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Abstract: Mid- to high-latitude Asia (MHA) is one of the regions with the strongest warming trend
and it is also a region where ecosystems are most sensitive to climate variability. However, how the
vegetation in the region will change in the future remains uncertain. Using observation-based Leaf
Area Index (LAI) and meteorological data and the multiple regression method, this study analyzes
the response of vegetation in the MHA to climate elements during 1982–2020. Then, machine learning
prediction models based on the Random Forest (RF) and Extreme Random Tree (ERT) algorithms
are built and validated. Based on the calibrated meteorological fields from 17 Coupled Model
Intercomparison Project Phase 6 (CMIP6) models under intermediate (SSP2-4.5) and high (SSP5-
8.5) emission scenarios and the machine learning models, the LAI over the MHA in 2021–2100 is
projected. The historical long-term increasing trends of LAI in the MHA since 1982 are found to be
mainly caused by the increasing near-surface air temperature, while the interannual variations of
LAI are also greatly affected by precipitation and surface downward solar radiation, especially in
summer. The LAI over most of the MHA shows a significant increasing trend in the future, except
over some dry areas, and the increasing trends are stronger under the SSP5-8.5 scenario than under
the SSP2-4.5 scenario.

Keywords: climate change; leaf area index; vegetation prediction

1. Introduction

Terrestrial primary production through photosynthesis is a fundamental ecosystem
function, not only because it provides fuel to drive other biological activities, but also
because of its importance in storing carbon [1]. Vegetation phenology and primary produc-
tivity are key attributes of ecosystems, and their variations under future climate change
will have significant impacts on regional and global climate and biogeochemical cycles [2,3].
Precipitation, temperature, and solar radiation are the main climate elements affecting
vegetation growth [4–6]. However, the relative importance of the three elements and the
directions of their influences vary greatly with region, climate, and vegetation type. For
example, Zhou et al. [7] and Andrade et al. [8] found that radiation was the dominant factor
for both tropical rainforest and Antarctica vegetation. Craine et al. [5] and Seddon et al. [6]
found that precipitation is the dominant factor for vegetation growth in arid and semi-arid
areas, while temperature is more important in high altitude and high latitude areas. Many
studies have shown that the enhancement of vegetation activity in the middle latitudes is
related to regional climate warming [9–12]. However, despite the significant increase in
temperature, the positive impact of warming on vegetation dynamics is not significant in
Europe [13]. In addition, the relationship between vegetation dynamics and temperature
has been weakening at the continental scale [3], and it may reverse in the future [14].
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Shinoda and Nandintsetseg [15] emphasized the effectiveness of soil moisture in control-
ling vegetation activity in a Mongolian steppe. In contrast, Lin et al. [16] noted that the
relationship between precipitation and vegetation dynamics is negligible in the Hulunber
meadow steppe, Inner Mongolia. Mohammat et al. [17] studied the effects of near-surface
air temperature and precipitation on vegetation growth in inland Asia and found that
summer drought has a significant negative impact on vegetation growth in arid regions
such as eastern Kazakhstan, Mongolia, and Inner Mongolia, while in high-altitude and
high-latitude regions (>50◦N), the correlation between summer vegetation growth and
near-surface air temperature is stronger. During the 2003 European heatwave, the main
cause of the reduction in water and carbon fluxes in temperate and Mediterranean forest
ecosystems was insufficient precipitation rather than temperature [18]. These research
findings demonstrate that the influence of climate elements on vegetation growth is closely
related to the background climate, vegetation type, and time scale.

To date, studies to predict future vegetation changes are still lacking, and the factors
used for predictions are also very limited. Precipitation, temperature [19–23], and evapo-
transpiration [24] are main factors used to predict vegetation changes, and linear regression
is a widely used method. For example, Iwasaki [19] conducted predictions with a stepwise
multiple linear regression of the Normalized Difference Vegetation Index (NDVI) with
temperature and precipitation, and they found that the method was effective in arid and
semi-arid regions, but the accuracy was low in August and in regions with high vegetation
activities. Zhou et al. [24] predicted the change of NDVI in China over the next 80 years
by using a multiple linear regression model with evapotranspiration and precipitation as
predictors. They found that the vegetation status in China will improve in the future except
in parts of the northeast and southeast, and the change of vegetation under the RCP8.5
scenario will be greater than that under the RCP4.5 scenario, but the vegetation degradation
in spring cannot be ignored. Yuan et al. [22] obtained similar results for Northeast China
using climate data from Coupled Model Intercomparison Project Phase 6 (CMIP6) models.
However, although multiple linear regression can capture the linear relationships between
vegetation and climate elements, it cannot capture their nonlinear relationships and may
result in poor prediction performances.

Models based on ecological processes, such as Century [25], TEM [26], BIOME-
BGC [27], and some dynamic vegetation models, such as IBIS [28] and LPJ-DVGM [29],
have been used to simulate vegetation growth. These models comprehensively consider
the material and energy exchange processes between vegetation and the environment
and have been widely used in vegetation dynamic modeling. However, these models are
very complex with numerous variables, bringing many uncertainties to vegetation predic-
tion [30]. In recent years, machine learning methods that have strong nonlinear mapping
ability, such as Artificial Neural Network (ANN), Support Vector Machine (SVM), and
Long Short-term Memory (LSTM), have been widely used to solve nonlinear complexity
problems in hydrological and vegetation predictions [31].

Most previous studies directly used future vegetation predicted by CMIP models or
used the future meteorological fields simulated by those models as predictors to predict
future vegetation. However, the meteorological data from models usually contain biases
in mean values and variabilities [32,33]. Without proper correction, these biases may
influence the vegetation prediction. Therefore, in addition to selecting relevant predictors,
the accuracy of predictors is also crucial for prediction skills. Previous studies mostly used
multiple linear regression (e.g., [22]). The limitations of the linear models may hinder an
accurate prediction of the nonlinear vegetation response.

Mid- to high-latitude Asia (MHA) includes arid, semi-arid, semi-humid, and humid
areas. Vegetation cover in the MHA is influenced by two basic climatic gradients: the first is
due to latitude variations, resulting in a large change in vegetation from north to south; the
second is a continental gradient from the Pacific coast to the interior of Asia [34]. The MHA
is rich in vegetation types and has large variations in topography. It is one of the regions
most responsive to future warming [35] and is also one of the regions where vegetation is
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most sensitive to climate variability [6]. Therefore, examining the response of vegetation to
climate in the MHA and predicting its future vegetation changes are extremely important.

In this study, we use two machine learning models to capture the complex relationships
between climate elements, time, vegetation types, altitude, and vegetation Leaf Area
Index (LAI), and to predict future LAIs using the mean- and variability-calibrated climate
elements from CMIP6 model predictions. The goal of this study is to analyze the vegetation
changes and their influencing factors in the MHA from 1982 to 2020 and predict the
vegetation changes in the future (to 2100).

2. Materials and Methods
2.1. Observational Climate and Vegetation Data

Monthly high-resolution (0.5◦ × 0.5◦) data of near-surface air temperature (Tas) and
precipitation (Pr) since 1982 are obtained from the Climatic Research Unit (CRU) of the
University of East Anglia’s monthly gridded dataset (CRU TS v4.05) [36] (https://crudata.
uea.ac.uk/cru/data/hrg/ (accessed on 15 May 2023)). The data are integrated using
monthly information from more than 4000 weather stations around the world. The 1984–
2016 monthly surface downwelling shortwave radiation (Rsds) data at 1◦ × 1◦ resolution are
from ISCCP-FH (https://isccp.giss.nasa.gov/projects/flux.html (accessed on 15 May 2023)).
The global elevation data are from ETOPO1 Global Relief [37] (https://data.nodc.noaa.gov/
(accessed on 15 May 2023)), a 1 arc-minute global relief model of the Earth’s surface that
integrates land topography and ocean bathymetry.

We use global leaf area index (LAI) data at 8 km resolution from GLOBMAP (Version
3), a long-term product produced by quantitative fusion of Moderate Resolution Imaging
Spectroradiometer (MODIS) data (since 2000) and historical Advanced Very High Reso-
lution Radiometer (AVHRR) data (1981–1999) [38]. Fang et al. [39] showed that MODIS,
GEOV1, GLASS and GLOBMAP LAI products are generally consistent, and there are strong
linear relationships between the products (R2 > 0.74). Jiang et al. [40] compared four long-
term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) and found that GLOBMAP has
the smallest interannual variability change between the MODIS and AVHRR periods. In
this study, we use monthly GLOBMAP LAI data from 1982 to 2020.

Land cover type data are from the MODIS yearly product MCD12C1, version 5.1 [41]
(https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12C1-6 (accessed on 15
May 2023)). In this study, the majority land cover (Type 1) in 2019 at a spatial resolution of
0.05◦ is used. The dataset was produced using a supervised decision tree classification to
map global land cover using spectral and temporal information obtained from MODIS.

2.2. CMIP6 Model Data

Monthly Tas, Pr, and Rsds from experiments of 17 climate models participating in
CMIP6 (Table 1) are used. The experiments include historical simulations and 21st cen-
tury scenario simulations based on two shared socioeconomic pathways (SSPs): SSP2-4.5
(intermediate emissions) and SSP5-8.5 (high emissions). Data from historical simulations
(1984–2014) are compared with the observational data for calibration, and data from the two
scenario experiments (2015–2100) are calibrated before being used for vegetation prediction
(see Section 2.4).

Table 1. CMIP6 models used in this study.

No. Model Institution/Country (Region) Grid Size (lon × lat)

1 ACCESS-CM2 ACCESS/Australia 1.875◦ × 1.25◦

2 ACCESS-ESM1-5 ACCESS/Australia 1.875◦ × 1.25◦

3 CanESM5 CCCma/Canada 2.81◦ × 2.81◦

4 BCC-CSM2-MR BCC/China 1.125◦ × 1.125◦

5 FGOALS-f3-L CAS/China 1.25◦ × 1◦

6 FGOALS-g3 CAS/China 2◦ × 2.25◦

7 EC-Earth3 EC-Earth/Europe 0.70◦ × 0.70◦

https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
https://isccp.giss.nasa.gov/projects/flux.html
https://data.nodc.noaa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12C1-6
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Table 1. Cont.

No. Model Institution/Country (Region) Grid Size (lon × lat)

8 EC-Earth3-Veg EC-Earth/Europe 0.70◦ × 0.70◦

9 IPSL-CM6A-LR IPSL/France 2.5◦ × 1.27◦

10 AWI-CM-1-1MR AWI/Germany 0.94◦ × 0.94◦

11 MPI-ESM1-2-HR MPI/Germany 0.94◦ × 0.94◦

12 MPI-ESM1-2-LR MPI/Germany 1.875◦ × 1.875◦

13 MIROC6 AORI-UT-JAMSTEC-NIES/Japan 1.41◦ × 1.41◦

14 MRI-ESM2-0 MRI/Japan 1.125◦ × 1.125◦

15 NorESM2-LM NCC/Norway 2.5◦ × 1.89◦

16 CESM2-WACCM NCAR/USA 1.25◦ × 0.94◦

17 GFDL-ESM4 NOAA-GFDL/USA 1.25◦ × 1.0◦

In addition, the 1984–2016 monthly LAI predicted by historical simulations of 20 CMIP6
models (see list of models in Section 3.4) are used for comparison with those predicted by
machine learning models.

2.3. Quantitative Analysis of the Contributions of Climate Elements to Vegetation Change

We assume that the long-term trend of LAI is mainly affected by the change of three
climate elements, Tas, Rsds and Pr, and direct human activities, such as land use and
land cover change, and the fertilization effect of increased carbon emissions. Following
Zhang et al. [42], the rate of change of LAI can be shown linearly as

dLAI
dt CLTTas + CLTPr + CLTRsds + CLTHa

= ∂LAI
∂Tas ·

dTas
dt + ∂LAI

∂Pr ·
dPr
dt + ∂LAI

∂Rsds ·
dRsds

dt + CLTHa
(1)

where CLTTas, CLTPr, CLTRsds and CLTHa represent the contribution to the long-term trend
of LAI from Tas, Pr, Rsds and human activities, respectively. The rates of change (e.g., dTas

dt )
can be calculated by the least-square method, and the partial derivatives of LAI about the
climate elements (e.g., ∂LAI

∂Tas ) can be obtained from a multiple linear regression

LAI = a1·Tas + a2·Pr + a3·Rsds + b (2)

where a1, a2, and a3, are the regression coefficients and equal to ∂LAI
∂Tas , ∂LAI

∂Pr , and ∂LAI
∂Rsds

respectively. As in Wu et al. [43], the relative contributions of the three climate elements
can be calculated as a normalized weight

|CLTi|
∑3

i=1|CLTi|
(3)

which shows the relative contributions of the three climatic factors to the long-term trend
of LAI.

Similarly, we can obtain the contributions of the three climate elements to the inter-
annual variation of LAI. We first remove the linear trends of the three climate variables
and LAI, and then standardize the three climate variables (remove its mean and then
divide its standard deviation). Next, we establish a multiple linear relationship between
the standardized climate variables and the detrended LAI

LAInt = a1|nt·Tas∗nt + a2|nt·Rsds∗3 + a3|nt·Pr∗nt + bnt (4)

where Tas∗nt, Rsds∗nt, and Pr∗nt are the standardized and detrended Tas, Rsds, and Pr, respec-
tively. LAInt is the detrended LAI, and a1|nt, a2|nt, a3|nt, and bnt are the regression coefficients.
The regression coefficients can be normalized to obtain the relative contributions of the
three climate elements

|ai|nt|
∑3

i=1|ai|nt|
(5)
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which shows the relative contributions of the interannual variations of the three climate
elements to the interannual variation of LAI.

2.4. Bias Correction of CMIP6 Data

Here, we apply a new bias correction method based on Xu et al. [33] to correct the
model projection data from CMIP6 general circulation models (GCMs). This method makes
use of the nonlinear trend of the multi-model ensemble (MME) mean of 17 CMIP6 models
to give a more reliable prediction of long-term climate trends and corrects the model
interannual variances based on observational data. The data used include monthly Pr,
Rsds and Tas from historical simulations (1984–2014) and two future scenario (SSP2-4.5
and SSP5-8.5) simulations (2015–2100). For the historical period, Pr and Tas from CRU and
Rsds from ISCCP-FH are used as observations to calibrate the CMIP6 data. The 17 models
are shown in Table 1. Because the MME mean largely cancels out the internal climate
variability, we need to select one model to present the monthly and interannual variability.
Following Xu et al. [33], the high resolution MPI-ESM1-2-HR model is selected because of
its good performance. All model and observational data are regridded to 1.0◦ × 1.0◦ using
bilinear interpolation. The bias-correction method can be summarized as

GCMbc = OBSLT|H +
(

MMELT −MMELT|H
)
+ GCM′ × rS (6)

where GCMbc is the bias-corrected GCM monthly timeseries at each grid cell, OBSLT|H
(MMELT|H) is the long-term mean of the nonlinear variation of observations (17-model
mean) in the historical period calculated using the ensemble empirical mode decomposition
(EEMD) method [44] (the subscript H represents the historical period, and the overbar de-
notes the climatological mean), MMELT is the MME mean time series (including historical
and future scenario periods), GCM′ is the anomaly of the MPI-ESM1-2-HR model after
removing its nonlinear trend, and rS = σOBS/σGCM is the ratio of the interannual standard
deviation of the detrended observational data to that of the detrended MPI-ESM1-2-HR
model data in the historical period. GCMbc thus have the base climate provided by obser-
vational data in historical periods, with future climate changes relative to historical periods
produced by MME, and future bias-corrected monthly climate variability produced by a
single GCM. For more details about the bias-correction method, please refer to Xu et al. [33].

2.5. Machine Learning Methods

Two machine learning methods, random forest (RF) and extremely randomized trees
(ERT), are used to predict LAI. They are both based on the decision tree method but there
are two main differences: First, RF uses the bagging model and bootstrap sampling to
generate sample sets, while ERT uses all training samples. Second, RF obtains the best
bifurcation attribute in a random subset, which is consistent with the traditional decision
tree, while ERT’s bifurcation values are completely random.

Three monthly climate elements, Tas, Pr and Rsds, and five background factors,
elevation, vegetation type, latitude, longitude, and time, are selected for model training in
the historical period of 1984–2016. The training uses observation-based data (Section 2.1).
The bias-corrected Tas, Pr and Rsds from monthly GCM data in 2017–2100 (Section 2.4) are
used as predictors to predict LAI in the same period. The training and testing are for all the
grid points together, which greatly increases the sample size.

All data are regridded into 1◦ × 1◦ grid cells. The vegetation types are regridded by
nearest neighbor remapping, while other factors are regridded by bilinear interpolation
and are then normalized as

x′ =
x−xmin

xmax − xmin
(7)

where x is the original variable, xmin (xmax) is the minimum (maximum) value of the variable,
and x′ is the normalized variable. x′ is in the range of 0–1.
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The specific steps for model training and forecasting are as follows:
Step 1: Extract 80% of the training data and 20% of the test data by year from all the

datasets in the historical period (1984–2016).
Step 2: Repeat Step 1 10 times for 10-fold cross validation and tune the parameter

(n_estimators); use the optimal parameter to train the prediction model.
Step 3: Repeat Step 1 five times for 5-fold cross validation, and the prediction results

are used to evaluate the performance of the model.
Step 4: Predict LAI using the forecast model with historical (using observational data)

and future (using bias-corrected GCM data) climate data.
The coefficient of determination (R2) and root mean square error (RMSE) are used to

evaluate the predictions for the historical period.

3. Results
3.1. Climate and Vegetation in the MHA

The topography in the MHA is high in the southwest and low in the north and east,
with both plateaus and deserts (Figure 1a). The MHA includes 17 major land cover types.
The vegetation types in the central region at approximately 60◦N are the most abundant,
mainly mixed forest and evergreen needleleaf forest (Figure 1b). The high-latitude region
is composed of a large number of open shrublands. Grassland and sparse vegetation are
the main vegetation types in the southwestern MHA, including the Mongolian Plateau and
part of the Tibetan Plateau, which have high altitudes, arid climates, and fragile ecosystems.
The difference in vegetation types causes differences in vegetation phenology, and the
major climate elements affecting them are also different.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 18 
 

 

2.4) are used as predictors to predict LAI in the same period. The training and testing are 
for all the grid points together, which greatly increases the sample size. 

All data are regridded into 1° × 1° grid cells. The vegetation types are regridded by 
nearest neighbor remapping, while other factors are regridded by bilinear interpolation 
and are then normalized as 

x′=
x-xmin
xmax-xmin

 (7)

where x is the original variable, 𝑥௠௜௡ (𝑥௠௔௫) is the minimum (maximum) value of the 
variable, and 𝑥′ is the normalized variable. 𝑥′ is in the range of 0–1. 

The specific steps for model training and forecasting are as follows: 
Step 1: Extract 80% of the training data and 20% of the test data by year from all the 

datasets in the historical period (1984–2016). 
Step 2: Repeat Step 1 10 times for 10-fold cross validation and tune the parameter 

(n_estimators); use the optimal parameter to train the prediction model. 
Step 3: Repeat Step 1 five times for 5-fold cross validation, and the prediction results 

are used to evaluate the performance of the model. 
Step 4: Predict LAI using the forecast model with historical (using observational data) 

and future (using bias-corrected GCM data) climate data. 
The coefficient of determination (R2) and root mean square error (RMSE) are used to 

evaluate the predictions for the historical period. 

3. Results 
3.1. Climate and Vegetation in the MHA 

The topography in the MHA is high in the southwest and low in the north and east, 
with both plateaus and deserts (Figure 1a). The MHA includes 17 major land cover types. 
The vegetation types in the central region at approximately 60°N are the most abundant, 
mainly mixed forest and evergreen needleleaf forest (Figure 1b). The high-latitude region 
is composed of a large number of open shrublands. Grassland and sparse vegetation are 
the main vegetation types in the southwestern MHA, including the Mongolian Plateau 
and part of the Tibetan Plateau, which have high altitudes, arid climates, and fragile 
ecosystems. The difference in vegetation types causes differences in vegetation 
phenology, and the major climate elements affecting them are also different. 

 
Figure 1. Land cover types and climate in the MHA. (a) Topographic map (unit: m), (b) land cover 
type, (c) annual average surface temperature (unit: °C) and (d) annual total precipitation (unit: mm). 

Figure 1. Land cover types and climate in the MHA. (a) Topographic map (unit: m), (b) land cover
type, (c) annual average surface temperature (unit: ◦C) and (d) annual total precipitation (unit: mm).
Land cover type comes from MODIS land cover type products: 0.Water; 1.Evergreen needleleaf forest;
2. Evergreen broadleaf forest; 3. Deciduous needleleaf forest; 4. Deciduous broadleaf forest; 5. Mixed
forest; 6. Closed shrublands; 7. Open shrublands; 8. Woody savannas; 9. Savannas; 10. Grasslands;
11. Permanent Wetland; 12. Croplands; 13. Urban and built-up; 14. Cropland/Natural vegetation
mosaics; 15. Snow and ice; 16. Barren or sparsely vegetated.

Most inland areas of the MHA have a temperate continental climate. Its north has a
polar climate, and its southeast coastal area has a monsoon climate. The annual average
temperature increases from the northeast to the southwest, with the lowest temperature in
Central and Eastern Siberia, where the annual average temperature is mostly below −8 ◦C
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(Figure 1c). Influenced by the monsoon and topography, the average annual precipitation
in the southeast coastal areas is more than 800 mm (Figure 1d). For the central part of
the MHA, from the West Siberian plain, through the Balkhash Lake area of the Central
Siberian Plateau to the southern part of the Eastern Siberian mountains, the average annual
precipitation can reach more than 400 mm. For the far inland regions of Kazakhstan,
Xinjiang, China and the eastern part of the Mongolian Plateau, the annual precipitation is
less than 200 mm. As a result, persistent droughts often occur in these inland regions [45].

The vegetation growth in the central part of the MHA is the most vigorous, with the
annual average LAIs reaching more than 2 m2 m−2 (Figure 2a), while the annual average
LAIs in the southwest and high latitudes of the MHA are less than 1 m2 m−2. The pattern of
LAI interannual variation is similar to that of the mean LAI (Figure 2b), and the vegetation
changes in the Central Siberian Plateau to the west of Lake Baikal and the coasts of the
Sea of Japan are the most obvious. The vegetation types in these regions are mainly mixed
forest, deciduous broadleaf forest, and evergreen needleleaf forest. The vegetation in most
areas of the MHA shows a significant increasing trend in the past 39 years. The high
latitudes show the most significant trends, while vegetation degradation occurred to the
west of Lake Baikal and the coasts of the Sea of Japan.
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Figure 2. Spatial distribution of the (a) climatological mean (unit: m2 m−2), (b) standard deviation
(unit: m2 m−2) and (c) linear trend (unit: m2 m–2 a–1) of the annual mean LAI from 1982 to 2020
(data from GLOBMAP). Dots highlight areas with trends significant at p < 0.1 level according to the
Student’s t test.

3.2. Climate Elements Affecting the Trend and Interannual Variation of LAI

Figure 3 shows the relative contributions of the three climate elements to the linear
trend and interannual variability of LAI in 1984–2016. The results are shown for spring
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(March–May) and summer (June–August), the two main periods of the growing season,
separately. The calculations of the trend and interannual variability are for the averages of
spring or summer. For most of the MHA, Tas contributes most to the long-term trend of LAI
in both spring and summer, especially in high latitudes where the warming trends are the
strongest (Figure 3a–b). This is consistent with previous findings (e.g., Zhou et al. [9]). For
the interannual variations of LAI, the relative contributions of Tas are smaller while Pr and
Rsds have more contributions (Figure 3c–d). This is more evident in summer, when Rsds
is the most important factor for most areas. In the semiarid areas around the Taklamakan
Desert and Gobi Desert, Pr is the most important contributor to the interannual variation
of summer LAI. Tas is still the most important contributor for most areas in spring and for
the high latitudes in summer.
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Figure 3. Relative contributions of (a,c) spring and (b,d) summer precipitation (Pr; blue), downward
shortwave radiation (Rsds; green) and 2 m temperature (Tas; red) to the (a,b) long-term trend and
(c,d) interannual variation of LAI in 1984–2016. The trend and interannual variability are for the
spring or summer averages of each year. Areas with LAI ≤ 0 are masked.

3.3. Bias Correction for CMIP6 Data

As described in Section 2.4, we use the monthly Pr and Tas data from CRU, as well
as the ISCCP-FH Rsds in the historical period (1984–2014), to calibrate the detrended
monthly data from the MPI-ESM1-2-HR model. The MME data from 17 CMIP6 models
provide future (2015–2100) long-term climate changes relative to the historical period.
Figure 4 shows the model results for historical and future simulations before and after bias
correction. In the historical period, the MPI-ESM1-2-HR model significantly overestimates
Pr and Tas and underestimates Rsds. After bias correction, the differences in mean values
between the model and observations are greatly reduced. Pr and Tas show increasing
trends in the MHA both before and after bias correction, and the trends under the SSP5-8.5
scenario are larger than those under the SSP2-4.5 scenario, especially for Tas. According
to the bias-corrected model data, the regional mean Tas under SSP2-4.5 (SSP5-8.5) will
increase by nearly 3 ◦C (7 ◦C) during 2015–2100. Under both scenarios, the mean Tas values
will soon change from below 0 ◦C in the historical period to above 0 ◦C in the near future.
Perennial snow melting in high-latitude areas will lead to more drastic changes in climate,
LAI, and even vegetation types. The long-term trend of Rsds is not significant, and the
Rsds under SSP5-8.5 is slightly lower than that under SSP2-4.5.
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Figure 4. Original MPI-ESM1-2-HR model (GCM_hist_SSP2-4.5 and GCM_hist_SSP5-8.5) and bias-
corrected model (GCMbc_hist_SSP2-4.5 and GCMbc_hist_SSP5-8.5) data in historical (1984–2014)
and future (2015–2100) periods under the SSP2-4.5 and SSP5-8.5 scenarios. Observational data from
CRU (Tas and Pr) and ISCCP-FH (Rsds) in the historical period are also shown. The vertical line in
2014 separates the historical and future periods. (a) Pr. (b) Rsds. (c) Tas.

3.4. Evaluation of Machine Learning Models

We used three climate elements, Pr, Tas and Rsds, as well as five background factors,
elevation, vegetation type, latitude, longitude, and time, to predict future LAI. The results
of cross validation from two prediction models, RF and ERT, are shown in Figure 5. Both
models show high determination coefficients (R2) of over 0.93 and low RMSEs of less than
0.3, but both models underestimate the high LAI values. The LAI has the highest density at
0–2.5 m2 m−2, consistent with Figure 2a. The ERT model shows slightly better results than
the RF model.
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Figure 5. Density scatter plots of the relationship between the predicted and observed LAIs from
the cross validations by (a) the RF model and (b) the ERT model. Each point represents the monthly
mean LAI in one grid cell over the MHA (unit: m2 m−2).

To compare the performance of the machine learning models with those of the CMIP6
models, we show the 1984–2016 predicted annual LAI from 20 CMIP6 models and the
two machine learning models (Figure 6). The machine learning models show superior
performances compared with all 20 CMIP6 models.
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Figure 6. Taylor diagram showing the performance of the predicted 1984–2016 annual LAI from
20 CMIP6 models and the machine learning models (RF and ERT). The symbols for ERT and RF are
very close because their results are very similar.

The values of the predictors that are not selected in bootstrap sampling are randomly
disturbed, and the difference between the forecast value and the actual observed value is
used to determine the importance of the predictors. Figure 7 shows the relative importance
of the predictors for prediction in the two models. The vegetation type (Type), Pr and
Tas are the most important predictors in the two models. However, Pr is more important
than Tas in the RF model, while the reverse is true in the ERT model. The contribution of
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vegetation type in the models can reach nearly 30%, and different vegetation types have
great differences in LAI variability. In our prediction model, the vegetation types remain
unchanged, which may have some impact on the long-term LAI predictions.
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3.5. Projection of Future Vegetation 
Figure 9 shows the historical and future LAI produced by the machine learning 

models RF and ERT according to the observed (1982–2020) and calibrated CMIP6 (2021–

Figure 7. Relative importance of predictors in the (a) RF model and (b) ERT model.

Figure 8 shows the R2 and RMSE of the two models for the test set. The two models
show similar patterns in both R2 and RMSE. R2 has high values in the high-latitude area
north of the Mongolia Plateau and the coastal zone where LAI is high, and it has very
low values in the mid-latitude dry regions where the vegetation is sparse. RMSE shows a
different pattern from that of R2, with higher (lower) values in regions with high (low) LAI.
The RMSE in the whole region is mostly below a low value of 0.08 m2 m−2, demonstrating
the good performance of the models. The areas with R2 < 0.3 are not included in the
subsequent analysis.
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Figure 8. Coefficient of determination (R2; a,b) and root mean square error (RMSE; m2 m−2; c,d) of
the predicted LAI from the RF model (a,c) and ERT model (b,d) relative to GLOBMAP LAI for a test
set in the historical period (1984–2014).

3.5. Projection of Future Vegetation

Figure 9 shows the historical and future LAI produced by the machine learning models
RF and ERT according to the observed (1982–2020) and calibrated CMIP6 (2021–2100)
climate elements, as well as some background factors. In the historical period, the two
models are both very close to the observations during the training periods; the biases
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are larger in test years (vertical bars), but the interannual to decadal variabilities are
properly reproduced. Under the two future scenarios, the two models both show significant
increasing trends in the regional average LAI. The increasing trends are stronger under the
SSP5-8.5 scenario than under the SSP2-4.5 scenario, and the RF model predicts stronger
increases than the ERT model. Because the ERT model has slightly better performance than
the RF model (Figure 5), the prediction results of the ERT model are used for subsequent
analysis. By the end of the 21st century, the ERT-predicted average annual LAI under SSP2-
4.5 and SSP5-8.5 will increase by approximately 0.1 m2/m2 and 0.24 m2/m2, respectively,
compared with 2016. Note also that under SSP5-8.5, the speed of LAI increase slows down
at the end of the 21st century, consistent with the slowdown of the warming trend.
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Figure 9. Interannual variations (1984–2100) of the observation-based (GLOBMAP) and machine
learning model (RF and ERT) produced mean LAI in the MHA. The vertical bars show an example of
the 20% test years for cross validation.

The regression analysis in Figure 3 shows that Tas is most important for the long-term
trend of LAI over most regions of the MHA. To confirm this result, we keep two of the
three climate elements (Tas, Pr, and Rsds) constant as the values of 2016 in the ERT model
predictions and see how they may affect the projection of future LAI (Figure 10). When only
Pr or Rsds changes (blue and green lines), the future LAI does not have an obvious trend.
When only Tas changes, the LAI (red line) approaches that predicted when all the climate
elements change (brown line). This confirms that the vegetation growth in the MHA is
mainly driven by Tas. Note that the curve of only Tas changes and that of all change are
not completely the same. By the end of the 21st century, the LAI values from all change
are higher than those of only Tas changes, especially under the SSP5-8.5 scenario. This
indicates the synergistic effect of Pr, Rsds and Tas on vegetation growth in the future.

We divide the future period of 2021–2100 into three overlapping 40-year periods
(2021–2060, 2041–2080, 2061–2100) and calculate their LAI differences with the historical
period (1982–2020). Spatially, the LAI in the MHA will be increasing in almost the whole
region (Figure 11), and weak vegetation degradation will only occur in a few small areas.
As shown in Figure 9, the difference in LAI changes between the SSP2-4.5 and SSP5-8.5
scenarios grows with time, with little difference in 2021–2060, but the differences are
evident in 2061–2100. The regions with the strongest LAI increase are at approximately
60◦N from northern Kazakhstan to northeast China, similar to the regions with the highest
LAI (Figure 2a). The LAI of the MHA is projected to have a largely constant increasing trend
from 2021 to 2100, and the growth rate is higher under the SSP5-8.5 scenario than under
the SSP2-4.5 scenario (Figure 12). The regions with the fastest LAI growth are basically the
regions with the highest LAI.
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The mean seasonal cycles of the MHA under future scenarios are similar to those in 
the historical period, but the LAI values are higher (Figure 13). The largest increases are 
in spring and summer. As shown in Figures 11–12, the LAI values are generally higher 
under SSP5-8.5 than under SSP2-4.5 for all future periods (2021–2100), except in winter 
months. The lower winter LAI values during historical periods are probably related to the 
inconsistency of the GLOBMAP LAI before and after 2000 (based on AVHRR and MODIS 
data, respectively) and still have uncertainties. The LAI differences between SSP5-8.5 and 

Figure 11. ERT model projected future mean LAI changes under the SSP2-4.5 and SSP5-8.5 scenarios
(2021–2060, 2041–2080, 2061–2100) relative to historical (1982–2020) LAI from GLOBMAP. No value
is shown in areas where the ERT model is not reliable (R2 < 0.3 in Figure 8b). (a,c,e) SSP2-4.5.
(b,d,f) SSP5-8.5. (a,b) 2021–2060. (c,d) 2041–2080. (e,f) 2061–2100.
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Figure 12. (a–f) Same as Figure 11, but for ERT model projected annual LAI linear trends under the
SSP2-4.5 and SSP5-8.5 scenarios for 2021–2060, 2041–2080, and 2061–2100. Dots highlight areas with
trends significant at p < 0.1 level according to the Student’s t test. No value is shown in areas where
the ERT model is not reliable (R2 < 0.3 in Figure 8b).

The mean seasonal cycles of the MHA under future scenarios are similar to those in
the historical period, but the LAI values are higher (Figure 13). The largest increases are in
spring and summer. As shown in Figures 11 and 12, the LAI values are generally higher
under SSP5-8.5 than under SSP2-4.5 for all future periods (2021–2100), except in winter
months. The lower winter LAI values during historical periods are probably related to the
inconsistency of the GLOBMAP LAI before and after 2000 (based on AVHRR and MODIS
data, respectively) and still have uncertainties. The LAI differences between SSP5-8.5
and SSP2-4.5 and between different periods of the same scenario are relatively small in
July–August, probably because the high temperature inhibits vegetation growth [14].
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4. Discussion

This study used calibrated CMIP6 model data and machine learning methods to
project future vegetation changes in the MHA. Some limitations of the study should be
noted. Anthropogenic land use and land cover change have contributed greatly to LAI
changes in some regions, for example, the reforestation in northern China [46,47]. Their
effects are assumed to be constant in this study but this may not be true. Failure to take
such factors into account could lead to biases in model training and the estimation of future
LAI. The CO2 fertilization effect is another important factor that is not considered. It has
a dominant effect on the greening of tropical vegetation, but its influences are relatively
minor for the MHA [48]. Moreover, LAI data derived from satellite data have issues of
spatiotemporal discontinuity and saturation for dense vegetation, which may affect model
training and vegetation prediction. Future studies should examine these uncertainties by
using other vegetation indexes (such as solar-induced chlorophyll fluorescence, SIF).

In this study, the RF and ERT models are used because they have fast speed and good
fitting abilities and are able to consider nonlinear relationships. One of the limitations of the
models is that they can only consider the simultaneous climate-vegetation relationship and
do not consider the memory and lagged response of vegetation to climate variations. Some
machine learning models, such as LSTM, have memory stores but have high computational
costs. The lagged response of vegetation to climate should be explored in future studies. In
addition, the RF and ERT models have limited ability to predict extreme values, which may
affect the accuracy of their projected vegetation extremes. Because this study focuses on the
evolution of mean vegetation, we consider that this limitation should have little influence
on the results of this study.

Hernanz et al. [49] showed that machine learning models have limitations in down-
scaling or projecting future conditions based on past observations, i.e., extrapolation issues.
We tested using 1982-2000 as the training period and 2001-2020 as the testing period. The
biases are larger than using randomly selected training sets. However, the GLOBMAP LAI
is based on AVHRR (MODIS) before (after) 2000, and the biases could also come from the
discontinuity of the LAI dataset. The limitations of ML models in extrapolating future sce-
narios should be paid more attention in future studies. Some emerging physics-constrained
ML methods may be a possible way to alleviate these extrapolation problems [50].

5. Conclusions

This study analyzes the characteristics of LAI changes in the MHA over the past
39 years and investigates the relationship between vegetation and climate elements. Two
LAI prediction models are built using machine learning methods and are validated. The
CMIP6 data for the SSP2-4.5 and SSP5-8.5 scenarios are bias corrected and used by the
prediction models to predict the LAI in the future (2021–2100). The long-term increasing
trends of vegetation since 1982 in most parts of the MHA are found to be caused by
global warming. However, precipitation and radiation also play important roles in the
interannual variation of LAI, especially in summer. The vegetation type is a crucial factor
in the prediction models. Consistent with previous studies, the LAIs predicted by the two
models both show significant increasing trends in most parts of the MHA in the future,
and the trends are stronger under the high emission scenario of SSP5-8.5. The regions
with the fastest LAI growth are similar to the regions with the highest LAI. The growth of
vegetation slows down at the end of the 21st century under the SSP5-8.5 scenario because
of the high temperature. The LAI differences between SSP5-8.5 and SSP2-4.5 and between
different periods of the same scenario are relatively small in July–August compared with
other warm season months, probably because the high temperature inhibits vegetation
growth. This study provides a reference for future ecosystem and environmental changes
under global climate change.
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