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Abstract: The increased number of satellites and stations leads to the serious time consumption of
the integrated precise orbit determination (POD), especially in the current global navigation satellite
system (GNSS) with more than 120 satellites. To improve the computational efficiency of multi-
GNSS-integrated POD, this paper proposed an improved parameter estimation method based on
intel oneAPI high-performance computing, where the inactive parameters are eliminated in a batch
mode. Compared with the classical estimation method based on the “one-by-one” elimination, the
efficiencies were significantly improved with ratios of 2.53, 4.21, and 5.38 for 79, 126, and 171 stations’
GPS/BDS/Galileo/GLONASS-integrated POD, respectively. The elapsed time of the improved
method by using 126 stations was the same as that of 79 stations’ POD by the classical estimation
method. In terms of precision, the one-dimensional root mean square error (RMS) reductions were
0.1 cm (7%), 34.3 cm (11%), 1.9 cm (18%), 0.4 cm (8%), 0.2 cm (13%), and 0.4 cm (13%) for GPS, BDS
GEO, BDS IGSO, BDS MEO, Galileo, and GLONASS satellites, respectively.

Keywords: precise orbit determination; global navigation satellite system; parameter elimination;
time consumption; Intel oneAPI high-performance computing

1. Introduction

Multiple global navigation satellite systems (multi-GNSS) can improve reliability
and reduce convergence time for precise point positioning (PPP) [1–3]. GNSS satellite
orbit and clock offsets generated by precise orbit determination (POD) are prerequisite
products of PPP, and their accuracy directly affects PPP performance [4–6]. To better
provide multi-GNSS precise services, a pilot project named a multi-GNSS experiment
(MGEX) of the International GNSS Service (IGS) [7] deploys monitoring stations around
the world for navigation satellites’ POD, and the number of these stations is increasing
year by year [5,8]. In such high-volume data processing, more accurate and reliable orbit
and clock offset products can be obtained [9–11], but this further increases the burden of
multi-GNSS POD data processing. In addition, POD has been widely used for precise
modeling of satellite errors, such as antenna phase center correction [12–14], and empirical
solar radiation pressure modeling [15–17], which usually requires POD data processing for
one year or even several years. Thus, higher efficiency data processing can achieve higher
precision by adding more stations’ observations and can reduce the period of the entire
data processing tasks.

Parameters to be estimated include station coordinates, satellite orbits, station and
satellite clock offsets, zenith total delay (ZTD), and carrier-phase ambiguities for POD.
These large dimensional matrix operations greatly limit the speed of POD data processing
while all parameters are kept to solve the normal equation system (NEQ) [18]. A “one-by-
one” parameter-elimination method for processing huge GNSS networks was developed by
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Ge et al. [18] to improve computational efficiency, where only active parameters were kept,
and others were eliminated one by one as soon as they became inactive. With the addition
of new constellations of the BDS-2 regional system and early Galileo, before 2018, there
were about 80 satellites in multi-GNSS [5,19,20]. Although the one-by-one elimination is
adopted, the computational efficiency is still seriously affected due to the expansion of NEQ
after the addition of new satellite parameters. An alternative method was used to divide
the joint POD into three steps [20]. In addition to GNSS POD, high-efficiency Leo-Earth
Orbit (LEO) POD was also divided into two steps, where GNSS POD was obtained by
ground stations and then GNSS PPP for LEO [21–23]. However, in theory, a more rigorous
“one-step” integrated solution can provide better GNSS and LEO products [21,22].

On the other hand, parallel techniques are also used to improve the efficiency of GNSS
solutions. Distributed memory computing techniques have been used for processing mas-
sive GPS network datasets [24,25]. Some parallel processing strategies have been developed
to speed up epoch-wise PPP or baseline solutions [26,27]. Moreover, Open Multiprocessing
(OpenMP) has emerged to support multi-platform shared memory multiprocessing pro-
gramming [28,29], and OpenMP-based parallelism has been introduced into the extended
Kalman filter for real-time GPS network solutions [30]. For multi-GNSS POD, a new par-
allel elimination of the inactive parameters was realized for improving the efficiency of
multi-GNSS POD [31]. Parallelism is always used to improve real-time data processing
efficiency; however, it sacrificed CPU and memory usage, and it was confirmed that the
architecture of computers entirely limits the performance of the parallel algorithm [31].
Thus, these parallel algorithms are not fully applicable to improve the efficiency of the
postprocessing tasks, especially for the completion of the later global navigation system
construction of BDS-3 and Galileo [8,32], and about 40~50 newly launched satellites were
added to the routine POD. In this case, the number of satellites has increased by about 45%,
and this will bring a new challenge to multi-GNSS-integrated POD.

Intel released a unified programming model named oneAPI that simplifies the de-
velopment process of heterogeneous computing in different architectures and maximizes
performance to meet the needs of different workloads. As two important toolkits in oneAPI,
the oneAPI HPC and oneAPI Base can provide performant science applications for devel-
opers [33]. Therefore, to retain the advantages of serial programming with small CPU and
memory consumption, an improved parameter estimation method base on the oneAPI HPC
was proposed for high-efficient multi-GNSS-integrated POD, while combining multi-day
independent POD parallel to further improve the overall efficiency of the long-time period
data processing tasks. First, the main processing of GNSS POD was introduced, and then the
major time-consuming procedures were obtained. Next, the improved estimation method
was designed based on serial programming of the parameter batch elimination. Afterward,
the performance of the classical estimation methods based on the “one-by-one” elimination
and multi-threaded parallel elimination and the improved method were compared. Finally,
the efficiency of the improved method was verified by different stations and satellites,
and the accuracy and time consumption of GPS/BDS/Galileo/GLONASS-integrated POD
were analyzed.

2. GNSS Precise Orbit Determination

The reduced dynamic orbit determination method is widely used for GNSS satellites,
where the initial condition state parameters of the position and velocity vectors and solar
radiation pressure empirical model parameters were estimated by ground observation. In
this section, the GNSS observation model, the main process of POD, and the elapsed time
decomposition in the least squares adjustment (LSQ) will be introduced.



Remote Sens. 2023, 15, 2635 3 of 18

2.1. GNSS Observation Model

The pseudo-range and carrier-phase equations of the GNSS satellite are as follows [34–36]:
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where i and j represent the station and satellite, respectively, and the right superscript of G,
C, E, and R represents GPS, BDS, Galileo, and GLONASS; pj

i and ϕ
j
i are the raw pseudo-

range and carrier phase observations, and λj is the wavelength of carrier phase; ρ
j
i is the

geometry distance between i and j; cδtj is satellite clock offset; the receiver clock offsets of
the other systems are referenced to the GPS (cδti,G), and aligned to their own systems by
introducing ISBi,C_G, ISBi,E_G, and IFBj,R

i,R_G for BDS, Galileo and GLONASS, respectively;

Ti is the zenith tropospheric delay of station i, and Mj
i is the mapping function of signal

direction from satellite j; δI j
i is the equivalent distance caused by the ionospheric delay;

λj·N j
i is the equivalent distance of the ambiguity; ε

j
i and ε

j
i are the noise of pseudo-range

and carrier phase, respectively. The first-order term of ionospheric delay can be eliminated
by the ionospheric-free (IF) linear combination of the two different frequency observations
in the GNSS.

2.2. Main Processes of POD

The main process of POD is shown in Figure 1. The initial orbit and partial derivatives
can be obtained by a numerical integrator, where the initial condition state parameters
and the perturbation accelerations during the satellite motion were considered, and some
external tables are used to support integration, such as pole bulletin (finals2000A.data),
earth gravity field model (EGM2008), JPL DE405 planetary ephemeris, and satellite meta-
data. The empirical parameter set (ECOM1 or ECOM2) is used to compensate for the solar
radiation pressure perturbation [37,38].

Afterward, GNSS observations of satellite-to-ground distance from the station network
are used to estimate corrections of the initial condition state parameters. To obtain clean
observations, the turboedit algorithm is used to realize observation data preprocessing
and cycle slip detection of carrier-phase observations [39]. Combined with the initial
orbit, partial derivatives, and GNSS observations, the LSQ adjustment is established. Next,
residuals editing is performed according to posterior analysis, and smaller outliers and
cycle slips can be detected in this processing. When all cycle slips are detected and estimated
as new ambiguities in LSQ, the fixed solution of POD can be obtained by applying the
constraints of fixed double-differenced ambiguities to the NEQ system [40].

In a POD process, the LSQ usually requires four iterations for different purposes, i.e.,
three for residuals editing and the last for ambiguity fixing. The running time of other
core processes in POD was counted: parallel data preprocessing took about 4 min for
168 stations; orbit integrating, residuals editing, and ambiguity fixing of 120 satellites were
about 2.6, 2.6, and 5.4 min, respectively. However, the time consumption of the LSQ can
reach several hours, and the internal processes should be analyzed.
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Figure 1. Process of GNSS precise orbit determination.

Processes in LSQ are decomposed as shown in Figure 2. First, observation equations
are constructed, including calculating pre-fit residual vector l in Equation (3) and the partial
derivative for design matrix A in Equation (3). Second, the NEQ system is cumulated
by observation equations. Next, the inactive parameters in the NEQ system are elimi-
nated, and the index of the NEQ system and local parameters of each station should be
updated in time. An epoch-to-epoch cycle from parts one to three is executed, while all
observations are processed. Finally, the NEQ system is solved to obtain the estimations
of orbit, earth rotation parameter (ERP), inter-system bias (ISB) or inter-frequency bias
(IFB) [41,42], station coordinate and other parameters, and the eliminated parameters in the
third step are recovered, and the residuals from observations are calculated for subsequent
residuals editing.
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2.3. Elapsed Time Decomposition in LSQ

A POD with 96 satellites and 133 stations was carried out for time consumption
analysis. The elapsed times of observation modeling, accumulating NEQ, and eliminating
parameters were about 2.211, 0.2, and 22 s per epoch, shown in Figure 3a–c, respectively.
The number of eliminated inactive parameters for each epoch is shown in Figure 3d, which
increased significantly due to the ZTD parameters estimated with an interval of 2 h. In this
case, the elapsed time for elimination can reach 40 s per epoch.
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3. Improved Parameter Estimation Method

Assuming the observation equations are as follows:

v = AX̂ + l, P (3)

vX0 = X− X0 = X̂, PX0 (4)

where A is the design matrix, X̂ is the vector of the estimated parameters, v is the residual
vector, l is the observed minus computed distance (O−C) vector, P is the weight matrix,
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and X0 and PX0 are a priori values of X and their weight matrix, respectively. Then, the
corresponding normal equations (NEQ) are(

AT PA + PX0

)
X̂ = −AT Pl (5)

NX̂ = −W (6)

It is worth mentioning that the number of parameters involved in each station–satellite
pair is significantly less than the number of global parameters X̂. Therefore, the design
matrix A is a sparse matrix with many zero elements. To improve the efficiency, the
NEQ of AT PA is usually calculated by multiplying the non-zero elements of matrix A,
instead of direct matrix multiplication. In this process, it is necessary to establish the index
information of the local station to the global parameter X̂. The criterion of adjustment is
vT Pv + vT

X0
PX0 vX0 → min , and it can be expanded into the following Equation:

vT Pv + vT
X0

PX0 vX0 =
(

AX̂ + l
)T P

(
AX̂ + l

)
+ X̂T PX0 X̂ =

(
X̂T AT P + lT P

)(
AX̂ + l

)
+ X̂T PX0 X̂

= X̂T AT PAX̂ + X̂T AT Pl + lT PAX̂ + lT Pl + X̂T PX0 X̂ = X̂T NX̂ + 2X̂TW + lT Pl = X̂TW + lT Pl
(7)

The parameters to be estimated in POD can be divided into three categories: (1) con-
stant parameters, such as station coordinates and orbital parameters (initial orbital position
and velocity parameters, solar radiation pressure parameters); (2) time-dependent process
parameters, including troposphere zenith total delay (piecewise linear model), receiver
clock offsets, satellite clock offsets (white noise model), and others; (3) ambiguity parame-
ters of station–satellite pair. The corresponding NEQ system is shown as follows:NX̂C X̂C

NX̂C X̂P
NX̂C X̂Y

NX̂PX̂C
NX̂PX̂P

NX̂PX̂Y
NX̂Y X̂C

NX̂Y X̂P
NX̂Y X̂Y


X̂C

X̂P
X̂Y

 =

WX̂C
WX̂P
WX̂Y

 (8)

where X̂C, X̂P, and X̂Y are the vectors of constant parameters, time-dependent parameters,
and ambiguity parameters, respectively. As the tropospheric parameter of the random walk
model, two adjacent time interval parameters can be considered in X̂P, and the constraints
between them can be derived by the state transition matrix from the previous interval to
the current ones. Then, the previous ones are set to inactive and eliminated together with
other parameters.

Step 1: Set inactive parameters’ flag for X̂P and X̂Y vectors.
For an epoch solution of satellite and receiver clock offsets, they will be eliminated

before the next epoch. The ZTD and ambiguity parameters can be estimated piecewise or
by effective time intervals, and they will be eliminated if the end time is less than or equal
to the current time. For illustration purposes, we randomly selected three ambiguities to
show in Figure 4. The total number of the inactive parameters is denoted as nelim, and
the corresponding PX0 (Equation (5)) of these parameters should be added into the NEQ
system in advance.

Step 2: Obtain the block matrix of parameters to be eliminated.
The vectors of the entire parameters in NEQ system are only divided into two

parts: “active” (X̂′) and “inactive” (R̂), where R̂ is nelim × 1, X̂′ is (n tot − nelim
)
× 1,

ntot = nC + nP + nY, nC, nP, and nY are the number of X̂C, X̂P, and X̂Y, respectively. The
corresponding NEQ is divided into four blocks. The translation is essential to centralize
the scattered parameters into a block R̂. To gain efficiency, R̂ can be obtained by one-to-one
“swap”, where the “last” of the eliminated parameter is swapped with the “first” active
parameters. The two rows and columns of the “swap” need to be recorded, and the order
of the parameters can be restored by repeated “swap”. Meanwhile, the W matrix also needs
to be swapped correspondingly. The blue part in Figure 4 is for inactive parameters to
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be eliminated later, among them, “1”, “2”, and “3” represent the randomly selected three
ambiguity parameters.
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Figure 4. Diagrams of inactive parameters flag setting and centralization: (a) is for Step 1, and the
blue part is for inactive parameters to be eliminated later, among them, “1”, “2”, and “3” represent
the randomly selected three ambiguity parameters. (b) is for Step 2 after centralization, where the
blue part is R̂, and the white part is X̂′.

Step 3: Batch elimination for inactive R̂.
In the case of matrix operation, R̂ can be eliminated from the NEQ system by perform-

ing only once per epoch. The specific methods are as follows:[
NR̂R̂ NR̂X̂′
NX̂′ R̂ NX̂′X̂′

] [
R̂
X̂′

]
=

[
WR̂
WX̂′

]
(9)

R̂ can be expressed by:

R̂ = NR̂R̂
−1(WR̂ − NR̂X̂′ X̂

′) (10)

Equation (9) can be rewritten without R̂:

[
NX̂′ R̂ NX̂′X̂′

] [NR̂R̂
−1(WR̂ − NR̂X̂′ X̂

′)
X̂′

]
= WX̂′ (11)

(N X̂′X̂′ − NX̂′ R̂NR̂R̂
−1NR̂X̂′

)
X̂′ = WX̂′ − NX̂′ R̂NR̂R̂

−1WR̂ (12)

The NEQ system after elimination can be denoted by:

−
NX̂′X̂′ X̂

′ =
−
WX̂′ (13)

where
−
NX̂′X̂′ = NX̂′X̂′ − NX̂′ R̂

(
NR̂R̂

−1
)

NR̂X̂′ ,
−
WX̂′ = WX̂′ − NR̂X̂′(N R̂R̂

−1)WR̂. The index

of R̂ and X̂′ to global parameter X̂ in Equation (12) should be stored in a binary file, which is
convenient to recovery the eliminated parameters R̂ by using Equation (10) after obtaining
X̂′. When the inactive R̂ is eliminated, the variables (Equation (7)) in the final solution also
need to be updated accordingly. The specific expressions can be obtained as follows:

vT Pv + vT
X0

PX0 vX0 = X̂TW + lT Pl = R̂TWR̂ + X̂′TWX̂′ + lT Pl =
(

WT
R̂
− X̂′T NX̂′ R̂

)
NR̂R̂

−1WR̂ + X̂′TWX̂′ + lT Pl

= WT
R̂

NR̂R̂
−1WR̂ − X̂′T NX̂′ R̂ NR̂R̂

−1WR̂ + X̂′TWX̂′ + lT Pl

= WT
R̂

NR̂R̂
−1WR̂ + X̂′T

(
WX̂′ − NX̂′ R̂ NR̂R̂

−1WR̂

)
+ lT Pl = WT

R̂
NR̂R̂

−1WR̂ + X̂′WX′ + lT Pl

(14)
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lT Pl should be updated after eliminating R̂, with:

lT Pl = lT Pl −WT
R̂ NR̂R̂

−1
WR̂ (15)

To set up the runtime environment of the high-efficiency matrix operation, only two
toolkits need to be installed: Intel oneAPI Base Toolkit and Intel oneAPI HPC Toolkit. When
the program is implemented, the matrix inverse NR̂R̂

−1 can be efficiently implemented
by calling DPOTRF and DPOTRI functions. DGEMM function can be called for Matrix
multiplication, for instance, Ntmp = NX̂′ R̂(NR̂R̂

−1). The DGEMV function is called when
a matrix is multiplied by a vector, as in Wtmp = NR̂X̂′(NR̂R̂

−1)WR̂. Using Equations (10),

(14) and (15), R̂ can be eliminated and
−
NX̂′X̂′ obtained as the white part in Figure 5a. In the

global NEQ system, except for the
−
NX̂′X̂′ , the rest of the parts are set to zero.
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Step 4: Restore the NEQ structure and update the parameter index.
After elimination, the parameter structure of the NEQ system needs to be restored

as the order of X̂ rather than [R̂ X̂′]T , like the structure of Equation (5), and the NEQ is
shown as Equation (16):

−
NX̂C X̂C

−
NX̂C X̂P

−
NX̂C X̂Y

−
NX̂PX̂C

−
NX̂PX̂P

−
NX̂PX̂Y

−
NX̂Y X̂C

−
NX̂Y X̂P

−
NX̂Y X̂Y


X̂C

X̂P
X̂Y

 =


−
WX̂C
−
WX̂P
−
WX̂Y

 (16)

The specific operation is to “swap” again according to Step 2. Corresponding graphical
expression, the NEQ system structure after the “swap” of all parameters is shown in
Figure 5b. Since the process parameter vector X̂P always exists in the NEQ system, its
position should be kept and not compressed (gray part). However, the ambiguity parameter
(yellow part) should be compressed, and the dimension nY of the ambiguity parameter
X̂Y might vary with different epochs. After the compression, the final structure of NEQ
is shown in Figure 5c, its dimension becomes ntot_new = nC + nP + nY′ , and the indexes
from local parameters (station related) to global parameters (NEQ) should be updated. If
a new ambiguity parameter appears in the next epoch, it can be added to the end of the
parameter vector X̂Y, and nY updated accordingly.
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When the epoch-loop from Step 1 to Step 4 ends, the inactive X̂P and X̂Y are eliminated
once again, and only the X̂C are kept in the final NEQ system to participate in the final
inversion and complete the LSQ. The estimations of X̂C can be obtained by:

X̂C =
−
NX̂C X̂C

−1
·
−
WX̂C

(17)

A posteriori error of unit weight σ0 can be calculated as:

σ0 =

√√√√√ lT Pl − X̂C·
−
W

T

X̂C

nobs_total − npar_total
(18)

where nobs_total is the total number of observations, and npar_total is the total number of
parameters to be estimated in POD, which includes X̂C and all eliminated X̂P and X̂Y.

4. Experiment with the Multi-GNSS-Integrated POD

To effectively illustrate the effect of the improved method, three schemes of compara-
tive experiments were designed. The specific experimental schemes were as follows:

• Considering the classical estimation method based on the “one-by-one” elimination of
“inactive” parameters had great success in huge GNSS networks POD, it was chosen
as a reference group, named Scheme I;

• The “one-by-one” elimination method could be assisted with OpenMP to realize
parallel computing, hence further improving the efficiency of multi-GNSS-integrated
POD. Four threads were used to perform parameter elimination in parallel, named
Scheme II;

• The improved estimation method based on the oneAPI HPC library was named
Scheme III.

A Dell computer was selected as the platform for multi-GNSS POD data processing.
An Intel(R)-Core (TM) i9-10900k @3.70 GHz CPU with 10 logical cores and a solid-state
drive with 64 GB memory were equipped on this computer. To analyze the POD efficiency
of the above parameter-elimination methods in cases of different stations and satellites, we
randomly selected 79, 126, and 171 stations from the IGS/MGEX network to conduct GPS
(G), GPS/BDS (GC), GPS/BDS/Galileo (GCE), and GPS/BDS/Galileo/GLONASS (GCER)
satellites’ POD, respectively. Afterward, the LSQ time-consuming was analyzed. The
general error correction and parameter setting of the data processing are shown in Table 1.

Table 1. The data and error corrections for multi-GNSS-integrated POD.

Type Descriptions

stations IGS/MGEX station network [43];
Period Days of year (DOYs) from 013 to 019, 2022;

Observations zero-difference carrier phase and pseudo-range elevation weight;
cut-off is 7◦;

orbital arc 24 h;

Solar radiation
pressure model

GPS/GLONASS: ECOM2 [38];
Galileo: ECOM1+a priori model [16,37];
BDS2: ECOM1;
BDS3: ECOM1 + a priori model [17];

Inter-system biases
(ISB) and
Inter-frequency
biases (IFB)

ISB between BDS2/3 and GPS, Galileo, and GPS; constant parameter per station;
IFB per satellite and station pair between GLONASS and GPS; Constraint that sum of all ISBs
and IFBs are zero was added;
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Table 1. Cont.

Type Descriptions

Ionospheric delay

Ionosphere-free (IF) combination;
GPS: L1/L2;
BDS: B1I/B3I;
Galileo: E1/E5a;
GLONASS: R01/R02;

Tropospheric delay
Zenith total delay (ZTD): 2-h interval;
Saastamoinen [44] + Global Map Function (GMF) [45];
Horizontal gradient: 24-h interval;

Antenna phase
center correction
(PCC)

For both satellites and receivers, phase center correction model is from igs14_2196.atx [46,47];
BDS and Galileo receivers PCC was using GPS L1 and L2 instead.

5. Validation of the Multi-GNSS POD
5.1. Time Consumption Analyzed for Multi-GNSS-Integrated POD

The LSQ of 96 satellites (GCE) and 133 stations were selected to analyze the variation
of time consumption with different epochs. The detailed results of Schemes I–III for LSQ
are shown in Figure 6, and the number of eliminated parameters was also plotted.
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When “one-by-one” elimination was adopted in Scheme I, the whole LSQ took 2 h:
6 min: 49.2 s; among them, the time spent on the eliminated-parameter recovery was
145.458 s. When parallel elimination was used in Scheme II with four threads, the LSQ
was shortened to 1 h: 20 min: 25.6 s. Compared to 22 s of Scheme I, the average time of
parameter elimination per epoch was 13.113 s, which was reduced by about 41%. In the
case of the improved method in Scheme III, it took 41 min; 48.6 s for one LSQ, which was
reduced by about 67%; and took 79.037 s for parameter recovery by matrix calculation in
Equation (10).

Considering that multiple POD tasks are executed at the same time to further improve
the efficiency of data processing, four groups of POD data processing were set up. For
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Schemes I and III, the CPU utilization rates were about 45% and 40%. Since there were
10 cores in this CPU and four groups of POD used, the CPU utilization was consistent
with the theoretical rate of 40%. For Scheme II, parallel computing can improve the
LSQ efficiency; however, it also increases the CPU and memory overheads. To further
quantitatively analyze the CPU resource occupation caused by multi-thread parallelism, five
days of POD results were analyzed. The LSQ elapsed time with four and two simultaneous
POD groups are shown in Figure 7, and the corresponding CPU utilization rates were
100% and 66%, respectively. In this case, the LSQ times of Scheme II with four groups and
two groups POD were 4 h: 18 min: 46.171 s and 3 h: 08 min: 32.266 s. Compared with
the elapsed time of 4 h: 52 min: 56.651 s in Scheme I, the improvements in LSQ efficiency
in Scheme II were 0 h: 34 min: 10.475 s (12%) and 1 h: 44 min: 24.385 s (36%) for four
and two simultaneous POD groups, respectively. The main reason was that when the
CPU utilization rate was 100%, part of the parameter elimination needed to wait until the
previous work finished and released some CPU cores, this process reduced the parallel
processing efficiency. Thus, in the following work, only two rather than four groups of
POD were solved simultaneously to fully exploit the capabilities of parallel elimination in
Scheme II.
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It should be noted that the 171 stations were selected randomly, without considering
the data quality to optimize the stations. Based on the precise orbit determination of
171 stations, the 126 stations were obtained by removing the stations whose residual
RMS value of carrier-phase observation was greater than 16 mm. Therefore, the selected
126 stations can be regarded as optimization by the data quality control with a posterior
residual analysis. Similarly, 79 stations were optimized based on 126 stations’ POD, which
removed the stations whose carrier residual RMS was greater than 10 mm. Considering
the influence of different distributions on the accuracy of orbit determination when the
number of stations was fixed, the distributions of 171, 126, and 79 stations are shown in
Figures 8–10, respectively. According to the strategy mentioned in Table 1, one-week data
were used for GNSS POD analysis. Table 2 lists the GNSS satellites involved in POD.
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Table 2. Satellite PRN involved in multi-GNSS POD.

Systems PRN List

GPS (G) G01, G02, G03, G04, G05, G06, G07, G08, G09, G10, G11, G12, G13, G14, G15, G16, G17, G18, G19, G20, G21, G22,
G24, G25, G26, G27, G28, G29, G30, G31, G32

GLONASS (R) R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R17, R18, R19, R20, R21, R22, R23, R24

BDS (C) C01, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, C13, C14, C16, C19, C20, C21, C22, C23, C24, C25,
C26, C27, C28, C29, C30, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46

Galileo (E) E01, E02, E03, E04, E05, E07, E08, E09, E11, E12, E13, E15, E18, E19, E21, E24, E25, E26, E27, E30, E31, E33, E36

Figure 11 shows the elapsed time of three schemes with different satellite systems
and stations. It can be seen from Figure 11a–c that as the number of systems and satellites
increases, a significant increment of LSQ time consumption can be observed, especially for
the GLONASS. For ISBs of the BDS and Galileo, they were only related to the station with
a number of nsite*1; however, GLONASS adopted the IFB related to the station–satellite
pair, and its parameter number was nsite*24. The IFBs significantly increased the number
of parameters, thus greatly increasing LSQ time consumption.
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The specific time statistics are shown in Table 3. As seen from Figure 11 and Table 3,
when the number of satellites was small, for instance, single-system GPS, the difference
in the elapsed time in the three methods was relatively small, which was about 2–4 min,
5–10 min, and 10–24 min for 79, 117, and 171 stations, respectively. With the increasing
number of satellites or stations, the difference between the three methods became more
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and more significant. For GCER POD, the maximum difference in elapsed time between
Schemes I and III can reach 225 min when 171 stations were used.

Table 3. Elapsed time of LSQ for three schemes with different systems and stations, the unit is hh: min: s.

Systems 79 Stations 126 Stations 171 Stations
I II III I II III I II III

G 0:04:06 0:02:50 0:02:47 0:10:46 0:06:55 0:05:26 0:24:22 0:15:43 0:10:08
GC 0:10:29 0:07:18 0:04:58 0:32:42 0:19:30 0:10:13 1:08:19 0:39:53 0:15:50

GCE 0:18:14 0:11:52 0:07:30 0:50:21 0:32:27 0:14:05 1:47:55 1:10:10 0:20:41
GCER 0:38:51 0:27:40 0:15:22 2:09:45 1:22:23 0:30:50 4:35:25 2:57:30 0:51:11

To describe the improvement of time consumption visually and conveniently, the
improved ratio of elapsed time was adopted for analysis. Figure 11d and Table 4 show
the detailed ratios of Schemes II and III. Compared with Scheme I, the elapsed time
of Scheme II was shortened by about 1.45, 1.59, and 1.59 for 79, 126, and 171 stations,
respectively. Compared with Scheme I, the time of Scheme III was shortened by about
2.14, 4.32, and 4.33 for 79, 126, and 171 stations. It was worth noting that Scheme II had
a stable ratio of around 1.5, and did not change with the increased number of stations or
satellites, because the parallelism saved running time through multi-threads when the
algorithm remained unchanged. For Scheme III, the improvement ratio kept higher with
the increased number of stations and satellites, which reflected that the improved method
had more advantages in multi-GNSS-integrated POD with the larger number of stations.

Table 4. Improved ratios of LSQ elapsed time with different stations and systems.

Systems 79 Stations 126 Stations 171 Stations
II/I III/I II/I III/I II/I III/I

G 1.45 1.48 1.56 1.98 1.55 2.40
GC 1.44 2.11 1.68 3.20 1.71 4.32

GCE 1.54 2.43 1.55 3.58 1.54 5.22
GCER 1.40 2.53 1.57 4.21 1.55 5.38

Afterward, the characteristics of LSQ elapsed time in G-, GC-, GCE-, and GCER-
integrated POD of the three methods were analyzed with the number of increased stations,
and the specific relationship is shown in Figure 12. For Schemes I and II, the slope of
the curve became steeper with the increased stations, especially for GCER POD (green
line). However, for Scheme III, even for the GCER with the largest number of satellites, the
function of the elapsed time with the number of stations was still close to a linear trend
with a smaller slope than the other two methods.

To study the realization of GCER-integrated POD within a fixed time range, the
appropriate number of stations can be determined by using the function expression between
LSQ time consumption and the number of stations in Figure 12, and when the number of
stations was determined, the distribution of stations could be optimized to ensure a higher
POD accuracy. The quadratic polynomial model was selected to solve the model coefficients
(green line in Scheme III), and the specific function was dt = 0.0805x2 + 3.2471x + 163.21,
x ∈ [79, 171]. When 100 stations were selected, the LSQ took about 21.5 min for an arc of
24 h. If the time span of generation ultra-rapid orbit is limited to 2 h, 100 stations need
86 min for four LSQ cycles, and the remaining 34 min can be used for orbit integrating,
ambiguity fixing, residual editing, data preprocessing, and others.

Considering that POD is an overall process, we also analyzed the computation time
of overall orbit determination in Table 5. For Schemes I–III, only the LSQ methods were
different. When the POD was carried out, four iterations of the LSQ were used. Thus, the
elapsed time differences of the POD were larger than those of the LSQ, especially since the
largest difference between Schemes I and III was nearly about 15 h in the GCER’s POD by
using 171 stations.
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Table 5. Elapsed time of POD for three schemes with different systems and stations; the unit is hh: min: s.

Systems 79 Stations 126 Stations 171 Stations
I II III I II III I II III

G 0:37:14 0:32:10 0:31:58 1:08:54 0:53:30 0:47:34 2:07:50 1:33:14 1:10:54
GC 1:07:14 0:54:30 0:45:10 2:42:09 1:49:21 1:12:13 5:09:54 3:16:09 1:39:57

GCE 1:43:15 1:17:47 1:00:19 3:58:16 2:46:40 1:33:12 7:54:11 5:23:11 2:05:15
GCER 3:08:22 2:23:38 1:34:26 9:18:58 6:09:30 2:43:18 19:09:28 12:37:48 4:12:32

5.2. Precision for Multi-GNSS-integrated POD

In addition to analyzing the LSQ time consumption, it is also necessary to pay attention
to the accuracy of POD with different stations. 1D RMS of the precise orbit was calculated
based on GFZ MGEX Products as a reference, and the mean precision of the one-week POD
result was obtained. From the comparison in Table 6, the orbit 1D RMS indicators of GPS,
Galileo, and GLONASS satellites were 1.3–1.4 cm, 1.3–1.5 cm, and 2.7–3.1 cm, respectively.
For the BDS, the 1D RMS indicators were 4.9–5.3 cm and 7.9–10.5 cm for MEO and IGSO
satellites. However, the 1D RMS of the BDS GEO satellite was ranging from 234 to 315 cm.
The possible reason is the poor geometry and solar radiation pressure model compared to
that of MEO and IGSO satellites.

Table 6. One-dimensional (1D) RMS of POD with different stations; the unit is cm.

Satellites 79 Stations 126 Stations 171 Stations

GPS 1.4 1.3 1.3
BDS GEO 315.0 280.7 234.4
BDS IGSO 10.5 8.6 7.9
BDS MEO 5.3 4.9 4.9

Galileo 1.5 1.3 1.3
GLONASS 3.1 2.7 2.7

Improvement of the efficiency of different methods of parameter elimination should
not affect the accuracy of the multi-GNSS POD; however, the improvement of the orbit
accuracy will be achieved due to more observations provided by more stations, especially
for the ultra-rapid orbit. It can be seen from Table 2 that the LSQ of the GCER POD based
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on 126 stations can be achieved within 31 min by using the improved method (Scheme III).
Compared with the 38 min of the “one-by-one” method (Scheme I) that used 79 stations to
implement the LSQ of the GCER POD, the addition of more stations can achieve higher
accuracy with a shorter elapsed time of the LSQ (Table 3) and whole POD (Table 5). When
the number of stations was increased from 79 to 126, the accuracy improvements were
0.1 cm (7%), 34.3 cm (11%), 1.9 cm (18%), 0.4 cm (8%), 0.2 cm (13%), and 0.4 cm (13%)
for GPS, BDS GEO, BDS IGSO, BDS MEO, Galileo and GLONASS satellites, respectively.
If the number of stations was increased to 171, the accuracy of GEO and IGSO satellites
improved by about 46.3 cm (16%) and 0.7 cm (8%), and the tracking stations distributed
in the Asia-Pacific region could provide valid observations for GEO and IGSO satellites.
However, there was no significant improvement in GPS, BDS MEO, Galileo, and GLONASS.
The main reason is that the 126 stations were selected according to the global uniform
distribution, which was nearly saturated for MEO satellites.

6. Conclusions

In this paper, an improved parameter estimation method based on Intel oneAPI
HPC was proposed to improve computational efficiency. Through the analysis of LSQ time
consumption with the increased number of stations, the improved method presents a nearly
linear trend, and it is verified that the efficiency of the LSQ in GPS, BDS2, BDS3, Galileo,
and GLONASS satellites’ integrated POD was improved by 4.33 times for 171 stations. In
addition, the CPU consumption of the improved method was close to that of the serial “one-
by-one” method, and then as many POD tasks as possible were performed simultaneously.

Based on this method, the GNSS POD time consumption and precision of 79, 126,
and 171 stations were analyzed. The improved method can achieve higher accuracy of
POD by using more stations within the same time requirement. However, when the
number of stations was increased from 126 to 171, there was no significant improvement in
the accuracy of the MEO satellites’ POD. Therefore, under the condition of ensuring the
accuracy of POD, the data processing efficiency can be further improved by appropriately
reducing the number of ground stations.

On the other hand, by analyzing the functional relationship between the number of
stations and the LSQ time consumption in the GCER-integrated POD, it can be inferred
that when the number of stations was about 100, the single LSQ time in POD was about
24 min. In this case, the ultra-rapid orbit products might be solved within 2 h, including
data preprocessing, orbit integration, LSQ, residuals editing, ambiguity fixing, and other
steps. In the future, multi-threaded parallel will be added to further improve the efficiency
of the LSQ, and fast residuals editing will be implemented to reduce two LSQ iterations
and then improve the efficiency of multi-GNSS-integrated POD.

Although the Intel oneAPI simplifies the development process of heterogeneous
computing in different architectures and maximizes performance to meet the needs of
different workloads, we did not test the proposed method in other CPU/GPU/FPGA
architectures, and the performance of this method in other CPU architectures and whether
it is limited to Intel CPU will require further investigation and analysis.
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