation.

Due to the manufacturing errors in the lens of the action camera, the lens of the camera
affects the propagation of light, resulting in radial distortion. The radial distortion can be
approximated using the Taylor series expansion of several terms around r = 0, where k1, k2,
k3 are radial distortion coefficients and r2 = x2 + y2. Typically, only first-order and second-
order terms need to be considered. The normalized coordinates after radial distortion are
as follows: {

xcorrected = x
(
1 + k1r2 + k2r4 + k3r6)

ycorrected = y
(
1 + k1r2 + k2r4 + k3r6) (5)

In addition to the shape of the camera lens introducing radial distortion, the non-
collinear optical centers of the lens groups during assembly introduce tangential distortion,
which requires two additional distortion parameters to describe. The tangential distortion
coefficients are denoted as p1 and p2. The normalized coordinates after tangential distortion
are as follows: {

xcorrected = x + 2p1xy + p2
(
r2 + 2x2)

ycorrected = x + 2p2xy + p1
(
r2 + 2y2) (6)

It should be noted that Equations (5) and (6) are derived from a general formula and
represent two parts of the general formula, respectively: radial distortion and tangential
distortion. Based on the distortion described above, we use 42 chessboard images with a
size of 12 by 9 and use Zhang’s camera calibration method to obtain the camera parameters
and distortion coefficients, as shown in Table 1. The images before and after calibration are
shown in Figure 5b,d.

Table 1. Camera parameters and distortion coefficients.

Camera Parameters Value/Pixel Distortion
Coefficients Value

fx 872.339 k1 −0.274753
fy 872.737 k2 0.121296
x0 965.446 k3 −0.000277
y0 541.649 p1 −0.000245
– – p2 −0.031056
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3.2. Registration Based on Normalized Zernike Moments

The essence of registration based on normalized Zernike moments is to perform point
feature registration. Firstly, point cloud data needs to be projected to generate a point cloud
intensity image, as shown in Figure 6.

Zernike [44] introduced a set of negative functions defined on the unit circle in 1934.
These functions have completeness and orthogonality, which enables them to represent
any square-integrable function inside the unit disk. The Zernike formula can be expressed
as follows:

Vpq(x, y) = Vpq(ρ, θ) = Rpq(ρ)exp(jqθ) (7)

Rpq(ρ) =
(p−|q|)/2

∑
s=0

(−1)s(p− s)!ρp−2s

s!
(

p+|q|
2 − s

)
!
(

p−|q|
2 − s

)
!

(8)
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where:

ρ: the vector length from point (x, y) to the origin
θ: the counterclockwise angle between vector ρ and the x-axis
p, q: the order of the Zernike polynomials, (p− |q| = even, p ≥ q)
Rpq(ρ): a real-valued radial polynomial.

The Zernike polynomial satisfies orthogonality, which can be expressed as follows:
x

x2+y2=1
V∗pq(x, y)Vnm(x, y)dx dy =

π

p + 1
δpnδqm (9)

Due to the orthogonal completeness of Zernike polynomials, any image within the
unit circle can be represented as follows:

f (x, y) =
∞

∑
p=0

∞

∑
q=0

ZpqVpq(ρ, θ) (10)

where Zpq is the Zernike moment, which can construct any high-order moment of an image
and has the characteristic of rotation invariance. It is currently widely used as a shape
descriptor. Its definition is as follows:

Zpq =
p + 1

π

x

x2+y2=1
f (x, y)V∗pq(ρ, θ)dx dy (11)

It should be noted that in Equation (11), different coordinate systems are used, with
the former being the Cartesian coordinate system and the latter being the polar coordinate
system. It is necessary to pay attention to coordinate conversion during computation. For
discrete digital images, the integral form can also be written in the form of summation as
follows:

Zpq =
p + 1

π ∑x ∑y f (x, y)V∗pq(ρ, θ), x2 + y2 = 1 (12)

It can be calculated that the Zernike moments of the image before and after rotation
only differ in phase, while the amplitude of the Zernike moments remains unchanged.
Therefore, the amplitude of the Zernike moments can be used as a rotation invariant feature
of the image. However, Zernike moments only have rotation invariance and not translation
and scale invariance, so it is necessary to normalize the image beforehand. The standard
moment method is used to normalize an image, and the standard moment is defined
as follows:

mpq = ∑ ∑ xpyq f (x, y) (13)

{
x = m10/m00
y = m01/m00

(14)

The “centroid” of the image can be obtained from the standard moment, and by
moving the “centroid” of the image to the center of the unit circle, the translation invariance
problem can be solved. In fact, m00 represents the image’s “area”, and by transforming
the image with ( x

m00
, y

m00
), the purpose of size consistency can be achieved. If the image is

transformed with g(x, y) = f ( x
m00
− x, y

m00
− y), the normalized Zernike moments of the

final image will be translation, scale, and rotation invariant. In summary, Zernike moments
are region-based shape descriptors based on the orthogonalization of Zernike polynomials.
The orthogonal polynomial set used is a complete orthogonal set within the unit circle.
Zernike moments are complex moments, and the amplitude of the Zernike moments is
generally used to describe the shape of an object. The shape features of a target object
can be well represented by a small set of Zernike moments. Low-order moments describe
the overall shape of the image target, while high-order moments describe the details of
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the image target. In this paper, high-order moments are used for registration, and the
registration steps are as follows:

1. Project the 3D point cloud onto the point cloud intensity image.
2. Use the Harris corner detection algorithm to extract corner features from both the

point cloud intensity image and the video image.
3. Treat the region composed of the pixels with the feature points and their neighboring

pixels as the “target image”, center the image at the feature point, transform it into
the unit circle in polar coordinates, and resample the pixels to the unit circle.

4. Calculate the zero-order standard moment and the Zernike moments of various orders
for the target image, and normalize the Zernike moments.

Z′pq =
Zpq

m00
(15)

5. Calculate the amplitude of the Zernike moments, which can be used as invariant
features, as discussed earlier.

6. Construct Zernike moment vectors for feature points in the point cloud intensity
image and the video image, respectively, using the normalized Zernike moment
amplitudes of orders 2 to 4, as shown in Equation (16).

W =
(∣∣Z′20

∣∣, ∣∣Z′22
∣∣, ∣∣Z′31

∣∣, ∣∣Z′33
∣∣, ∣∣Z′40

∣∣, ∣∣Z′42
∣∣, ∣∣Z′44

∣∣) (16)

7. First, perform coarse matching of feature points based on Euclidean distance, and
then perform matching based on the absolute difference between the two feature point
vector descriptors. If the absolute difference is the smallest among all possible results,
the matching between feature points is considered successful. Once the matching of
corresponding feature points is successful, automatic registration can be performed
based on them.

min∆ij = ∑
∣∣Wi −Wj

∣∣ (17)
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Figure 6. Point cloud intensity image.

3.3. Registration of Point Cloud and Sequential Video Images
3.3.1. Selecting Reliable Corresponding Points

This article adopts a feature-based matching approach for selecting corresponding
points. We initially attempted three algorithms, SIFT, ORB, and SURF, and the results and
running time are shown in Figure 7 and Table 2. To unify the units, all time units in Table 2
are in milliseconds, which is equivalent to 0.001 s.
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Figure 7. Result of corresponding point matching. (a): scale-invariant feature transform algorithm;
(b): oriented FAST and rRotated BRIEF algorithm; (c): speeded-up robust features algorithm.

Table 2. Running time of 500 corresponding points for scale-invariant feature transform algorithm,
oriented FAST and rotated BRIEF algorithm and speeded-up robust features algorithm.

Running Time (ms) SIFT ORB SURF

1 5713 2121 1874
2 5687 2030 1853
3 5530 2245 1837
4 5892 2158 1907
5 5728 2169 1930
6 5679 2207 1846
7 5961 2089 1890

Average 5741 2145 1876

For relative orientation, the main considerations are the accuracy and running time
of selected corresponding points. Figure 7 shows that all three algorithms contain a
considerable number of misaligned points during initial matching, but the lines connecting
the corresponding points of ORB and SURF seem to converge more closely in visual
representation. According to Table 2, the SURF algorithm has the shortest running time.
The 300 ms difference may not be significant, but for the 120 video images used in this
paper, this workload needs to be multiplied by 119 times. If there are more images,
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the time difference would be even greater. Taking into account both the accuracy and
time, we ultimately chose to use SURF as the basic algorithm. Naturally, we made some
improvements based on the SURF algorithm. The specific steps for corresponding point
matching are:

(1) SURF coarse matching. Firstly, SURF corresponding points coarse matching was
conducted on the stereo image pairs.

(2) Distance restriction. Due to the characteristics of edge blur and trailing in video im-
ages, we also applied a distance restriction after SURF. First, calculating the maximum
length of the lines connecting the corresponding points, and then only selecting the
corresponding points with connecting line length less than 0.6 times the maximum
length. This is a method used in remote sensing to filter out corresponding points that
are too far apart from each other.

(3) RANSAC precise matching. To eliminate mismatches of feature points, the RANSAC [45]
algorithm was applied after distance restriction to remove incorrect matches.

3.3.2. Relative Orientation Based on Essential Matrix Decomposition and
Nonlinear Optimization

The essential matrix [46] contains information about coordinate translation and rota-
tion. In fact, when solving the coordinate transformation matrix, the essential matrix is
first solved, and the rotation and translation parameters are obtained by decomposing the
essence matrix. This article also goes through this step in relative orientation using the
essence matrix decomposition and nonlinear optimization.

First, establishing a relative orientation model as shown in Figure 8. O-XYZ is the
spatial rectangular coordinate system with the camera’s photographic center as the origin
corresponding to the left image; O′-X′Y′Z′ is the spatial rectangular coordinate system
with the camera’s photographic center as the origin corresponding to the right image, and
the three rotation angles of O′-X′Y′Z′ coordinate system relative to O-XYZ coordinate
system are, respectively, ϕ, ω, κ; O′′-X′′Y′′Z′′ is an artificially established auxiliary spatial
rectangular coordinate system, and its three axes are parallel to the three axes of the O-
XYZ coordinate system; OO′ is the baseline, and its three displacement components are,
respectively, BX, BY, BZ. Suppose there is a ground point P, and the corresponding points
in the left and right images are P1 and P2. Suppose the coordinates of P1 in the O-XYZ
coordinate system are (x, y, z); the coordinates of P2 in the O′-X′Y′Z′ coordinate system
are (x′, y′, z′); the coordinates of P2 in the O′′-X′′Y′′Z′′ auxiliary coordinate system are
(x′′, y′′, z′′).

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 8. Relative orientation model. 

From the coplanar condition, the relationship equation can be obtained as follows: 

𝐹 = 𝐵 𝑥 𝑥𝐵 𝑦 𝑦𝐵 𝑧 𝑧  (18)

𝑥𝑦𝑧 = 𝑅 𝑥𝑦𝑧 = 𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟 𝑥𝑦𝑧  (19)

Expanding its determinant yields, and the expressions are as follows: 𝑥 𝑦 𝑧 0 −𝐵 𝐵𝐵 0 −𝐵−𝐵 𝐵 0 𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟 𝑥𝑦𝑧 = 0 (20)

𝑥 𝑦 𝑧 𝑇 𝑅 𝑥𝑦𝑧 = 0 (21)

For any pair of corresponding image points between the stereo images, Equation (21) 
can also be written as follows: 

𝑥 𝑦 𝑧 𝑇 𝑅 𝑥𝑦𝑧 = 0 (22)

[T]XR is the essence matrix, and [T]X contains three translational parameters BX, BY, 
BZ and the nine direction cosines in R. It can be seen from the formula that it contains the 
position and posture relationship of the right image with respect to the camera coordinate 
system. 

In the case of a calibrated camera, there are generally two methods to solve for the 
essence matrix E: (1) Hartley et al. [47] used the normalized eight-point algorithm to solve 
for the fundamental matrix F using multiple corresponding image points in the left and 
right images. Then, using the formula E = K1−TFK2, the essential matrix is computed. Here, 
K1 and K2 are the internal parameter matrices of the left and right cameras, respectively. 
In this paper, they are equal since the same GoPro camera is used for both images. (2) The 
normalized coordinates of multiple corresponding image points in the left and right im-
ages are computed in the camera coordinate system, and then lens distortion correction is 
applied. Finally, the coordinates are directly substituted into Equation (22) to solve for the 
essential matrix. 

To extract the translation and rotation information contained in the essential matrix, 
singular value decomposition (SVD) is performed on it: 

Figure 8. Relative orientation model.

From the coplanar condition, the relationship equation can be obtained as follows:

F =

∣∣∣∣∣∣
BX x x′′
BY y y′′
BZ z z′′

∣∣∣∣∣∣ (18)
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x′′
y′′
z′′

 = R

x′

y′

z′

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

x′

y′

z′

 (19)

Expanding its determinant yields, and the expressions are as follows:

[
x y z

] 0 −BZ BY
BZ 0 −BX
−BY BX 0

r11 r12 r13
r21 r22 r23
r31 r32 r33

x′′
y′′
z′′

 = 0 (20)

[
x y z

]
[T]XR

x′′
y′′
z′′

 = 0 (21)

For any pair of corresponding image points between the stereo images, Equation (21)
can also be written as follows:

[
xi yi zi

]
[T]XR

x′′i
y′′i
z′′i

 = 0 (22)

[T]XR is the essence matrix, and [T]X contains three translational parameters BX,
BY, BZ and the nine direction cosines in R. It can be seen from the formula that it con-
tains the position and posture relationship of the right image with respect to the camera
coordinate system.

In the case of a calibrated camera, there are generally two methods to solve for the
essence matrix E: (1) Hartley et al. [47] used the normalized eight-point algorithm to solve
for the fundamental matrix F using multiple corresponding image points in the left and
right images. Then, using the formula E = K1

−TFK2, the essential matrix is computed. Here,
K1 and K2 are the internal parameter matrices of the left and right cameras, respectively. In
this paper, they are equal since the same GoPro camera is used for both images. (2) The
normalized coordinates of multiple corresponding image points in the left and right images
are computed in the camera coordinate system, and then lens distortion correction is
applied. Finally, the coordinates are directly substituted into Equation (22) to solve for the
essential matrix.

To extract the translation and rotation information contained in the essential matrix,
singular value decomposition (SVD) is performed on it:

E = UΣVT (23)

Then the rotation matrix R and translation vector t can be represented as follows:

R = UWVT/UWTVT , t = αUZUT/αUZTUT (24)

W =

0 −1 0
1 0 0
0 0 1

, Z =

 0 1 0
−1 0 0
0 0 0

 (25)

where α is any nonzero constant. As shown in Equation (24), there are four possible
solutions for the rotation matrix R and translation vector t. To determine which solution
is correct, we can use the following method: choose a pair of corresponding points and
calculate the 3D coordinates of the corresponding object point using each set of R and t.
Only the set of R and t that yields positive 3D coordinates for the object point in both left
and right camera views (both Z coordinates are positive) is the correct solution. This yields
the initial values for the rotation matrix R and translation vector t.
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The initial values R, t obtained from the decomposition of the essential matrix often
have low accuracy due to the presence of noise in the feature points extracted from the
images in close-range photogrammetry. Even with a large number of data points, the
initial values can be significantly affected by noise, leading to reduced accuracy. To address
this issue, nonlinear optimization is often employed to refine the initial values. Nonlinear
optimization plays a significant role in digital close-range photogrammetry, as it is used in
camera calibration [48] and bundle adjustment [49]. In this study, we establish a nonlinear
optimization objective function based on the coplanarity constraint equation, with the
parameters of the three rotation matrix angles (ϕ, ω, κ) and two translation vectors (BY,
BZ) as the optimization variables. We only include two translation vectors as optimization
variables because we can set one of the components of the baseline vector BX to 1 for
computational convenience, as changes in the length of the baseline vector only result in
a proportional scaling of the stereo image pair model. For a pair of corresponding image
points, the coplanarity constraint equation is as follows:

Fi = f (BY, BZ, ϕ, ω, k) = (yi − xiBY)
[
x′ir31 + y′ir32 + z′ir33

]
+ (xiBZ − zi)

[
x′ir21 + y′ir22 + z′ir23

]
+(ziBY − yiBZ)

[
x′ir11 − y′ir12 + z′ir13

] (26)

By substituting the initial values of the five parameters obtained from the decomposi-
tion of the essential matrix and using the Levenberg–Marquardt algorithm [50], multiple
iterations of optimization can be performed to obtain the final accurate solution.

3.3.3. Absolute Orientation

A stereo model established through relative orientation of a stereo pair is based on
an image-space coordinate system, in which scale is arbitrary. To determine the correct
position of the stereo model in the actual object space coordinate system, it is necessary to
transform the photogrammetric coordinates of the model points into the object space coor-
dinates, which requires the use of ground control points to determine the transformation
relationship between the image-space coordinate system and the object space coordinate
system. The above is the concept of traditional absolute orientation. In the study of point
cloud coloring in this paper, the above-mentioned object coordinate system becomes the
coordinate system of point cloud data, and the ground control points are actually individual
3D points. Therefore, in this paper, absolute orientation is to determine the transformation
relationship between the image-space auxiliary coordinate system and the point cloud
coordinate system.

Assuming that the coordinates of an arbitrary image point in the image space coordi-
nate system are represented as (X, Y, Z), and the coordinates of the corresponding point
in the point cloud coordinate system are represented as (XL, YL, ZL), there exists a spatial
similarity transformation relationship between these two coordinates:XL

YL
ZL

 = λ

a1 a2 a3
b1 b2 b3
c1 c2 c3

X
Y
Z

+

∆X
∆Y
∆Z

 (27)

where:

λ: the scale factor,
ai, bi, ci: the nine direction cosines
∆X, ∆Y, ∆Z: the translation vector

These seven parameters λ, Φ, Ω, K, ∆X, ∆Y, ∆Z constitute the spatial similarity
transformation, and absolute orientation is essentially the process of solving these seven
parameters. Before solving the parameters, it is generally necessary to perform centroid
scaling on the coordinates:{

XLg = ΣXL
n , YLg = ΣYL

n , ZLg = ΣZL
n

Xg = ΣXL
n , Yg = ΣYL

n , Zg = ΣZL
n

(28)
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where:

XLg, YLg, ZLg: the centroid coordinates of the point cloud
Xg, Yg, Zg: the centroid coordinates of the image-space coordinate system
n: the number of point cloud control points involved in the calculation

The purpose of centroid scaling is twofold: firstly, to reduce the effective number
of decimal places in the coordinates of the model points during the calculation process,
in order to ensure the accuracy of the calculation; secondly, by using centroid-scaled
coordinates, the coefficients of the normal equations can be simplified, thereby improving
the calculation speed.

According to Equation (27), if it is expanded based on Taylor’s theorem, three error
equations related to the point cloud coordinates can be obtained. This means that one
horizontal control point can produce three error equations, and one vertical control point
can produce one error equation. Therefore, when there are more than two horizontal
control points and one vertical control point, the seven unknown parameters can be solved
by the least squares principle.

3.4. Point Cloud Coloring Method

In this paper, we intend to start from the point cloud to find the corresponding pixels,
and then assign values to the point cloud. The reason for choosing to start from the point
cloud is that the end of point cloud traversal represents the end of coloring. If we start from
the image pixels, it may speed up the coloring process, but it may also result in some point
clouds being uncolored, causing discontinuity and missing data in the overall point cloud.
Usually, a 3D point in a LiDAR point cloud often corresponds to multiple pixels in multiple
images; thus, how to color it correctly based on pixels with poor image quality becomes a
critical issue. Therefore, we propose a Gaussian distribution-based point cloud coloring
method with a central region restriction. The specific steps are as follows:

1. Finding pixel sets corresponding to 3D points. Starting from the point cloud, traverse
through each 3D point, which corresponds to multiple images. Based on the previous
results, the pixel coordinates corresponding to each 3D point can be calculated from
the images. The nearest neighboring pixels are selected as the corresponding pixel of
the 3D point, and their color and position information are recorded.

2. Applying central area restriction. Based on the location information gathered in step
1, only pixels within the central area of the image are considered valid for coloring the
point cloud.

3. Coloring. We assume that for a valid pixel color set corresponding to a 3D point, any
of the RGB channels follow a Gaussian distribution. We estimate the mean of each
channel’s Gaussian distribution and consider it as the color value of that channel.
Finally, we assign the RGB color to the 3D point.

4. Repeat steps 1, 2 and 3 until all 3D points have been processed.

4. Results
4.1. Registration Based on Normalized Zernike Moments

Registration results based on the collinearity equation and normalized Zernike mo-
ments are shown in Tables 3 and 4 and Figure 9. Table 2 displays the 3D coordinates of point
cloud control points and registration accuracy of the collinearity equation. Table 3 displays
the 3D coordinates of several Harris feature points of the point cloud and registration
accuracy of normalized Zernike moments. Figure 9 is a screenshot of the colored point
cloud obtained from the registration result, which can also serve as a reference image for
the registration accuracy.
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Table 3. Registration accuracy based on collinearity equation.

NO. Control Points (X, Y, Z) Image Points (x, y) Difference (dx, dy)

0 4.58 −20.79 7.39 851.0 313.0 −0.6 0.3
1 −8.07 −20.88 7.30 1374.0 348.0 0.6 −0.8
2 5.35 −17.47 3.79 774.0 426.0 1.0 −0.3
3 −10.41 −17.47 3.66 1561.0 483.0 −0.8 −2.1
4 −8.07 −20.81 10.82 1380.0 205.0 −0.3 −1.1
5 4.68 −20.77 10.88 861.7 173.9 2.6 −1.9
6 0.64 −20.54 2.70 996.0 516.0 −1.6 4.2
7 −8.11 −20.89 3.09 1367.0 525.0 −0.7 2.1

Table 4. Registration accuracy based on Zernike moments.

NO. Feature Points (X, Y, Z) Image Points (x, y) Difference (dx, dy)

0 5.36 −17.39 4.24 55.3 363.7 −0.3 0.3
1 −10.42 −17.43 4.09 1044.1 478.0 0.7 −0.4
2 −2.04 −15.09 0.08 646.5 684.4 0.0 −0.4
3 −5.26 −20.66 6.29 776.2 372.6 −0.0 0.4
4 3.27 −20.77 7.37 307.2 247.8 −0.3 0.0
5 −9.43 −20.80 14.39 949.4 86.2 0.1 0.0
6 −13.00 −20.87 10.79 1058.6 255.0 0.2 0.3
7 −14.30 −20.87 7.29 1094.5 389.0 −0.4 −0.3
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Figure 9. Registration result. (a): The colored point cloud image registered based on collinear
equation; (b): The colored point cloud image registered based on normalized Zernike moments.

4.2. Corresponding Point Matching

In this article we uniformly adopt the SURF algorithm with distance restriction and
RANSAC to select corresponding points. We randomly select a stereo image pair (28–29) as
an example, and the result is shown in Figure 10.

As shown in Figure 10a, there are 400 corresponding points selected by the SURF
coarse matching, among which there are many mismatched points and corresponding
points located at the edges of the image. After applying distance restriction, the number of
corresponding points decreased from 400 to 173, as shown in Figure 10b. The corresponding
points located at the edges of the image were reduced, but there were still many mismatches.
After applying RANSAC, as shown in Figure 10c, the number of corresponding points
dropped sharply from 173 to 72. The mismatches were mostly eliminated after the RANSAC
process. It can be seen that after these three steps, the accuracy of the corresponding points
is relatively high, and they are mostly located in the central area of the image, which
meets the requirements well. However, after obtaining a series of corresponding points,
selecting how many pairs for relative orientation becomes a problem. The number and
accuracy of the selected corresponding points will definitely affect the accuracy of relative
orientation. Therefore, we statistically analyze the data in Figure 11 and Table 5. Figure 11
shows how the number and accuracy of the corresponding points affect the accuracy of
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the vertical parallax of relative orientation by selecting the top 10, 15, 20, 40, 60, 80 and 100
corresponding points. Table 5 summarizes the situations of eight stereo image pairs.
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Figure 10. Result of corresponding point matching. (a): SURF (speeded-up robust features algorithm)
coarse matching; (b): Distance restriction; (c): RANSAC (random sample consensus).

Table 5. Vertical parallax for different stereo image pairs when using corresponding points in different
accuracy.

Stereo Image Pairs Top 10 Top 15 Top 20 Top 30 Top 40 Top 50 Top 100

1 1.25 1.10 0.88 1.34 1.29 1.58 4.49
2 1.10 1.37 0.76 1.35 1.62 1.40 4.70
3 1.39 1.56 1.07 1.47 1.70 1.89 4.56
4 1.30 1.25 1.04 1.45 1.49 1.93 3.89
5 1.27 1.27 0.90 1.43 1.48 1.56 4.79
6 1.33 1.31 0.97 1.40 1.59 1.78 3.97
7 1.08 1.13 0.68 1.37 1.68 1.80 4.03

Average 1.24 1.28 0.90 1.40 1.55 1.71 4.34
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In general, selecting corresponding points with accuracy in the top 10 to 15, 20, or
even 100 has a decreasing impact on the accuracy of relative orientation in terms of vertical
parallax. This is because corresponding points with lower accuracy definitely result in
poorer results. However, it is not necessarily true that selecting corresponding points with
higher matching accuracy will lead to better results in relative orientation. For example,
the relative orientation results obtained by selecting corresponding points with matching
accuracy in the top 10 were not as good as those obtained by the top 15, and the results
obtained by the top 15 were not as good as those obtained by selecting the top 20. It is
speculated that nonlinear distortion, trailing, and blurred pixels in the video images used
in this study may cause significant errors when selecting fewer corresponding points.
So, selecting more corresponding points can help to distribute these errors more evenly.
However, more corresponding points means lower matching accuracy. Therefore, in this
study, we ultimately decided to select corresponding points with matching accuracy in the
top 20 for relative orientation.

4.3. Relative Orientation

The results of relative orientation based on essential matrix decomposition and non-
linear optimization are shown in Figure 12. Figure 12a–c show the results of three stereo
image pairs, with the left images being the left image of the stereo pair and the right images
being the right image of the stereo pair. The results indicate that this method yields good
results for different situations such as: small rotation angles (Figure 12a), large rotation
angles (Figure 12b) and both large rotation angles and displacements (Figure 12c).
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4.4. Absolute Orientation

Absolute orientation is a 3D spatial similarity transformation between the relative ori-
entation stereo model coordinate system and the point cloud coordinate system. Therefore,
the accuracy of absolute orientation mainly depends on the accuracy of the relative orienta-
tion stereo model and the accuracy of corresponding points between the two coordinate
systems. At the same time, since the sequential images are obtained by capturing the video
stream, the captured images under the motion state will cause blur in some parts of the im-
ages, further leading to measurement errors. Therefore, the main error sources of absolute
orientation come from the relative orientation stereo model error and the measurement
error of point cloud control points. For the accuracy of absolute orientation, we use the
difference between the coordinates obtained by absolute orientation and the coordinates
of the corresponding control points in the point cloud and the mean squared error (MSE)
of each relative orientation element as the evaluation standards. The results are shown in
Table 6.

Table 6. Result and accuracy of absolute orientation. (Control Points are measured from the point
cloud).

NO. Model Point (X, Y, Z) Control Point (X, Y, Z) Difference (X, Y, Z) MSE

1 5.86 −19.48 4.72 5.36 −17.39 4.24 0.50 −2.09 0.48 lX: 0.23
2 −10.57 −17.78 4.11 −10.42 −17.43 4.09 −0.15 −0.35 0.02 lY: 0.44
3 −2.78 −14.90 0.10 −2.04 −15.09 0.09 −0.74 0.19 0.01 lZ: 0.14
4 −5.04 −18.48 5.83 −5.26 −18.66 6.29 0.22 0.18 −0.45 λ: 0.007
5 2.89 −19.72 7.32 3.27 −20.77 7.37 −0.38 1.05 −0.05 Φ: 0.50
6 −9.47 −20.94 14.37 −9.43 −20.80 14.39 −0.04 −0.14 −0.02 Ω: 0.19
7 −12.79 −21.28 10.79 −13.00 −20.87 10.79 0.21 −0.41 0.00 K: 0.61
8 6.36 −20.71 3.68 5.36 −20.39 4.24 1.00 −0.32 −0.56 –
9 −12.51 −20.00 6.35 −12.42 −19.45 6.10 −0.09 −0.55 0.25 –

10 −4.33 −15.07 3.13 −4.04 −15.10 3.09 −0.29 0.03 0.04 –
11 −5.84 −17.27 8.01 −5.26 −17.66 7.29 −0.58 0.39 0.72 –
12 4.14 −19.53 7.32 3.27 −19.77 7.37 0.87 0.24 −0.05 –
13 −8.67 −19.72 11.06 −8.43 −19.80 11.39 −0.23 0.08 −0.33 –
14 −11.89 −20.60 8.23 −12.00 −20.87 8.79 0.11 0.27 −0.56 –
15 −13.08 −20.99 6.77 −13.40 −20.87 7.29 0.32 −0.12 −0.52

4.5. Point Cloud Colorization

The results of the colored point cloud are shown in Figure 13. Figure 13a,b demonstrate
the importance of center region restriction in the Gaussian distribution coloring method.
It is evident that even after calibration, pixel blurring and uncorrected phenomena still
occur in the edge regions of the video image. Therefore, the center region restriction is
critical, and only the pixels within the red box are considered qualified and can be used
to color the point cloud. Figure 13c–g shows the point cloud coloring results, including
the top view, side view, front view, back view and total view. In Figure 13g, the blue and
green parts represent uncolored points. Due to the limitations of the video imaging range,
high-altitude walls, car roofs, treetops, and roofs are all uncolored.
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5. Discussion

In the beginning of the discussion, we want to explain that we have tried a cheap IMU
for registration [51,52] and why we finally decided not to use it. Our idea was to install the
IMU on the laser to measure the rotation and the scanning angle of the laser. However, the
IMU could only provide pitch and heading angles, while the camera’s roll angle could not
be obtained. In this case, we assumed that the camera’s roll angle was constant and stable,
but it was difficult to achieve this state in actual experiments. We also attempted to use the
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pitch and heading angles of the IMU for computation, but the resulting poses of the image
had a large error compared to the manually selected control points of the images. As shown
in Figure 14, we compared the poses of 20 images obtained from manually selected control
points and calculated from the IMU. The results indicate that the IMU has a significant
error, which is why we ultimately did not integrate the IMU.
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To achieve the automatic coloring of point cloud in our system, we went through sev-
eral steps: (1) Camera calibration. (2) Registration based on normalized Zernike moments.
(3) Corresponding point matching with distance restriction. (4) Relative and absolute
orientation. (5) Gaussian distribution point cloud coloring with center region restriction. In
the experimental process, each step is crucial, and the accuracy of each intermediate result
will directly or indirectly affect the subsequent results.

As the video images used in this paper were captured from a GoPro camera during
the mobile measuring process, they suffer from significant distortion. Therefore, Zhang’s
camera calibration method was used to correct the nonlinear distortion. According to
Figure 5a–d, it can be seen that the edges of the chessboard and the edges of the house
are well corrected. However, the limitation of this method is that it only considers the
tangential and radial distortion models which have a greater impact on distortion but does
not consider other types of distortion [5–8].

Registration based on normalized Zernike moments is actually registration based
on point features [27–32], and its accuracy mainly depends on the selection of feature
points and the descriptor of the feature region. When selecting feature points, as the
registration area is the front of the house with many windows and grasses, this paper uses
the Harris operator to extract corner points as feature points. Due to the phenomenon
of blurred edges in video images, normalized Zernike moments are used to describe the
feature region. Low-order Zernike moments describe the overall shape characteristics of the
image, while high-order Zernike moments reflect the texture details of the image [33–35].
Normalized Zernike moments are invariant to rotation, translation, and scaling and can
serve as the determining factor for registration. According to Figure 9, the registration
results based on the collinearity equation are generally acceptable, but there are still some
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areas around the edges where registration is not accurate, which is due to the system’s
mobile measurements, resulting in blurry edges and distortions in video images. On
the contrary, normalized Zernike moments utilize information from neighboring pixels
when extracting features, which can reflect features in more dimensions and describe
the texture details of the image. Therefore, the registration results based on normalized
Zernike moments are better. According to Tables 3 and 4, the registration accuracy based
on normalized Zernike moments is around 0.5 pixels, which is 1–2 pixels higher than that
of the registration accuracy of collinearity equation. However, due to the low accuracy
of the video images, direct registration between an image-based point cloud and a laser
point cloud cannot be achieved [25,26]. In addition, to avoid complex computations and
long running times, this paper only uses normalized Zernike moments of 2–4 orders as the
vector descriptor of the region, so further progress can be made from higher orders.

Due to the lack of POS and IMU in our system, we cannot directly obtain the exterior
orientation elements of the images. Therefore, we adopt a registration strategy from 1
to N, which is to transmit exterior orientation elements through relative and absolute
orientation [36,37]. The premise of relative orientation is the matching of corresponding
points. According to Figure 7, considering both accuracy and quantity, we choose the SURF
algorithm. Due to phenomena such as edge blurring in video images, it is necessary to
avoid selecting corresponding points in the edge regions. Therefore, we propose a SURF
matching method with distance restrictions. According to Figure 10a,b, after applying
distance restrictions, the number of corresponding points located on the edge of the image
is significantly reduced, but there are still many mismatched points in the edge region.
After performing RANSAC, according to Figure 10c, high-precision corresponding points
located in the central region of the image are obtained. In addition, we separately analyzed
the influence of the top 10, 15, 20, 30, 40, 50, and 100 corresponding point pairs on relative
orientation. As shown in Figure 11 and Table 5, selecting the top 20 points yields the
smallest vertical parallax and highest accuracy. One area for improvement is that, for
convenience, we uniformly selected the top 20 points for relative orientation for each
stereo image pair. However, theoretically, each stereo image pair has its optimal number of
corresponding points, but this would increase complexity and computation time.

After the above steps, the registration between all images and point clouds is com-
pleted. Here, we explain why this paper did not choose the method of registration based
on semantic features. Firstly, registration based on semantic features has its own advan-
tages, including better robustness and resistance to image noise [53]. However, registration
based on semantic features requires pre-training, a large amount of data, classification
and recognition of objects in advance, and high-quality images. For this paper, which has
video images with blurry edges, registration based on semantic features is not suitable.
The registration methods used in this paper, including registration based on normalized
Zernike moments, SURF, and relative orientation, are all based on point and point features.
Our focus has always been on high-precision corresponding points with precise geometric
positions. Even with low-quality video images, a good, colored point cloud can be obtained.
Therefore, this paper did not adopt the method of registration based on semantic features.

The essence of relative orientation is to solve the essential matrix [39–41]. Based on
this, this paper uses essential matrix decomposition and nonlinear optimization to perform
relative orientation [42], according to Figure 12. The method used in this paper has stronger
applicability than traditional relative orientation. Traditional relative orientation is based on
the assumption of approximately vertical photography and can only converge to the correct
result when the rotation angle of the image is small. According to Figure 12a–c, good results
can be obtained for general cases, large rotation angles, and large displacement. There are
mainly two aspects to demonstrate the high accuracy: (1) Based on visual interpretation,
after relative orientation, the corresponding points of the left and right images have almost
completely coincided with each other. For different situations, the corresponding points
can still coincide well with each other. (2) According to Table 4, when selecting the Top 20
corresponding points for relative orientation, the vertical parallax of the stereo image pair
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model is less than one pixel. At the same time, we can also see the importance of non-linear
optimization. After nonlinear optimization, the corresponding points of the left and right
images are almost coincident. Absolute orientation is required after relative orientation,
and the accuracy of absolute orientation depends on the accuracy of the stereo image model
and the precision of control point selection. With the prerequisite of accurate previous
steps, good results can also be obtained in absolute orientation. As shown in Table 6, we
use 15 image points from a stereo image pair for absolute orientation, and the MSE of X, Y,
and Z are all at the centimeter level.

The phenomenon of edge blurring in video images has been present throughout the
entire experimental process and cannot be ignored, even in the final step of point cloud
coloring. Therefore, this paper adopts a Gaussian distribution point cloud coloring method
with central region restrictions. According to Figure 13g, the point cloud coloring results
have overall high accuracy. The textures of buildings are very clear, and the corners of
the houses are also very obvious. In addition, targets such as windows, grass, trees, and
vehicles can be clearly distinguished. The biggest drawback is that due to the limited range
of the video images, the high-altitude point cloud of buildings, the crowns of trees, and the
roofs of cars are not colored. Therefore, the next research direction is how to colorize point
cloud with high-altitude to obtain a complete, colored point cloud.

Finally, it is declared that the entire process of this article is implemented using the
C++ programming language. Figures 11 and 12 were visualized using Python. We will also
provide the running time for each step, as shown in Table 7. To unify the units, all time
units in Table 6 are in milliseconds, which is equivalent to 0.001 s. In addition, in Table 6,
the calibration time refers to the total time it took to calibrate 42 chessboard images, while
the time for corresponding point matching, essential matrix decomposition, and nonlinear
optimization all refer to the processing time for one stereo image pair.

Table 7. Running time for each step.

Running
Time (ms) Calibration Registration Corresponding

Point Matching

Relative Orientation
Absolute

OrientationEssential Matrix
Decomposition

Non-Linear
Optimization

1 365,358 16,329 1874 170 33 13

2 354,320 15,438 1853 160 30 10

3 367,899 17,840 1837 165 23 15

4 354,537 16,754 1907 178 25 14

5 380,047 17,756 1930 174 27 17

6 367,594 15,389 1846 176 40 18

7 359,807 18,087 1890 163 31 13

Average 364,223 16,799 1876 169 30 14

6. Conclusions

In this article, we propose an automatic point cloud colorization method for a ground
measurement LiDAR system without POS. The system integrates a LiDAR and a GoPro
camera and has the characteristics of simplicity, low cost, light weight, and portability. As a
loosely coupled integrated system, it has the possibility of industrial mass production and
can complete automatic point cloud registration and colorization without POS. The method
mainly consists of four steps: calibration, registration, relative orientation and absolute
orientation, and colorization. (1) To solve the problems of video image motion blur, pixel
blur, and nonlinear distortion of GoPro, in preprocessing we use radial and tangential
distortion models to correct the GoPro camera based on 42 chessboard images extracted
from video streams. After calibration, it can be seen that the edges of the chessboard and the
edges of the house are well corrected. (2) To achieve image sequence registration without
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POS, this article proposes a 1-N registration strategy. We only perform registration between
the first video image and the point cloud and use the relative and absolute orientation to
transfer the exterior orientation elements to all sequential images. In registration, a method
based on normalized Zernike moments is proposed to achieve high registration accuracy
even for blurry video images. The registration based on Normalized Zernike moments
has an error of only 0.5–1 pixel, which is far higher than collinearity equations. (3) In the
corresponding point matching, this article proposes a SURF corresponding point matching
method with distance restriction and RANSAC to eliminate corresponding points with
blurred edges and mismatches. We select the top 20 corresponding points for relative
orientation based on essential matrix decomposition and nonlinear optimization. The
parallax of the stereo image pair model is less than one pixel. (4) Finally, in the point cloud
colorization, we propose a Gaussian distribution coloring method with a central region
restriction, which can complete point cloud colorization realistically and evenly. In the
colored point cloud, the textures of various objects such as buildings, cars and trees are
very clear. Based on the results of the final point cloud colorization, we prove the feasibility
of the method proposed in this article, which provides a reference for the future point cloud
colorization of ground mobile measurement LiDAR systems.

For the blurry video images, the reliability of corresponding points is questionable.
Therefore, the following research will be carried out: (1) Using features such as tie-line or
parallel-line attributes to achieve registration between point cloud data. (2) Establishing a
joint calibration [54] field for the motion camera and LiDAR to solve the rigid combination
between them and achieve automatic matching of both data. (3) Starting from improving the
methods of relative and absolute orientation, adopting more accurate and faster methods.
For example, Li et al. [55] proposed a hybrid conjugate gradient algorithm for large-angle
stereo image relative orientation, which is independent of initial values and has high
accuracy and fewer iterations. Deng et al. [56] proposed an absolute orientation algorithm
based on line features, which reduces the need for control points and tie points and
improves accuracy and stability through joint adjustment. (4) As the scenario in this article
is a closed small scene area, we did not use GPS. After relative orientation, we introduced
parameters such as scale factor and rotation angle to control the camera’s offset through
the laser point cloud—absolute orientation between images and point clouds. Even though
the final coloring accuracy is acceptable, there is definitely a cumulative system error
when performing continuous relative orientation, and GPS can correct these system errors
by providing absolute positions. This is a current weakness of our article. For future
experiments, perhaps in large-scene applications, we will add GPS to the system, which is
also an important direction for our future research.
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